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Abstract
Augmented Reality (AR) is one of the modern ways

of providing users with different types of information.
In applications based on this technology, the main in-
fluence on the subjective assessment of product quality
is the speed of interaction between the system and the
user and between users of the system. The main purpose
of the work series are creation and modification for al-
gorithms to assessing and improving the quality of AR-
services. This paper describes and justifies an adaptive
communication protocol for multi-agent interaction. We
consider a general nonlinear dynamic system with in-
troducing feedback control which is based on measure-
ments under almost arbitrary noise. In practice, this con-
trol is realized as a superposition of neural networks with
the estimation of the result of mutual additional learning
based on the system identification method (M.K.Campi
and E.Weyer’s LSCR is used). The prototype is built for
a system with a distributed server architecture and multi-
agent behavior of both clients and servers in the system.
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1 Introduction
Human-machine interaction is one of the popular areas

for research. Over the decades, numerous console appli-
cations have grown into windowed GUIs and then web
and mobile applications.

One of the modern ways of providing information is
the use of Augmented Reality services (AR). In applica-
tions based on this technology, objects created by pro-
grammers coexist with objects in real space. In contrast

to Virtual Reality services (VR), the main influence on
the quality of AR is the accuracy of positioning in space
and the adequate speed of user interaction. The position-
ing of clients agents in space with high accuracy should
be 10-100 times higher than the capabilities of modern
navigation trackers (GPS or other sensor data accuracy).
The “speed of interaction” should provide an acceptable
response time when interacting with elements of the ex-
panded world and in the group interactions within the
selected AR-space.

A mobile phone or tablet allows the user to perform
more complex actions than a conventional windowed
GUI.

The number of agents and objects can be placed to the
space of augmented reality is important. The difficult of
the task that to be decided depends on this number.

Currently particularly promising areas of application
of AR are interactive tours, marketing, urban informa-
tion systems, interactive assistants in huge shopping cen-
ters, airports. Separately, it is worth noting such a scope
as digital twins of production.

The combination of these factors makes solutions con-
sumers of large computing resources and required high
data exchange rates.

But science is not far behind. There are more and more
works devoted to research adaptive flow control meth-
ods [Proskurnikov and Granichin, 2018] and distributed
optimization-based approaches [Wang et al., 2018].

A lot of new research in designing and analyzing coop-
erative control algorithms for large-scale multiagent sys-
tems [Dalai et al., 2007; Xia et al., 2021] may be applied
in the AR-technology.

The purpose of the work is a description and justifi-
cation of nn algorithm for assessing and improving the
quality of AR-services in the scope distributed server
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and multi-agent client environment. The time limit for
any task in the system should be predictable.

The benefit of designed solution is achieved by in-
troducing feedback control of a nonlinear dynamic sys-
tem considering under measurements with almost arbi-
trary noise. For decentralized load balancing for multi-
servers and multi-agent network with variable topology
and noise in the measurements Local Voting Protocol
modification used [Amelina et al., 2015]. The part about
balancing requests is not this the aim of this paper. Main
discuss here is about place of neural networks and usage
LSCR [Dalai et al., 2007] as a service-level agreement
(SLA) metric for our system.

In practice, this control is implemented in the form of
a composition of neural networks with an assessment
of the result of mutual additional training based on the
method for determining the system parameters.

The prototype is built for a model system with a dis-
tributed server architecture and multi-agent behavior of
both clients and servers in the system. The integration of
the provided algorithm into current system of augmented
reality services is in a stage of agreement with one of
customers.

2 Background
One of the first devices that can be called an augmented

reality device is mentioned in the children’s novel ”The
Wizard of Oz” - glasses through which you can see not
only the surrounding space, but also objects that are not
there.

The term “augmented reality” was officially used by
Tom Cadell, a Boeing Researcher, in 1990.

In 2009 ARToolKit has made AR technology available
to all Internet browsers.

Since 2016 and up to now, AR-theme is at the forefront
of science and is actively developing. Also it becomes
not only gaming, but also socially significant. For ex-
ample, in 2020, smart glasses for almost invisible people
were presented. In 2022, such glasses began to be sold
on behalf of Envision.

The second side of the work presented is densely re-
lated to math in control theory.

It has been known since the 1960s that many prac-
tical problems can be reformulated as a robust convex
optimization problem [Rastrigin, 1963] where a convex
function has to be optimized under restrictions that are
also given by convex functions.

An identification approach is often used for adaptive
control [Vakhitov et al., 2010]. This approach constructs
estimates of the possible values of unknown parameters
x based on sequences of observations, and these esti-
mates are then used in a parameterized feedback loop
that, if properly chosen, usually provides a closed-loop
system quality that satisfies the user.

This work extends our experience in the practical im-
plementation of the ideas of adaptive control and ran-
domized algorithms under uncertainty, which is the fo-

cus of a sequence of papers by O. Granichin and K.
Amelin [Amelin and Granichin, 2016] and O. Granichin
and D. Uzhva [Uzhva and Granichin, 2021].

3 Augmented reality context
Let us introduce the following concepts:

1 Client — a physical device with a camera and sen-
sors that allow you to position yourself in space and
time (in the augmented reality). Must have access
to the interaction network.

2 Server — a physical device with sufficient capacity
to perform complex calculations, receive and pro-
cess requests. Must have access to the interaction
network.

3 Object — an element of augmented reality.
4 Reconstruction or cloud of points — a 3D space

model formed on the basis of frames in the pro-
cess of shooting with a mobile device. It’s may be
sparsed or full.

5 Position is a place of Client or Object in the real
space coordinated within model space.

6 Key frame (or key image) — randomly selected
frame with specified characteristics. In relation to
the existing set of key frames it is searched for the
next ones to stabilize the system operation. The
number of key frames is important input parameter.

7 Localization — high accuracy positioning of the
client or object in a specific place of a given space
(both real and virtual). Let call the localization rate
a metric (real number in the [0; 1]) calculated as rela-
tion of successful matching real frames within base
frames to all matches. This is a metric of observable
result.

8 Request and response — a message transmitted via
http(s) according to the protocol for interaction and
data transmission in the network.

9 Let Service is a set of queries (requests and replies)
and feedback about it (user’s subjective opinion and
localization rate)

10 Quality of service is a customer satisfaction, real
number from 0 to 1. This is a key metric for assess-
ing customer satisfaction and platform performance.

Consider the process of using an augmented reality ser-
vice. At some moment of time t user Ci contacts the
server with a request to get a response to a localization
request or to send a reconstruction or object management
task for processing. A separate microservice is respon-
sible for the execution of each type of task, which is not
connected to the others in any way except by a message
queue.

Next, consider the four most important calculated in-
puts as a common vector x and the two outputs that de-
scribe the quality of our software solution (the first on the
client side, the second on the server side) as a vector! y.

We want to analyze the statistics of requests, so in
terms of setting parameters we have exactly one request
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at each moment (i.e. the process is discrete), based on
which we will “guess” the view of the system within its
use by an average user.

The inputs for us are: number of key frames, area
of view and area of localization, the mean responsi-
ble for the trajectory change in time (position refine-
ment). All these parameters are either monotonically
non-decreasing (linear with some error) or constant with
some error.

Two parameters are outputs: the probability that the
client will be satisfied with the quality (the quality value
is individual, but is known in advance) and the probabil-
ity that the servers will be able to execute the next task
of any type (depends on the current load, but is known
at the time of receiving the next task, because computing
power is fixed).

3.1 Client data and functions
Clients have the following set of data with unknown

accuracy:

current time within client timezone;
location (global geoposition);
location in space (local pose of the device at the lo-
cation point or change of pose relative to the starting
one); for some clients:
pictures of the space obtained by the cameras of this
device;
text / audio / video / 3D models of augmented reality
objects for placement.

Clients perform the following tasks:

take images of real space from camera according to
a predetermined algorithm for scene 3D-model cre-
ation;
assessment of the quality of the reconstructed scene
and the correctness of its placement in real space;
placement of objects on the reconstructed scene;
localization in the reconstructed scene;
assessment of the quality of localization;
receiving objects on active scene according to the
access level;
assessment of the quality of placement of an object
in real space;
search for the nearest server from the list of avail-
able;
making a decision on the amount of transmitted in-
formation depending on the network speed and re-
sponse time from the selected server;
switch to another server or self-organize in case of
loss of connection with the server.

Client Restrictions:

Scenes received from real space can be both public
and private.
Groups of objects with different access levels can be
placed on the same scene.

The client should only see those scenes, objects and
other clients that his access rights allow.

3.2 Server data and functions
Server have the following set of data:

Impersonal key frames along with GPS data re-
ceived from clients;
Reconstructions (3D-cloud of points);
AR-objects.
Information about rights and limits.

Servers perform the following tasks:

Accept http requests from clients and send re-
sponses.
Carry out complex calculations that are not available
to customers.
Carry out the construction of reconstructions.
Carry out localization.
Store, process data.
Provide differentiation of access rights and limits.
Ensure the security of data placement.
Redistribute tasks between servers to ensure optimal
response time to requests
Sync data and share it with according to query statis-
tics.

4 Math model and problem setting
As we have already described, we have some set of val-

ues of output parameters of the observed system. There
are also internal services of the system, each of which
operates according to its own algorithm and has a crite-
rion for evaluating a particular algorithm. We are inter-
ested in managing the algorithms of services to achieve
consensus, since it is the joint work of services that af-
fects the final result. Let us consider the parameters of
the services as a computational vector, or more precisely,
as an associated optimal predictor. The predictor can be
estimated by the main metric, namely, the vector of sys-
tem identification parameters, which is determined by
the LSCR algorithm, the essence of which is described
in [Dalai et al., 2007], and one of the ideas of its appli-
cation in [Moseiko and Granichin, 2023].

The peculiarity of using this particular identification
algorithm is that it provides not a specific model of the
system, but a class of models. According to the algo-
rithm, we can obtain such values of θ that guarantee that
the observation results fall into the confidence interval
with any accuracy specified in advance by the user of the
system.

Thus in this work we use LSCR as SLA metric for es-
timate current server solution and try to predict the result
for new version of system before integration and real us-
age by clients.

Then describe the control process over our real aug-
mented reality system with the strong math ideas.
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The mathematical model of this problem is a dynamic
system with a control of the form

ẋ = f(x, u, w, θ),

where x is the input data vector of the system, u is the
control vector, w is the disturbance, and θ is the param-
eter vector we want to estimate.

Because the input data for our system is a sequence of
requests, then we can consider our system as a discrete
system with noise and control

xt+1 = f(xt, ut, wt+1, θ),

where xt is a vector of input values transmitted by the
user of the system at time t, wt+1 is a new disturbance.

We already have a working system in which we can
make observations. Let g be some model that describes
how to obtain a vector of values yt from the observation
vector xt. In other words, we have a model of observa-
tions with noise

yt = g(xt, ut, vt, θ),

where yt is the observed result and vt is unmeasured
noise that describes all sources other than ut that cause
changes in yt.

The mathematical model of observations for each con-
nection is a nonlinear dynamical system. Consider a
nonlinear system S which maps a non-measured noise
process wt into a measured signal yt. Say that S is be-
longs to a parameterized system class {S}. Lets vt is an
independent sequence of random variables whose dis-
tribution is symmetric around zero. As in [Chou et al.,
2022] we don’t need in the other assumptions on vt. The
distribution of vt can as well be time-varying. We aim
at finding a region confidence for the parameter vector θ
by observing the output yt. In other words we have a
system of the form yt = utθ + vt, where ut are control
inputs, θ is a parameter that needs to be estimated un-
der conditions of uncertainty, vt is a random noise that
occurs during measurements. According to the theory
described in papers [Dalai et al., 2007] and [Amelin and
Granichin, 2016], in this problem setting it is possible to
apply the LSCR method. By this theory is a good idea to
find the Algorithm which always produces a region that
contains θ with a probability chosen by the user. In a sit-
uation of uncertainty, noise is distributed in such a way
as to guarantee that the result falls into a predetermined
confidence interval.

The LSCR-algorithm[Dalai et al., 2007] can be applied
to this control system to construct a confidence interval
for the parameter θ, where θ is some of control parame-
ters ut.

For our application, we can use a combination of our
input data ut, the computed online metrics yt, the total

vector
(
v
w

)
for known step as vector w̃, and θ is the

result of the micro-services logic, i.e., the quality of the
finished output. Thus, it turns out that we have a metric
to compare the quality of the results.

5 Data system and predictors
In the common case the data system is given in the

matrix-as-vector form.

yt = AT
t θ

0 + w̃t,

where
At = [−yt−1, . . . ,−ytna

, ut−1, . . . , utnb
],

θ0 = [a01, . . . , a
0
na
, b01, . . . , b

0
nb
]

(1)

In our terms the user can choose the signal ut and
choice of u doesn’t affect unmeasured and not known
values of wt for any time instant t. So we know constant
values of na and nb for our model order.

We will use

ỹt(θ) = AT
t · θ

as a predictor, where

θ = θ0

. Then the prediction error is given by

εt(θ) = yt(θ)− ỹt(θ).

We realize that some of the parameters called a or b
are known to us (depending on whether we are working
with the client side or the server side).

The goal is to construct from the observations a set of
confidence intervals Θi that contain the unknown param-
eter θi = bi with a given probability.

6 Non-linear LSCR algorithm
Let t is a “time”-sequence and N its length.
Describes algorithm:

1: Compute the prediction error εt(θ);
2: Compute the new vector

F [t](θ) = [−yt−1, . . . ,−ytna
, ut−1, . . . , utnb

]·εt(θ)

3: Select an integer M and construct binary stochas-
tic string of lenght as follows: every element of
the remainings strings takes one of true/false value
with the probabily 0.5 and all elements are inde-
pendent both in pairs and in any aggregate. Name
the elements of resulting strings h[i][t], where i =
1, . . .M, t = 1, ldotsN.
Compute

G[i](θ) =

N∑
t=1

h[i][t] · F [t](θ).

4: Let’s plot the graphs of dependence of functions
G[i](bi). Since it is very unlikely that all values of
this function have the same sign, let us exclude all
regions in which the values have all or except one
of the signs. It follows from Campy’s theorem that
the remaining interval is the region of given validity
for b[i].
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Figure 1. Counterexample: one parameter is not in confidence region
of system (intersection) but in the local confidence region

7 LSCR for tyme-varying system
This extension is described in [Layton et al., 2009]
We assume that the variation in θ0t is bounded by

|θ0t+1 − θ0t | ≤ K,

where K = [△a01, . . . ,△a0na
,△b01, . . . ,△b0nb

].
In other words, we work with changes to values in-

stead of the values themselves. The order of the model
depends on the number of parameters, the fact that we
will look at the system linear in each parameter other-
wise it will not cease to be linear.

We have obtained a procedure for identifying the pa-
rameters of the dynamic system equation described by a
moving average autoregressive model. If we can redefine
the parameters so that they are in a mutually unambigu-
ous correspondence, then the reparameterization allows
us to use the LSCR procedure reasonably and when in
the feedback channel with varyiting coefficients.

8 Main result
Let all the conditions for the theorem from [Dalai et al.,

2007] hold. Then this theorem is true. According to the
theorem in [Layton et al., 2009] and the corollary from
it, for each parameter of the system it is clear whether
it falls within the confidence interval with a given proba-
bility, and or whether the algorithm will work incorrectly
(going beyond the boundaries of the confidence interval,
convergence is too slow, etc.).

Let us describe the system adjustment algorithm:

1 For each parameter, we will use an algorithm with
a fixed, pre-known probability (it is common to the
system, regardless of which parameter we are esti-
mating).

2 If all confidence intervals turn out to be narrower
than the target one and around the given probability,
adjustment is applied.

3 If some confidence interval worsened any one indi-

cator of the system by no more than
1

N
(25% for

4 parameters, depending on the number of parame-
ters), then we will apply the change at this step and
in the next iteration we will discard the parameter
that made this change. If the hit is still preserved,
then we will recalculate the entire system and work
with it.

4 If more than one parameter made a negative contri-
bution, then such a change is not applied.

Theorem. Let’s call a strategy a set of parameters and
the boundaries of confidence intervals for them. Then,
if the theorem from [Layton et al., 2009] was fulfilled
for each parameter separately, then after applying the al-
gorithm described above, it will also be fulfilled for all
parameters in the aggregate.

The converse theorem is not true, see counterexample
(see Figure 1).

Prof: By consequence of Campi’s theorem, for each
parameter θ0i there is a maximal number of trials Mi

such that the confidence interval for each parameter sep-
arately contains the theta parameter with a given prob-

ability p (not less than 1 − 1

N
and common for all pa-

rameters). Let us consider the set of all subsets of the set
of selected parameters. The strategy from the theorem
corresponds to one of these subsets. Because for each
parameter we observe not decreasing (as the amount of
data increases, the system stabilizes), then for each pa-
rameter we can calculate the mathematical expectation
as

E|△t−1(bi)| = (b0i−b)E|△2
t−1|+E|△t−1w̃t| = b0i−bi.

For the “full” system we can decrease model order by
the theorem as for system with the control action with
test signal [Amelin and Granichin, 2016]. In the ap-
proach described in the work, the confidence set (inter-
section) is constructed by excluding from the set of pa-
rameters those for which empirical correlations too often
take only positive or only negative values.

9 Simulations
To demonstrate the solution, the qemu-image based on

Linux Debian 12 OS and free Android mobile applica-
tions using AR-core functions were prepared. Any im-
age has all parts of solution.

Image clones are installed on 9 physical servers geo-
graphically located at different points. The images are
intended to be deployed on a host system or as a virtual
machine hard drive.

Mobile phones and modern computers with a browser
are used as client devices. Clients are applications for
various purposes that demonstrate the execution of typi-
cal AR tasks, or, alternatively, shell-scripts that execute
specified sequences of http requests.

The changing of localization service quality by itera-
tions of system modification using LSCR θ-prediction is
on the figure below.
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Figure 2. Ninety five percent confidence region of client satisfaction
increased by number of keyframes

Figure 3. Some of the model g-functions obtained in the real system

The Figure 2 shows that the quality specified by the
user always falls within the confidence interval, and the
width of the confidence interval narrows with time. This
allows you to select input data more qualitatively and
reduce amount of data for processing. By experiments
the length of confidence interval is reduced after 40 key
frames that corresponds second or third minutes of track-
ing. It proves that quality of localization service is get-
ting better.

This Figure 3 shows that we can find something close
to an exact solution, but we only need a good (not ex-
act) solution for it to work in practice. Why always or
sometimes, we will try to analyze in our next papers.

10 Application example
One of the application for described method is com-

parision of the stability and performance of a distributed
server solution in comparison with a centralized one, ex-

isting public server is used.
For testing, the most popular test scenarios for using

AR were selected, namely:

1. Simultaneous creation of scenes (reconstructions)
by several users.

2. Simultaneous placement of objects a) in different
scenes; b) in the same scene.

3. Updating the scene with new data in the process of
localizing independent users in this scene.

4. Localization of a group of clients in the scene in
different situations: a) clients are not connected
with each other; b) clients see each other within the
scene.

5. Simultaneous solution of problems from groups 1-4
by random within restrictions described upper.

Other example. Let’s consider a situation where the
number of provider resources is known, but strictly lim-
ited. The main development goals are to improve the
quality of service for existing users and increase the
number and geography of new clients. Sooner or later,
there comes a point in the system when resources of at
least one type become insufficient. The method will help
you choose the most suitable strategy for the provider.

Another example is communication between agents
in a multi-agent environment. The algorithm described
above allows you to compensate for insufficiently good,
but not very bad, values of parameters of arbitrary origin.

11 Hardware platform
The developed system was also integrated into a decen-

tralized hardware and software platform for deployment
and support of the network operation, based on a univer-
sal embedded module for evaluating aggregate system
characteristics and providing decentralized communica-
tion within the network. The underlying methodology
of the multi-agent interactions through aggregate system
characteristics is described in [Granichin et al., 2022;
Erofeeva et al., 2023]. The network protocol also re-
lies on the approach given in [Amelin and Ershov, 2021].
We have tested the platform in different conditions: to
work with autopilots via FTDI, USB or COM directly;
to work with protocols of different autopilots; to work
with different wireless communication modules: Blue-
tooth, Xbee (Zigbee), Wi-Fi, GSM (GPRS); to work with
different types of additional equipment such as camera,
thermal imager, additional telemetry sensors, etc.; work
with different types of batteries; work with actuators by
PWM signal; work in group interaction mode with sup-
port for new protocols of decentralized data exchange
(without a single decision-making center).

12 Conclusion
Possible approaches to handle control of multiserver

system with multiagent emerging clusterization are dis-
cussed.
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Developed prototype of multiserver solution with
adaptive exchange protocol for multiagent coordination.

According to the test results the use of a multi-server
architecture with a local voting protocol shows greater
stability in solving localization tasks and less waiting
time in reconstruction tasks compared to a centralized
server solution.

The combination of these advances makes it possible
to use the distributed server solution for a lot of AR-
concept problem classes worldwide.

Future work will include the integration this prototype
as experimental feature to the current solution, find and
study the bottlenecks by real usage statistic, optimization
works of the proposed exchange. Also this research will
actual in the case where the number and geography of
operate queries are huge or too slow for one computation
server.
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