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Abstract
The theory of Schrödinger bridges for diffusion pro-

cesses is extended to classical and quantum Markov
evolutions. Taking into account the past-future lack
of symmetry of the discrete-time setting, results bear
a striking resemblance to the classical ones. In partic-
ular, the solution of the path space maximum entropy
problems is always obtained from the a priori model
by means of a suitable multiplicative functional trans-
formation. In the quantum case, nonequilibrium time
reversal of quantum channels is discussed and space-
time harmonic processes are introduced.
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1 Introduction
In this paper we study certain maximum en-

tropy problems for discrete time and discrete state
space Markov evolutions first considered by Erwin
Schrödinger in the early thirties for diffusion processes
[Schrödinger,1931; Schrödinger,1932]. In these prob-
lems, there is an a priori distribution on path space.
Then new information becomes available in the form
of the initial or terminal (or both) marginal distribu-
tion. One seeks a new path space distribution that has
the correct marginal(s) and minimizes relative entropy
from the prior distribution. Given the diffusion case
results, their extension to Markov chains turns out to
be rather straightforward. These results serve us as
a guideline and for comparison purposes in the more
challenging quantum case.
The only previous discrete-time paper on this topic is

[1], which deals with the continuous state space case.
The key results on Schrödinger bridges, however, are
there merely stated and the most delicate points in this
extension, such as positivity of the space time har-

monic function needed for the solution and existence
and uniqueness of the latter, are altogether ignored.
Here we show that the solution process can be ob-
tained, in analogy to the diffusion case, via a suitable
multiplicative functional transformation of the “prior”
Markov process, see Theorem 3.2. As in the diffusion
case, an abstract result of Beurling and Jamison can
be used to prove existence and uniqueness of the so-
lution of the Schrödinger system for finite, irreducible
and aperiodic Markov chains, see Corollary 3.4.

In order to derive corresponding results for quantum
channels, we first need to develop various kinemati-
cal results. These concern extending the results on
time-reversal of the channel by [H. Barnum and E.
Knill,2002], and developing space-time harmonic pro-
cesses. We also need to introduce a suitable concept of
quantum “trajectory”: We consider a sequence of or-
thogonal projections selected from the spectral repre-
sentations of a time-ordered sequence of observables.
In spite of the obvious difficulties one can expect from
the non commutative structure, we are actually able
to solve two key maximum entropy problems on path
space, cf. Theorems 7.1, 7.2. In the second case, the
solution does not depend on the particular “quantum
path” chosen. Moreover, with the appropriate under-
standing of objects and properties, in both cases it bears
a striking similarity to the classical case. This paper
is a shortened version without proofs of [Pavon and
Ticozzi,2008].

2 Kinematics of Markov chains

Consider a Markov chain X = {X(t); t =
0, 1, 2, . . .} taking values in the finite or countably in-
finite set X . Since X is countable, we can identify X
with a subset of N. Let us introduce the distribution of
X(t) given by pi(t) = P(X(t) = i) and the transition
probabilities pij(t) := P(X(t + 1) = j|X(t) = i).



They are connected through

pj(t+ 1) =
∑
i

pij(t)pi(t). (1)

Let us agree that † always indicates adjoint with re-
spect to the natural inner product. Hence, in the case
of matrices, it denotes transposition and, in the com-
plex case below, transposition plus conjugation. We
can then rewrite (1) as p(t + 1) = P †(t)p(t), where
p(t)† = (p0(t), p1(t), p2(t), . . .) and P (t) = (pij(t))
is the transition matrix. The latter is stochastic, i.e. all
elements are nonnegative and rows sum to one. Let us
introduce the reverse-time transition probabilities

qji(t, p(0)) := P(X(t) = i|X(t+ 1) = j), (2)

where we have emphasized the dependence on the ini-
tial distribution p(0). The relation between the qji and
the pij is

pi(t)pij(t) = pj(t+ 1)qji(t, p(0)). (3)

Notice that for pj(t + 1) = 0, qji(t, p(0)), i ∈ N may
be defined arbitrarily any number between zero and one
provided

∑
i qji(t, p(0)) = 1. Whenever pj(t+1) > 0,

we get the relation

qji(t, p(0)) =
pi(t)

pj(t+ 1)
pij(t). (4)

Definition 2.1. A function h : N × X → R is
called space-time harmonic for the transition mecha-
nism {P (t); t = 0, 1, . . .} of a chain if, for every t ≥ 0
and all i, j ∈ X , it satisfies the backward equation

h(t, i) =
∑
j

pij(t)h(t+ 1, j). (5)

Space-time harmonic functions, a terminology due to
Doob and motivated by the case of diffusion pro-
cesses, play a central role in constructing Schrödinger
bridges. They are closely related to a class of mar-
tingales that are instantaneous functions of X(t), see
[Brémaud,1999]. ?? for definition and properties.

3 Schrödinger bridges for Markov chains
Definition 3.1. Let p and q be probability distributions
on a finite or countably infinite set. We say that the
support of p is contained in the support of q if qi =
0 ⇒ pi = 0 and write supp(p) ⊆ supp(q). The Infor-
mation Divergence or Relative Entropy or Kullback-
Leibler Index of q from p is defined to be

D(p‖q) =

{∑
i p(i) log p(i)

q(i) , supp(p) ⊆ supp(q),
+∞, supp(p) 6⊆ supp(q).

,

(6)

where, by definition, 0 · log 0 = 0.

Let X = {X(0), X(1), . . .} be a Markov chain
with state space X , transition probabilities (πij(t))
and marginal probabilities P(X(t) = i) = πi(t).
Let Π denote the corresponding joint distribution of
{X(0), X(1), . . . , X(T )} (distributions on X T+1 are
always denoted by capital, boldface letters). Let
D(0, T ; p0, p1) denote the family of Markovian distri-
butions P on X T+1 that have marginals p0 at time 0
and p1 at time T , respectively, and have support con-
tained in the support of Π. We consider the following
Maximum Entropy Problem (MEP3):

minimize
{
D(P‖Π); P ∈ D(0, T ; p0, p1)

}
. (7)

Theorem 3.2. Suppose there exists a pair of nonnega-
tive functions (ϕ, ϕ̂) defined on [0, T ]×X and satisfy-
ing the system

ϕ(t, i) =
∑
j

πij(t)ϕ(t+ 1, j), (8)

ϕ̂(t+ 1, j) =
∑
i

πij(t)ϕ̂(t, i), (9)

as well as the boundary conditions

ϕ(0, i)·ϕ̂(0, i) := p0
i , ϕ(T, i)·ϕ̂(T, i) := p1

i , ∀i ∈ X .
(10)

Suppose moreover that ϕ(t, i) > 0, ∀0 ≤ t ≤ T, ∀i ∈
X . Then, the Markov distribution P̂ in D(0, T ; p0, p1)
having transition probabilities

p̂ij(t) = πij(t)
ϕ(t+ 1, j)
ϕ(t, i)

(11)

solves problem (MEP3) (7).

Notice that if (ϕ, ϕ̂) satisfy (8)-(9)-(10), so does the
pair (cϕ, 1

c ϕ̂) for all c > 0. Hence, uniqueness for the
Schrödinger system is always intended up to such mul-
tiplications. As in the diffusion case, the problem is
now reduced to establish, under suitable assumptions,
existence and uniqueness for the Schrödinger system
(8)-(9)-(10) (notice that this issue is not even men-
tioned in [1]). Existence and uniqueness of the solution
to the Schrödinger system (8)-(9)-(10) follows from a
very deep result of Beurling [Beurling,1960], suitably
extended by Jamison [Jamison,1974, Theorem 3.2].

Theorem 3.3. [Pavon and Ticozzi,2008] Let X =
{X(0), X(1), . . .} be a Markov chain with state space
X and transition probabilities πij(t). Assume

1. p1 is a distribution on X with p1
x > 0,∀x ∈ X ;

2. p(0, x, T, y) > 0,∀x, y ∈ X .

Then the Schrödinger system (8)-(9)-(10) has a unique
solution with ϕ(t, x) > 0, ∀0 ≤ t ≤ T, ∀x ∈ X .



In many important applications, the prior transition
probabilities do not depend on time. We get the follow-
ing result for finite, irreducible and aperiodic Markov
chains.

Corollary 3.4. Let {X(0), X(1), . . .} be a Markov
chain with finite state space X and transition matrix
Π = (πij). Assume

1. p1 is a distribution on X with p1
x > 0,∀x ∈ X ;

2. the matrix PT has all positive elements.

Then the Schrödinger system (8)-(9)-(10) has a unique
solution with ϕ(t, x) > 0, ∀0 ≤ t ≤ T, ∀x ∈ X .

4 Quantum probabilities, entropy and quantum
operations

Consider a finite-dimensional quantum system Q,
with associated Hilbert space HQ isomorphic to Cn.
In the quantum probability formalism, random vari-
ables or observables for the system are represented by
Hermitian matrices X ∈ H(n). They admit a spectral
representation X =

∑
j xjΠj , where each real eigen-

value xj represents the random outcome associated to
the quantum event corresponding to the orthogonal pro-
jection Πj . The role of the probability distributions
is played here by positive-definite, unit-trace matrices
ρ ≥ 0, tr(ρ) = 1, called density matrices. The set
D(n) of density matrices is convex and has the rank-
one orthogonal projections as extreme points. Assume
that the density matrix associated to the state of the
system is ρ. The probability of measuring xj , or in
general the probability associated to the quantum event
Πj , is Pρ(Πj) = tr(ΠjρΠj). If the outcome corre-
sponding to an event Πj has been measured, the den-
sity matrix conditioned on the measurement record is
ρ|Πj

= 1
tr ΠjρΠj

ΠjρΠj . Hence, the joint probability
of obtaining Πk after Πj in subsequent measurements
can be computed by Pρ(Πj ,Πk) = tr(ΠkΠjρΠjΠk),
where the order of events is relevant. Similarly one ob-
tains nested expressions for joint probabilities of arbi-
trary event sequences. Expectations are then computed
as Eρ(X) =

∑
j xj tr(ΠjρΠj) = tr(ρX). Notice that

this implies that if the measurement has occurred, but
the outcome has not been recorded, the correct condi-
tional density matrix is: ρ|X =

∑
j

1
tr ΠjρΠj

ΠjρΠj ·
Pρ(Πj) =

∑
j ΠjρΠj , which is in general different

from the pre-measurement ρ, in contrast with the clas-
sical case. We refer to these “blind” measurement pro-
cesses as non-selective measurements. For any matrix
M , the support ofM , denoted supp(M), is the orthog-
onal complement of ker(M). Given two density ma-
trices ρ, σ, the quantum relative entropy is defined by
D(ρ‖σ) = tr(ρ(log ρ−log σ)), if supp(ρ) ⊆ supp(σ),
and +∞ otherwise.
As in the classical case, quantum relative entropy has

the property of a pseudo-distance (see e.g. [ Nielsen
and Chuang,2000]): The Klein’s Inequality D(ρ||σ) ≥
0 holds, equality occurring if and only if ρ = σ. More-
over, quantum relative entropy is continuous where it

is not infinite and it is jointly convex, but not symmet-
ric, in its arguments. A wide class of physically rele-
vant, Markovian transition mechanisms are represented
by linear, Trace Preserving and Completely Positive
(TPCP) maps from density matrices to density matri-
ces. A TPCP map E†, in turn, can be represented by a
Kraus operator-sum [Kraus, 1983], i.e.:

ρt+1 = E†(ρt) =
∑
j

MjρtM
†
j ,

where the n×nmatricesMj must satisfy
∑
jM

†
jMj =

I in order for E† to be trace preserving. Notice that
we employ the adjoint for maps acting on states to
be consistent with the classical notation, where the
transition matrix P † acts on probability distributions
while P acts on functions, see [Nelson, 1958]and
[Ticozzi and Pavon, 2009] for a discussion on the
role of duality relations for Markov evolutions. The
action of the dynamics on observables can be de-
rived by duality with respect to the Hilbert-Schmidt
inner product tr(XE†(ρt)) = tr(E(X)ρt), where
E(X) =

∑
jM

†
jXMj . It follows that if E†(·) is

trace-preserving, then E(·) is identity preserving and
vice-versa. Consider now a quantum Markov pro-
cess, generated by ρ0 and a sequence of TPCP maps
{E†t }t∈[0,T−1].

Definition 4.1. A sequence of observables
{Yt}t∈[0,T−1] is said to be space-time harmonic with
respect to the family {Et}t∈[0,T−1] if Yt = Et(Yt+1).

As in the classical case, space-time harmonic processes
will be shown to play a central role in the solution of
maximum entropy problems on path spaces.

5 Time-reversal of quantum operations
Another key ingredient in the study of maximum en-

tropy problems on path space, is, very much like for
classical Markov chains, the reverse-time transition
mechanism. Define Rj(E , ρt) = ρ

− 1
2

t+1Mjρ
1
2
t , and the

Kraus map:

R†E,ρt
(·) =

∑
j

Rj(E , ρt)(·)R†j(E , ρt). (12)

In [Ticozzi and Pavon, 2009], it is shown that this
map is in fact a quantum operation, that it can be aug-
mented to a trace-preserving quantum operation, and
that it is the correct time-reversal for E with respect
to the initial density ρt. This is established also in
the case rank(ρt+1) < n, thereby extending the re-
sults in [H. Barnum and E. Knill,2002]. For any ρ
and E† with Kraus operators {Mk}, define the map
Tρ from quantum operations to quantum operations
Tρ : E† 7→ Tρ(E†), where Tρ(E†) has Kraus operators
{ρ 1

2M†k(E(ρ))−
1
2 }. The results of [H. Barnum and E.



Knill,2002] show that the action of Tρ is independent
of the particular Kraus representation of E†. With this
definition, we have that Tρt

(E†) = R†E,ρt
.

Theorem 5.1 ([Ticozzi and Pavon, 2009]). Let E† be
a TPCP map. If ρt+1 = E†(ρt), then for any ρt ∈
D(n),R†E,ρt

(·) defined as in (12) is the time-reversal of

E for ρt, i.e. ρt = Tρt
(E†)(ρt+1) = R†E,ρt

(ρt+1), and

Tρt+1(R†E,ρt
)(σt) = E†(σt), for all σt ∈ D(H) such

that supp(σt) ⊆ supp(ρt). Moreover, it can be aug-
mented to be TPCP without affecting the above proper-
ties. 1

Remark 5.2. Notice that if ρt is full rank, Tρt+1 ◦ Tρt

is the the identity map on quantum operations. In
general, the time-reversal mechanism is not unique
[Ticozzi and Pavon, 2009], just as in the classical
case. While studying error-correction problems , the
sameR†E,ρ(·) has been suggested by Barnum and Knill
[H. Barnum and E. Knill,2002] as a near-optimal cor-
rection operator. It has also been proven there that
R†E,ρ(·) is independent of the particular Kraus repre-
sentation of E .

Given a quantum Markov process, generated by ρ0 and
a sequence of TPCP maps {E†t }t∈[0,T−1], a sequence
of observables {Yt}t∈[0,T−1] is said to be space-time
harmonic in reverse-time with respect to the family
{REt,ρt

}t∈[0,T−1] if Yt+1 = REt,ρt
(Yt), extending

Definition 4.1 in analogy with the classical case.

6 Path space for quantum Markov evolutions
In the quantum case, the definition of a path-space for

a Markov process is not obvious. Here, we build up
quantum trajectories associating at each time an ob-
servable quantity and conditioning the state and the
evolution to measurements of such observables. We
get results that are in striking analogy with the classi-
cal case.
Consider a quantum Markov process for a finite di-

mensional systemQwith associated Hilbert spaceHQ,
generated by an initial density matrix σ0 and a se-
quence of TPCP maps {E†t }t∈[0,T−1], with each E†t ad-
mitting a Kraus representation with matrices {Mk(t)}.
We define a set of possible trajectories, or quantum
paths, by considering a time-indexed family of observ-
ables {Xt}, Xt =

∑mt

i=1 xiΠi(t), with t ∈ [0, T ].
The paths are then all the possible time-ordered se-
quences of events (Πi0(0),Πi1(1), . . . ,ΠiT (T )) , with
it ∈ [1, mt]. We can compute the joint probability for
a given path with the nested expression:

wE(i0,i1,...,iT )(σ0) = tr
(

ΠiT (T )E†T−1(ΠiT−1(T − 1) . . .

. . . E†0(Πi0(0)σ0Πi0(0)) . . .)ΠiT (T )
)
.

1By augmenting a Kraus map E with Kraus operators
{Mk}k=1,...,m to a TPCP map, we mean adding a finite number N

of Kraus operators {Mk}k=m+1,...,m+N such that
P

k M†
kMk =

I.

Lemma 6.1. Define the path-conditioned density ma-
trices for t ∈ [0, T ] via the relations

σ̂E,0 =
∑
i0

Πi0(0)σ0Πi0(0),

σ̂E,t+1 = Ê†t (σ̂E,t)

=
∑
it+1

Πit+1(t+ 1)E†t (σ̂E,t)Πit+1(t+ 1), (13)

where Ê†t is TPCP and can be represented with
double-indexed Kraus operators {Πi(t + 1)Mk(t)}.
The marginal distribution wEit(σ0) at time t ∈ [0, T ],
is then given by:

wEit(σ0) = tr
(

Πit(t)σ̂E,tΠit(t)
)
. (14)

Remark 6.2. Imposing a (finite) set of possible trajec-
tories by choosing the {Xt}, we have to condition the
density matrix at time t on the past measurements. Un-
like classical probability, even “non-selective” condi-
tioning influences the state.

Observe moreover the following fact:

Proposition 6.3. The joint probabilities can be re-
written in terms of the time reversal transitions for the
path-conditioned states as:

wE(i0,i1,...,iT )(σ0) = tr
(

Πi0(0)R†
Ê0,σ̂E,0

(Πi1(1) . . .

R†
ÊT−1,σ̂E,T−1

(ΠiT (T )σ̂E,TΠiT (T )) . . .)Πi0(0)
)
.

This “backward” representation will play a key role in
the solution of the maximum entropy problems we dis-
cuss in the next Section.

7 Maximum entropy problems on quantum path
spaces

We consider the simpler maximum entropy problems
where only the initial or final density matrices are pre-
scribed. The solution to these problems exhibit the
same structure of their classical analogues, involving
a “symmetrized” multiplicative functional transforma-
tion.
Let {E†t } be a family of TPCP maps generating a

quantum Markov process over [0, T ] with initial den-
sity matrix σ0. Assume that at time T the density ma-
trix of the system has been found to be ρ̄T , being dif-
ferent from the expected σT = E†T−1 ◦ . . .◦E

†
0(σ0). Let

{Xt} be a time-indexed family of observables defin-
ing a path space as above. We constraint only XT

to be such that [XT , ρ̄T ] = 0, and it admits a spec-
tral decomposition with rank one Πj(T )’s (this is quite
natural, since ρ̄T is given). Let as above wE(σ0) de-
note the path-space distribution induced by the initial



condition σ0 and the TPCP transitions {E†t }. For sim-
plicity, in the reminder of the section, the reverse-time
quantum operations are assumed to be trace preserv-
ing. The general case is simply obtained by augment-
ing the Kraus operators in order to have a trace preserv-
ing transformation, as detailed in Section 5. Consider
now the
Quantum Maximum Entropy Problem (QMEP1):

minimize
{
D(wF (ρ0)‖wE(σ0));wF (ρ0) ∈ Ω(ρ̄T )

}
(15)

with Ω(ρ̄T ) the set of path space distribution induced
by a quantum Markov process generated by a family of
TPCP maps {F†t } and some initial ρ0 such that their
path-conditioned, final density matrix satisfies ρ̂F,T =
ρ̄T .
Since we required the Πi(T )’s to be rank-one, it fol-

lows that for all i ∈ [1,mT ]:

Πi(T )ρTΠi(T ) = tr
(
ρTΠi(T )

)
Πi(T ) = wFiT (ρ0)Πi(T ).

Hence, we can write

wF(i0,i1,...,iT )(ρ0) = wF(i0,i1,...,iT−1|iT ) ·w
F
iT (ρ0), (16)

defining the conditional probabilities:

wF(i0,i1,...,iT−1|iT ) = tr
(

Πi0(0)R†
F̂0,ρ̂0

(Πi1(1) . . .

R†
F̂T−1,ρ̂T−1

(ΠiT (T )) . . .)Πi0(0)
)
.

By employing (16) and its equivalent for
wE(i0,i1,...,iT )(σ0), one is able to obtain a conve-
nient relative entropy decomposition that allows to
prove the following:

Theorem 7.1. A solution to (QMEP1) (15) is given by
the quantum Markov process with path-conditioned fi-
nal density ρ̄T at time T and reverse-time transition
mechanism equal to that of {Êt}, namely

R†
F̂t,ρ̂F,t

(·) = R†
Ê,σ̂E,t

(·), ∀t ∈ [0, T − 1]. (17)

Notice that with this optimal choice, the total cost
is bounded by the relative entropy of the conditioned

final density matrices:
∑
iT
wFiT (ρ0) log

wFiT
(ρ0)

wEiT
(σ0)

=

D(ρ̄T ‖σ̂E,T ).
Let us compute the “forward” quantum operations,

which, as in the classical case, will turn out to be time
dependent even when the reference process is time-
homogeneous. By Theorem 5.1, recalling that the
conditioned transition mechanism Ê†t admits a Kraus
representation with operators Πj(t + 1)Mk(t), see
(13), one finds that the Kraus operators of R†Et,σ̂E,t

are given by the double-indexed Rj,k(Êt, σ̂E,t) =

σ̂
1
2
E,tM

†
k(t)Πj(t+ 1)σ̂−

1
2
E,t+1. Reversing this TPCP map,

now with respect to the state ρ̂F,t+1, we get: Fj,k(t) =

ρ̂
1
2
F,t+1σ̂

− 1
2
E,t+1

(
Πj(t+1)Mk(t)

)
σ̂

1
2
E,tρ̂

− 1
2
F,t. which can be

consider as a non-commutative, “symmetrized” ver-
sion of a multiplicative functional transformation in the
classical case. In fact, define Nt = ρ̂

1
2
F,tσ̂

− 1
2
E,t . Then we

have that Yt = N†tNt = σ̂
− 1

2
E,t ρ̂F,tσ̂

− 1
2
E,t is space-time

harmonic with respect to the transition Êt, completing
the analogy to the classical case. We remark that, since
every time-reversal can be augmented to be TPCP by
Theorem 5.1, one can always completeR†

Êt,σ̂E,t
(·), and

then F†t (·), to be TPCP.
Consider now the case where the initial state is con-

strained to be equal to ρ̄0, different from the a-priori
initial condition σ0. Consider a path-space induced
by observables {Xt} such that X0 has non-degenerate
spectrum. By arguing as above, we get:

Theorem 7.2. A solution to (QMEP2)

minimize
{
D(wF (ρ̄0)‖wE(σ0));wF (ρ̄0) ∈ Ω(ρ̄0)

}
(18)

with Ω(ρ̄0) the set of path space probability distribu-
tions induced by a family of TPCP maps {F†t } and ini-
tial state ρ̄0, is given by the quantum Markov process
with initial density ρ̄0 and forward transitions:

Ft(·) = Et(·), ∀t ∈ [0, T − 1]. (19)

Remark 7.3. Altough the QMEP2 problem apparently
depends on the choice of the quantum path-space,
that is the observables {Xt}t∈[0,T ], we remark that
its solution does not. The difference between prob-
lems QMEP1 and QMEP2 is given by the fact that in
QMEP2 we are concerned with the forward transitions,
and we do not need to use the path-conditioned density
matrices (13). The classical case does not present this
asymmetry since classical non-selective measurements
do not alter the state.

The final cost admits a bound similar to that in
Problem QMEP1, that can be easily related to the
unconditioned states. In fact, using monotonicity
of relative entropy with respect to conditioning we

get:
∑
iT
wFi0(ρ̄0) log

wFi0
(ρ̄0)

wEi0
(σ0)

= D(ρ̂0‖σ̂E,0) =

D(Ē†(ρ̄0)‖Ē†(σ0)) ≤ D(ρ̄0‖σ0), with Ē†(ρ) =∑
i Πi(0)ρΠi(0).

Notice that the operator-sum of the two reverse-
time evolutions RF,ρt ,RE,σt satisfy, under appropri-
ate restriction on the support of ρt, σt: Rk(Ft, ρt) =

ρ
1
2
t M

†
k(t)ρ−

1
2

t+1 = ρ
1
2
t σ
− 1

2
t Rk(Et, σt)σ

1
2
t+1ρ

− 1
2

t+1,which is
again as a quantum symmetrized “multiplicative” func-
tional transformation.



8 Conclusion and outlook
The classical theory of Schrödinger bridges is con-

nected to a variety of other fascinating topics besides
large deviations. First of all, there is Schrödinger’s
original motivation: He had observed the strong anal-
ogy between the time reversibility of the solution
bridge and that of quantum mechanics: “Merkwürdige
Analogien zur Quantenmechanik, die mir sehr des Hin-
denkens wert erscheinen”. There is, however, another
motivation: The reverse time space-harmonic functions
occurring in the solutions of problem(QMEP2) lead to
a strong form of the second law. This is presented in
[Ticozzi and Pavon, 2009].
The Markov chain Schrödinger bridges appear as

a flexible tool to be tested on a variety of applica-
tions, given the recent surfacing of the full model-
ing and computational power of Markov chains, cf.
e.g. [Brémaud,1999; Mitzenmacher and Upfal, 2005].
For quantum systems, this framework may be use-
ful to attack steering problems [Beghi, Ferrante and
Pavon,2002] and to complement or improve quantum
process tomography techinques (see e.g. [Mohseni,
Rezakhani and Lidar,2008] for a recent review of
different methods). Exploring the relations of our
framework with the theory of quantum error correc-
tion [Knill and Laflamme,1997] appears to be a par-
ticularly promising research direction. The problem
of finding the time-reversal of quantum operations or
quantum Markov semigroups representing the effect of
noisy channels on some quantum code is strictly re-
lated to many central problems in quantum informa-
tion and its realizations. Moreover, our path-space
problems appear to be compatible with the general set-
ting proposed in [Bjelakovic,Deuschel, Krüger, Seiler,
Siegmund-Schultze, Szkola,2005] to develop a quan-
tum version of Sanov’s theorem for product states. This
suggests that our results may play a role in hypothesis
testing and large deviation theory for quantum Markov
evolution, once more in remarkable analogy with the
classical setting.
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E. Schrödinger, Über die Umkehrung der Naturge-
setze, Sitzungsberichte der Preuss Akad. Wissen.
Berlin, Phys. Math. Klasse (1931), 144-153.
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