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Abstract

The paper studies spin-orbit interaction (i.e. the ef-
fect the spin has on the particle’s trajectory in a mag-
netic field) as a model of quantum computation. The
two-level spin quantum system is examined using the
stochastic mechanics formulation. The control of the
entangled spin state is considered as a problem of con-
trol of the mean moment of a particles ensemble along
a reference trajectory. It is shown that such a con-
trol can be succeeded by applying an open-loop control
scheme.
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1 Introduction

The spin states, i.e. the eigenstates associated with
the measurement of a particle’s magnetic moment
along the z-axis are a fundamental element of highly
entangled states. For example, in quantum computing
all the unitary entangle operations on many spins can
be implemented by compositions of those on the two
spins (universality of quantum circuits). Therefore,
the stabilization of the two-spin system is of great im-
portance for designing a quantum entangler machine.
There are two types of control for chaotic and quantum
systems, i.e. open-loop control where the controls
are predetermined at the start of the experiment and
closed-loop (or feedback control) where the control
can be chosen through-out the experiment [Frad-
kov and Evans, 2005]. Previous work on quantum
open-loop control includes flatness-based control on
a single qubit gate [da Silva and Rouchon, 2008]. In
this paper the classical Schrodinger’s equation is used
and quaternion notation for the spin’s Hamiltonian is
applied. Then a flatness-based controller is derived
for steering the particle’s transition between the spin’s
eigenstates. On the other hand, quantum feedback
control was developed as a quantum analogy to the

classical theories of nonlinear (Stratonovich) filtering
[Belavkin, 1983]. This approach is based on an
analogous of the separation principle which holds
in classical stochastic control [Bensoussan, 1991].
Quantum feedback control is actually observer-based
control. First quantum filtering is used to obtain an
estimation of the stochastic quantum variable and then
a feedback controller is designed based on the output
of the quantum filter. The quantum filter describes
a classical stochastic process [Yamamoto, Tsumura
and Hara, 2007],[Das and Roy, 2006],[Mirrahimi and
Rouchon, 2004].

The present work studies spin-orbit interaction as a
model of quantum computation (i.e. the effect the spin
has on the particle’s trajectory in a magnetic field)
and examines control of the two-level spin quantum
system using the stochastic mechanics approach. In
stochastic mechanics each particle follows a contin-
uous path which is random but has a well-defined
probability distribution [Klebaner, 2005],[Comet
and Meyre, 2006]. Stochastic mechanics has been
recognized as a self-consistent formulation of quantum
mechanics in the framework of stochastic processes
and is established as part of stochastic control theory
[Faris, 1982],[Faris, 2006],[De Martino, De Sienna
and Illuminati, 1997],[Fliess, 2007]. The particles’
kinematic model is associated to the model of a
quantum oscillator, taking the particle to be a 3-DOF
variable (position in a cartesian coordinates frame)
[Rigatos, 2008],[Rigatos and Tzafestas, 2002]. When
the effect of the spin in the particle’s motion is also
considered, and the particle’s motion takes place
under an external magnetic field (as described in the
Stern-Gerlach experiment) then the deflection of the
particles’ trajectory should be also taken into account
[Faris, 1982],[Cohen-Tannoudji, Diu and Lalog, 1998].
The component of the spin along the field becomes a
discrete random variable which is correlated with the
average velocity [Faris, 1982].



The concept adopted in this paper is that starting
from Schrodinger’s equation and passing through the
Fokker-Planck equation and the Ornstein-Uhlenbeck
diffusion one finally arrives at Langevin’s stochastic
differential equation. A form of Langevin’s equation
is also used to describe the variations between the spin-
eigenstates (discrete energy levels of the spin system)
[Faris, 1982],[Faris, 2006]. This enables to consider
the control of the entangled spin state as a problem
of motion control of the mean of a particles ensemble
along a reference trajectory. It is shown that using an
appropriate open-loop control scheme (which is based
on flatness-based control theory and which can be real-
ized by a magnetic field) motion control of the particles
mean along the desirable trajectory is possible. This in
turn implies that the quantum state represented by the
particles moment can be also controlled.

2 The spin as a two-level quantum system

2.1 Description of a particle in spin coordinates
The basic equation of quantum mechanics is
Schrodinger’s equation, i.e.

1% = (e M)

where [ (z,t)|? is the probability density function
of finding the particle at position z at time instant
t, and H is the system’s Hamiltonian, i.e. the sum
of its kinetic and potential energy, which is given by
H = p?/2m + V, with p being the momentum of the
particle, m the mass and V' an external potential. The
solution of Eq. (1) is given by ¥(x,t) = e~y (x,0)
[Cohen-Tannoudji, Diu and Lalog, 1998].

However, cartesian coordinates are not sufficient to de-
scribe the particle’s behavior in a magnetic field and
thus the spin variable taking values in SU(2) has been
introduced. In that case the solution v of Schrédinger’s
equation can be represented in the basis |r, ¢ > where
r is the position vector and e is the spin’s value
which belongs in {f%, %} (fermion). Thus vector
which appears in Schrodinger’s equation can be de-
composed in the vector space |r,e > according to
v >= > [d®r|r,e >, < r,ely >. The projec-
tion of [¢) > in the coordinates system r, e is de-
noted as < 7,€l() >= 1)¢(r). Equivalently one has
Yy(r) =<r,+[¢ >and ¢_(r) =< r,—[¢p >. Thus
one can write ¥(r) = [ty (r),y_(r)]T.

2.2 Motion of the particle in a magnetic field

The interaction between the particle’s spin and a mag-
netic field and the effect this has on particles’ motion
is described in the Stern-Gerlach experiment. It can be
observed that due to the gradient of the magnetic field

and the particle’s spin a deviation of the particle’s tra-
jectory takes places. It is assumed that the intensity of
the magnetic field B, is positive while its gradient 8aBz -
is negative

Since the particles are taken to be neutral they are not
subject to Laplace forces F' = q-vx B. The particles
however have magnetic moment M which is associated
to potential energy given by W = —M-B. There is
also the kinetic moment I" which is related to the mag-
netic moment M according to the relation M = ~-T,
where v is the gyromagnetic ratio. The force that is
applied to the particle is the gradient of the particle’s
potential energy F' = V(M-B). Between the kinetic
moment I' and the magnetic moment M the following
relation also holds %1; = M><B:>%—E = yI'xB. The
particle behaves like a gyroscope. The term %I; is per-
pendicular to I' while the kinetic moment rotates round
the magnetic field B,. It can be seen that the kinetic
moment I is proportional and collinear to the magnetic
moment M. According to F' = V(M-B) the magnetic
field B, forces the magnetic moment M to rotate round
it, with constant angular velocity. To calculate force F'
the gradient of the particle’s potential energy is found

W =-M-B=-M,B, — My,B, — M.B. (2)

It can be assumed that M, and M, = M, = 0. The
latter ir true because the frequency of rotation of M
is very high, and it is not possible for M, and M, to
affect the particle’s motion in any other way than their
average value, which is 0. Then it holds

F=V(M-B) = M,VB, 3)

It also holds that %]i = = (0 and 883 = — () because the
magnetic field is assumed to be independent of = and
y. Therefore, the force which is responsible for the
deviation HN (see Fig. 1) of the particle from the
straight line is proportional to the magnetic moment

M, and is collinear to axis Oz.

As the magnetic moments of the various particles are
uniformly distributed between +|M | and —|M] it is
equally possible to find particles having magnetic mo-
ment between +|M| and —|M|. Thus one expects
that the particles beam will generate on plate P an
equiprobable symmetric distribution diagram as shown
with dashed line in Fig. 1. However, in reality one ob-
serves two different distributions centered at points Ny
and N», which means that the particle’s magnetic mo-
ment M, along axis z can take only two distinct values
(magnetic moment eigenvalues or spin values).

The results of the Stern-Gerlach experiment lead to the
following conclusion: if some one measures the com-
ponent of the kinetic moment I", of the particle (which
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Figure 1. The two distributions denote that the magnetic moment of
the particle can take only two distinct values (spin up or spin down)

is proportional to the magnetic moment M) then only
one of the values corresponding to deviations H N7 and
H N, can be found. Therefore, the classical description
of a magnetic moment vector M the measurements of
which can take any value has to be abandoned. Con-
sequently, the magnetic moment M., is a variable, with
spectrum that can take only two eigenvalues (e.g. i%).

2.3 Measurement operators in the spin state-space
It has been shown that the eigenvalues of the parti-
cle’s magnetic moment are :i:% or :i:h%. The corre-
sponding eigenvectors are denoted as |+ > and |— >.
Then the relation between eigenvectors and eigenval-
ues is given by S,|+ >= +(h/2)|+ >, S,|— >=
+(h/2)|— >, which means that the measurement of
the Stern-Gerlach experiment shows only the two pos-
sible eigenvalues of the magnetic moment. In general
the particle’s state, with reference to the spin eigenvec-
tors, is described by

Y >= al|+ > +8|— >

4)
with |af2 + |62 =1

while matrix S, has the eigenvectors |+ >= [1, 0] and
|— >=[0,1] and is given by

h(10
Ay

Similarly, if one assumes components of magnetic mo-
ment along axes x and z, one obtains the other two
measurement (Pauli) operators

h(01 O
Sx:z(w)’sy:z(io) ©)

When the eigenvalue of the magnetic moment of the
particle M, is at state |+ > or at state | — > the stochas-
tic particle follows a well-defined trajectory as shown
in Fig. 1. When the spin’s state is a linear superposition
of [+ > and |— > it is no longer possible to predict the
trajectory of the stochastic particle. Therefore, there is
a certain probability amplitude that the particle is found
in one out of two trajectories. The probability to locate
the particle at a specific point of surface P (particle’s
wave-function) has non-zero values at two different ar-
eas which are designated by points N1 and Ns. There-
fore, the particle may either appear round point N; or
round point No. However it is not possible to predict
the particle’s position with certainty, although the ini-
tial conditions are known (bifurcation). It is noted that
in Fig. 1 there are not two different particles, but one
particle, with a probability wave-function that consists
of two parts centered at points N7 and N,.

2.4 The spin eigenstates define a two-level quan-
tum system

The spin eigenstates correspond to two different
energy levels. A neutral particle is considered in a
magnetic field of intensity B,. The particle’s magnetic
moment M and the associated kinetic moment I' are
collinear and are related to each-other through the
relation M = ~I'. The potential energy of the particle
isW = -M,B, = —yB,T",. Variable wg = —vB,
is introduced, while parameter I', is substituted by the
spin’s measurement operator S,.

Thus the Hamiltonian A which describes the evolu-
tion of the spin of the particle due to field B, be-
comes Hy = wyS,, and the following relations be-
tween eigenvectors and eigenvalues are introduced:

Hl+ >=+%0|+ > H|->=+20|—-> (7

Therefore, one can distinguish 2 different energy levels
(states of the quantum system)

B =+4kn | = R (®)

By applying an external magnetic field the probability
of finding the particle’s magnetic moment at one of the
two eigenstates (spin up or down) can be changed. This
can be observed for instance in the Nuclear Magnetic
Resonance (NMR) model [Cohen-Tannoudji, Diu and
Lalog, 1998].



3 Stochastic mechanics formulation of

Schrodinger’s equation

3.1 Particles’ motion can be written as a diffusion
process

Schrodinger’s equation, which was described in Eq.

(1), can be transformed into a diffusion equation by

substituting variable ¢t with ¢ [Faris, 2006]. This

change of variable results in the diffusion equation

op 1 5, 0?
5% [50 92 V(z)lp 9
Eq. (9) can be also written as % = —Hp, where H

is the associated Hamiltonian and the solution is of the
form p(x,t) = e " p(z), and variable o2 is a diffu-
sion constant. The probability density function p satis-
fies also the Fokker-Planck partial differential equation
[Faris, 2006]

op 1 45 0? 0
e [50 92 £u(x)]p (10)

where u(z) is the drift function, i.e. a function related
through derivative to the external potential V.

Now, as known from quantum mechanics, particle’s
probability density function p(z) is a wave-function
for which holds p(x) = [|¢(x)]? with ¥(x) =
Zﬁvzockwk (x), where ¢ (x) are the associated eigen-
functions [Cohen-Tannoudji, Diu and Lalog, 1998]. It
can be assumed that po(z) = |¢2(z)], i.e. the p.d.f in-
cludes only the basic mode, while higher order modes
are truncated, and the drift function u(x) of Eq. (10)
is taken to be u(z) = 102 pO%m) 6%3750) [Faris, 2006].
Thus, it is considered that the initial probability den-
sity function is p(z) = po(x), which is independent of
time. This means that the p.d.f. remains independent of
time and the examined diffusion process is a stationary
one, i.e. p(z,t) = po(z) Vt. A form of the probability
density function for the stationary diffusion is that of
shifted, partially overlapping Gaussians [Faris, 2006].
Continuing from Fokker-Planck’s equation, given in
Eq. (10), the Ornstein-Uhlenbeck diffusion is obtained
which is a model of the Brownian motion [Basseville
and Nikifirov, 1993]. The particle tries to return to the
equilibrium x = 0 under the influence of a linear force,
i.e. there is a spring force applied to the particle as a
result of the potential V' (). The corresponding phe-
nomenon in quantum mechanics is that of the quan-
tum harmonic oscillator (Q.H.O.) [Cohen-Tannoud;ji,
Diu and Lalog, 1998]. Assuming a stationary p.d.f.,

ie. p(x) = o(z)? = C%e 247, the force applied to
the particle due to the harmonic potential (drift) V ()
is found to be u(z) = o2 wol(z) awgy) = u(z) = —wa,

which means that the drift is a spring force applied to

the particle and which aims at leading it to an equilib-
rium position.

Now, a kinematic model for the particles will be de-
rived, in the form of Langevin’s equation. The stochas-
tic differential equation for the position of the particle
is [Faris, 2006]:

dz(t) = u(x(t))dt + dw(?) (11)

where u(x) = —ku is the drift function, and is a spring
force generated by the harmonic potential V (z) = ka2,
which tries to bring the particle to the equilibrium
x = 0. The term w(t) denotes a random force (due to
interaction with other particles) and results in a Wiener
walk. Knowing that the Q.H.O. model imposes to the
particle the spring force u(xz) = —waz, Langevin’s
equation described in Eq. (11), becomes

dz(t) = —wx(t)dt + dw(t) (12)

Eq. (12) is a generalization of gradient algorithms
based on the ordinary differential equation (O.D.E)
concept, where the gradient algorithms are described as
trajectories towards the equilibrium of an ordinary dif-
ferential equation [Benveniste, Metivier and Priouret,
1990].

3.2 Particle’s spin in stochastic mechanics

For a particle described in classical quantum mechan-
ics according to Schrédinger’s equation, the spin repre-
sented the eigenvalues of the particle’s magnetic mo-
ment (projection on the z axis) and the associated
eigenstates were denoted as |+ > (spin up) and |— >
(spin down). A representation for spin can be also ob-
tained in terms of stochastic mechanics. The particle
is described not only in the R? space by its cartesian
coordinates, but is also described in the SU(2) space,
i.e. it is described also by the spin variables which take
two discrete values.

As explained in the description of the Stern-Gerlach
experiment in subsection 2.2, particles with spin j:%
are emitted from a source and pass through a mag-
netic field B,. Then, the kinetic moment of the par-
ticle is proportional to its magnetic moment, and due
to its interaction with the magnetic field generates a
force which causes scattering of the particle’s trajec-
tory F = V(MB,). If the particle’s path deviates
towards the positive (negative) direction of the gradi-
ent then one can conclude that the particle’s spin is at
state |+ >, or [+ >. The particle’s trajectory shows
the discrete spin eigenvalues, while the particle’s speed
shows the discrete evergy levels £ and E_ which cor-
respond to the spin eigenvalues. It has been shown
that starting from Schrodinger’s equation and contin-
uing to Focker-Planck and Ornstein-Uhlenbeck equa-
tions one obtains Langevin’s stochastic differentinal



equation, i.e. dx; = b(x,t)dt + dw;. It has been
also shown that for long time ¢, b(a:,t):%, i.e. in
b(z,t) = k-x one can consider k = 1, thus ones ob-
tains the SDE [Faris, 2006]

1
dﬂﬁt = Zl‘tdt—Fdwt (13)

and based on the so-called “martingale convergence
theorem” it has been proven that the limit limt_,oo%
exists and is py = lim; . % This limit is the ki-
netic moment which corresponds to the magnetic mo-
ment eigenstate |+ > and to the magnetic moment
eigenvalue ’spin-up’. Moreover, it has been shown
that for every measurable subset A€ R3, the probability
Py (p: € A) is equal to the quantum mechanical prob-
ability that the final moment of the particle belongs in
A. Thus, in stochastic mechanics a way to measure the
moment is through the limit py = lim;_, %
Consequently, in stochastic mechanics, the different
energy eigenstates of the particle can be conceived ac-
cording to the Stern-Gerlach experiment as follows: the
particle has initial moment p_, and while it approaches
to the surface P in which points N; and N5 belong (see
Fig. 1), the particle’s trajectory becomes straight and
the final moment becomes p,. Then, the only possible
values for the change of energy are

m(|py > = [p- ), ie By — E_ (14)

where, E; is the Hamiltonian’s eigenvalue, as ex-
plained in Eq. 8. Therefore, in stochastic mechanics
the stage of the particle’s motion at which its trajectory
becomes straight and its moment stabilizes at the final
value p4 can be considered as a collapse of the parti-
cle’s wave function.

4 Open-loop control scheme for a multi-particle
system
As explained in subsection 2.2 the change in the par-
ticle’s moment means transition between the particle’s
energy eigenstates. This can be a manner to control
the probability to find the particle’s magnetic moment
in one of the spin’s eigenstates. The particle’s kine-
matic model has been described by Eq. (12), and here
it will be forulated as follows: the motion of the par-
ticle is described by the stochastic oscillator model
m% +c”c% = f, where z is the position coordinate, m
is the mass, c is the coefficient of viscous friction, and
f is the aggregate force acting on the particle [Astrom,
2006]. Defining 1 = z and x5 = ‘fi—f, particle’s mo-

tion can be written in state-space form dditl = x9, and
% = -1+ # f. Keeping the second of the state-

space equations one has the Langevin equation for the
particle’s velocity

= eyt Ly (15)

Next, an open-loop control, based on flatness-based
control theory, will be applied to the particles:

Definition:  The system = = f(x,u), =z €
R™ uw € R™ is differentially flat if there exist re-
lations i : R"x(R™)"t'—=R™ ¢ : (R™)"—R"
and 1 (R™)r+1 — R™, such that y =
h(z,u,, - - - 7u(r))’ r = oy,y, - ’y(r—l)) and
u = Py,9,--,y"D,y").  This means that
all system dynamics can be expressed as a func-
tion of the flat output and its derivatives, there-
fore the state vector z and the control input u
can be written as z(t) = ¢(y(t),y(t), -,y (t))
and u(t) = ¥(yt),y(t),---,y" TV (t)) [Fliess and
Mounier, 1999],[Rouchon, 2005],[Martin and Rou-
chon, 1999].

If a control term u’ is introduced in Eq. (15) this can
be written as:

0 = —wvt +ut + (16)

where —wz? is the drift term due to an external poten-
tial, u* is the external control and 77i is a disturbance
term due to interaction with the rest V-1 particles, or
due to the existence of noise. Then it can be easily
shown that that the system of Eq. (16) is differentially
flat, while an appropriate flat output can be chosen to be
y = v*. Indeed all system variables, i.e. the elements
of the state vector and the control input can be written
as functions of the flat output y, and thus the model that
describes the i-th particle is differentially flat.

A control input that makes the i-th particle track the
reference trajectory y_ is given by

ut = wol + 08 +ul, 17)

where v] is the reference velocity profile for the i-th
particle, and ] is the derivative of the ¢-th desirable
velocity. Moreover u’, = —n' stands for an additional
control term which compensates for the effect of the
noise 7; on the i-th particle. Thus, if the disturbance 7);
that affects the ¢th-particle is adequately approximated
it suffices to set u’, = —,. The application of the con-
trol law of Eq. (17) to the model of Eq. (16) results in
the error dynamics ©° = 9% — wv’ + wvl +n' —ul =,
e 0 =0l w(v;—vl) = nitu. = ¢ +we' = n;tue.
Thus, if u, = —n); then limy_, o, = 0.

Next, the case of the NV interacting particles will be ex-
amined. The control law that makes the mean of the
multi-particle system follow a desirable velocity pro-
file E{v’} can be derived. The kinematic model of the
mean of the multi-particle system is given by



E{i'} = —wE{v'} + E{u'} + E{n'} (18)

i = 1,---,N, where E{v'} is the mean value of
the particles velocity, E{v’} is the mean acceleration,
E{n'} is the average of the disturbance signal and
E{u'} is the mean control input. The open-loop con-
troller is selected as:

E{u'} = wE{v'}, + E{vi}, — E{n’}  (19)

where E{v'}, is the desirable mean velocity. Assum-
ing that for the mean of the particles system holds
E{n'} = 0, then the control law of Eq. (19) results
in the error dynamics E{¢'} + wE{e'} = 0, which
assures that the mean particles’ velocity will track the
desirable velocity profile, i.e. lim; .. E{e’} = 0.

5 Conclusions

The paper has proposed the spin-orbit interaction as a
model of quantum computation. The stochastic me-
chanics formulation of Schrodinger’s equation was in-
troduced. This enables to consider the control of the
entangled spin state as a problem of motion control of
the mean of a particles ensemble along a reference tra-
jectory. It is shown that using an appropriate open-loop
control (which can be created by a magnetic field) the
mean velocity of the particles can track a desirable ve-
locity profile. This in turn implies that the quantum
state represented by the mean particles moment can be
also controlled.
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