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Abstract

The 3:1 mean-motion resonance of the planar elliptic
restricted three body problem (Sun-Jupiter-asteroid) is
considered. The double numeric averaging is used to
obtain the evolutionary equations which describe the
long-term behavior of the asteroid’s argument of peri-
centre and eccentricity. The existence of the adiabatic
chaos area in the system’s phase space is shown.
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1 Introduction

The 3:1 mean-motion resonance in the planar elliptic
restricted three-body problem (Sun—Jupiter—asteroid)
has long attracted considerable attention of specialists.
In order to find secular effects, the equations of mo-
tion can be averaged over fast variables, namely, over
mean longitudes of the asteroid and Jupiter (see, for ex-
ample, [Scholl and Froeschlé, 1974; Ferraz-Mello and
Klafke, 1991]. Upon averaging, a nonintegrable sys-
tem appears which describe the "fast” and ’slow” com-
ponents of secular evolution. The “fast” evolution con-
sists in changing resonance phase (Delaunay variable)
D = X\ —3X, where A and )\’ are the mean longitudes
of the asteroid and Jupiter, respectively. The “slow”
evolution reveals itself in a gradual change of perihe-
lion longitudes of resonance asteroid orbits. In order
to analyze different variants of the “slow” evolution,
one can make yet another averaging: averaging over
fast processes. Previously it was done at small orbit ec-
centricities of the asteroid and Jupiter [Wisdom, 1985;
Vashkov’yak, 1989a]. In this paper double averaging is
used for studying the “’slow” evolution without restric-
tions on the orbit eccentricity of an asteroid.

2 Averaging over mean longitudes

We assume that the semimajor axis of the orbit of
Jupiter can be taken as the unit length, while the sum
of masses of the Sun and Jupiter is the unit mass. The

unit time is chosen so that the period of revolution of
Jupiter around the Sun is equal to 27.

We write the equations of motion of the asteroid in the
variables

z,Y, L7 Da

where z, y, and L are the elements of the second canon-
ical Poincare system, and they are related to osculating
elements by the formulas

x = \/2\/(1—u)a[1— V1-ecosm, (2.1)

y = —\/2\/(1 —p)a[ll — /1 —e?]sinw,

L=+/(1-ua.

Here, @, e, and a are the longitude of perihelion, eccen-
tricity, and semimajor axis of the asteroid orbit, and p
is the mass of Jupiter (u < 1).

The equations of motion have the canonical form

dx oK dy 0K

@& oy dt T on (22)
dL __ok D _ oK
dt ~ 9D’ dt  OL
with the Hamiltonian
1— 2
K= —ﬂ — 3L — uR. (2.3)



Function R in the expression for K is defined in the
following way:
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=1 3

7

wherer = r(z,y, L, A(D, A’")) and v’ = r/()\’) are the
heliocentric radii vectors of the asteroid and Jupiter.
Formal averaging of the equations of motion consists

in substitution of the function

27

R(z,y,L,D,\)d\.

(2.4)
for function R in expression (2.3) for Hamiltonian. Af-
ter that the equations of motion become autonomous:
the mean longitude of Jupiter ' = ¢ + A} is elim-
inated from their right-hand sides. A detailed de-
scription of the numerical algorithm used to evalu-
ate W(z,y,L,D) is given in [Vashkov’yak, 1989a;
Vashkov’yak, 1989b].

1
W(Z‘,y,L,D) = %
0

3 Fast-slow system describing secular effects in
the motion of a resonance asteroid

In motion of the asteroid in resonance 3:1 with Jupiter
the value of variable L is close to Ly = 1/+v/3. In
the limiting case p = 0 the asteroid, moving along the
orbit with the semimajor axis a,.s = L% ~ 0.48074,
makes exactly three revolutions around the Sun during
one revolution of Jupiter.

Following the general scheme of studying resonance
effects in Hamiltonian systems [Arnol’d, Kozlov and
Neishtadt, 2002] we change variable L in system (2.2)
averaged over \’ for variable & = (Lo — L)//Jt rep-
resenting the normalized deviation of L from its reso-
nance value and introduce a new independent variable
T = ,/pt. Restricting ourselves to the leading terms
in the expansion in terms of € = /i of the right-hand
sides of the equations of motion in variables z,y, @,
and D we get:

de _ OV dy 9V
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where

3
V(.’L’,y,D) :W(x7y7L07D)7 Q= —F :9\3/5

If we take as conjugate canonical variables z/+/c and
y/+/€, D and ®, system (3.1) is Hamiltonian with the

Figure 2. Phase portraits of a fast subsystem: (w, y) Sk

Hamilton function

‘I>2

In the general case, variables x,y, D, and ® have dif-
ferent rates of variation:

dD d® dzr d
v —y~5<<1.

drdr T 7 drdr

We will refer to variables D, ® and z,y as “fast” and
”slow” variables, respectively.

System (3.1) allows one to investigate secular effects
in the dynamics of resonance asteroids without con-
straints on the orbit eccentricity value. Evolution of
osculating elements e and @ with an error O(g) is de-
scribed by the relations

e (% +y?) [4Lo — («* +9?)],  (3.2)
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where variables x and y change in the region S =

{(z,y),2* +y* < 2Lo}.

Taking into account the separation of variables into
“fast” and “slow” variables, we refer to system (3.1) as
a fast-slow (FS) system [Arnol’d, Kozlov and Neish-
tadt, 2002].

4 Properties of the fast subsystem

At ¢ = 0 the equations of fast variables coincide with
the equations of motion of a Hamiltonian system with
a single degree of freedom which include = and y as
parameters:

dD dd ov

The qualitative behavior of trajectories on the phase
portrait of system (4.1) is determined by the properties
of function V' (z,y, D).

It turns out that there are important distinctions in fast
dynamicsate’ > e, andate’ < e/, where e, ~ 0.0385
is the minimum eccentricity of the Jupiter orbit admit-
ting its intersection with the orbit of the resonance as-
teroid at u = 0.

In the case e’ < e, (orbits of resonance asteroids do
not intersect the Jupiter orbit at any e < 1) function
V(x,y, D) is limited. For the most (z,y) values the
phase portrait of fast subsystem (4.1) is topologically
equivalent to the phase portrait of a mathematical pen-
dulum (Fig. 1). In what follows we will designate
this set of (z,y) values as S.. It can be proved that
mes S\ S, ~ e’

In the case €' > €, at appropriate choice of the initial
value of variable D, the motion of the asteroid along
the orbit crossing the Jupiter orbit will be accompanied
by formal collisions resulting in divergence of the inte-
grals determining functions V' (z,y, D). Below the set
of (z,y) values corresponding to the resonance orbits
with intersections of the orbit of Jupiter is designated
as S*.

Let

(b(7_7:1:7y7 h) 7 ‘D(T7:I:7y7 h) (4'2)
be a solution to Eq. (4.1) satisfying the condition
H(z,y, ®(7,2,y,h), D(7,2,y,h)) = h,

in which variable D changes in rotational or oscillating
manner:

D(r+T,z,y,h) = D(r,z,y,h) mod 27

Here T'(x,y, h) is the period of the solution. We asso-
ciate this solution with the following quantity

o«
T or

T/o
Iy, h) / (r,2,y, h) dr,
0

where the value of ¢ is determined by the type of so-
lution. For rotational solutions ¢ = 1 and, hence,
I(x,y,h) is the action integral. For oscillating solu-
tions o = 2, and the value of I(x, y, h) equals a half of
the action integral.

At ¢ # 0 variables z(7) and y(7) in the right-hand
sides of Eqgs. (4.1) can be interpreted as slowly vary-
ing parameters. The quantity I(z,y, h), coinciding to
a constant factor with the action integral, will be an adi-
abatic invariant of system (3.1).

5 Averaging along solutions to the “’fast” subsys-
tem

Averaging the right-hand sides of the equations for
x,y in system (3.1) along solutions to fast subsystem
(5.2) we get evolution equations describing to the error
O(e) the changes of variable z,y on the time interval
with duration ~ 1/e (or ~ 1/ in terms of original
time units):

de _ JOVN\ dy _ JOV
we (o) w=(%) o
Here
oV 1 [Tov
<6_<> = T 5 a—c(l‘,y,D(T>$>y7h))dT

T=T(x,y,h), (=uz,y.

Construction of phase portraits of system (5.1) is the
efficient method of studying the evolution of slow vari-
ables z,y. At different h the phase portraits can differ
in the number of equilibrium positions and in the be-
havior of separatrices.

6 Forbidden area and uncertainty curve on phase
portraits
Following [Neishtadt and Sidorenko, 2004], let us
consider the auxiliary functions

H,.(z,y) = mgn V(z,y, D), (6.1)

H(2,) = maxV (z,y, D).



Figure 3. 3D graphs of H, (2, y) and H*(x, y) ate’ = 0.048

The behavior of these functions is determined by the
eccentricity e’ of the orbit of Jupiter. In particular, it
worth while to mention that H*(z,y) = oo for (z,y) €
S* (Fig. 3).

The region

M(h) ={(z,y) € S,Hi(x,y) > h} (6.2)

is forbidden for phase trajectories of system (5.1). Ata
given h the slow variables cannot assume values from
M(h).

The curve

I'(h) = {(z,y) € S, H"(z,y) = h}

is called the uncertainty curve. In the case H*(z,y) =
h the trajectory of the fast system is a separatrix and,
hence, one cannot use averaging. If T'(h) is present on
the phase portrait of system (5.1), it consists of several
fragments undergoing a series of bifurcations when h
is varied.

When a projection of the phase trajectory of system
(5.1) onto the plane z,y crosses the curve I'(h), a
quasi-random jump of adiabatic invariant I (z, y, h) oc-
curs [Neishtadt, 1987]. When studying the evolution of

slow variables on a time interval of order of 1/¢, this
violation of adiabatic invariance is usually neglected,
and solutions of the averaged system on curve I'(h) are

chiad in accordance with tha follawing rmile
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Ibefore = Iafterv

where Ipe fore is the value of I(x,y, h) along the part of
the phase trajectory of system (5.1) approaching I'(h),
and Ipcfore is the value of I(z,y, h) on the trajectory
part going away from curve I'(h). For most initial con-
ditions, the accuracy of such an approximation is O(¢)
on the specified time interval.

The phenomena taking place at multiple intersections
of the uncertainty curve will be discussed in Sec.8.

7 Investigation of slow evolution based on aver-
aged equations

As an example Fig. 4 presents the phase portraits of
system (5.1) constructed for the case ¢’ = 0.048 > e,.
To choose such value of eccentricity of Jupiter is tra-
ditional for numerical investigations of the dynamics
of asteroids in the context of the restricted elliptical
three-body problem [Wisdom, 1982]. The discussion
of the slow evolution for the case ¢/ < e, can be
found in [Sidorenko, 2006]. For better visualization
the phase portraits present the behavior of quantities Z
and y which are related to variables x, y and osculating
orbital elements e, W as

T

%zm 4Ly — (22 + y2) = ecosw,
Y= Y 4Ly — (22 + y?) = —ecos®.
2L

Fig 4 demonstrates the reconnection of separatrices at
h = 1.0955. The location of the uncertainty curve on
the phase portrait determines the size of the region of
adiabatic chaos in the phase space of a nonaveraged
system

Note. If ¢’ > €', one needs to take into account the ex-
istence of resonance orbits crossing the orbit of Jupiter
(the orbits with parameters from region S*). Region
S* in variables Z, ¥ looks like a narrow strip on the
periphery of region S. If one chooses (z,y) € S* in
system (3.1), there are, in the general case, two “fast”
processes over which averaging is possible. Therefore,
the right-hand sides of Egs. (5.1) are ambiguously de-
termined in S*. At numerical integration, in the situa-
tion when evolving orbit of a resonance asteroid begins
to intersect the orbit of Jupiter, one can choose an ap-
propriate solution to fast subsystem (4.1) as a closest
to the solution along which averaging was made on the
preceding step.
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Figure 4. Example of the separatrices reconnection. Dashed line
shows the position of the boundary between regions Sy and S™*

8 Adiabatic chaos
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uncertainty curve I'(h) the projection of a phase point
of system (3.1) onto the plane x, y jumps from one tra-
jectory of averaged system (5.1) to another in a quasi-
random way: |Ioticr — Ipefore| = €. As aresult of a
series of such jumps, the phase trajectories of system
(3.1) with e-close initial data can go away to a distance
of ~ 1. Their projections onto the plane x,y will fill
the region X(h) which is a set of all trajectories of evo-
lution equations (6.1) intersecting I'(h) (Fig. 5). In the
phase space of FS-system (3.1) diverging trajectories
will be located in the region

=*(h) =
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Figure 5. The region of adiabatic chaos before and after reconnec-

tion of separatrices.

We call £*(h) the region of adiabatic chaos: the com-
plex behavior of trajectories in ¥* (h) is associated with
violation of adiabatic invariance in the neighborhood of
L'(h).

The properties of adiabatic chaos in Hamiltonian
systems were studied in [Neishtadt, Treschev and
Sidorenko, 1997; Neishtadt and Sidorenko, 2004]. The
existence in this region of numerous (~ 1/¢) stable
periodic solutions was proved in [Neishtadt, Treschev
and Sidorenko, 1997]. In [Neishtadt and Sidorenko,
2004], using numerical methods, such solutions were
sought for an autonomous FS-system with two degrees
of freedom.

The diverging trajectories of original (unaveraged)
system (2.2) correspond to the trajectories of system
(3.1) diverging in X*(h). Thus, the regions of chaotic
dynamics originating due to violations of adiabatic in-
variance will also exist in the phase space of system
(2.2). The stable periodic solutions to FS-system (3.1)
turn into stable invariant tori in the extended phase
space z,y, L, D, \.

9 Conclusions

Studies of 3:1 mean-motions resonance are of great
importance for understanding the evolution of orbits of
many celestial bodies. Asteroids of the Hestia family
move in resonance 3:1 with Jupiter. In [Tittemore and
Wisdom, 1990] the possibility of such a resonance was
considered for Uranus’ moons Miranda and Umbriel.



A hypothesis of planet motion in resonance 3 : 1 in the
system 55 Cancri was discussed in [Ji, Kinoshita, Liu,
and Li, 2003].

The approach used in this paper allows us to get a suf-
ficiently detailed description of secular effects in mo-
tion of resonance objects in the context of a planar re-
stricted elliptical three-body problem.
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