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Abstract
The problems of autonomous digital control of the in-

formation satellites and space robots during their initial
transition to a tracking mode, namely in the initial orien-
tation modes, are considered. Autonomous angular gui-
dance and modularly limited vector digital control using
a vector of the modified Rodrigues parameters are apply-
ing to bring the spacecraft’s orientation from completely
arbitrary to the required one. The developed methods,
algorithms and simulation results for a mini-satellite in a
sun-synchronous orbit are presented.
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1 Introduction
After separating any spacecraft (an information satel-

lite [Testoyedov et al., 2017], a space robot [Somov
et al., 2019] etc.) from a launch vehicle, the spacecraft
(SC) begins to turn somersaults – to rotate with the angu-
lar velocity vectorωωω of arbitrary direction in its body ref-
erence frame (BRF) Oxyz. The first purpose of of the SC
digital control is its initial transition to a given tracking
mode. Here, the simplest task is the initial orientation
modes (IOMs) of the SC attitude control system (ACS)
when the SC orientation is bringed to a given position
in the orbital reference frame (ORF) Oxoyozo. If the SC
is modeled as a rigid body, then indicated problems of
its spatial angular motion are studied in theoretical me-
chanics [Aleksandrov and Tikhonov, 2018] and physics
[Materassi and Morrison, 2018] as well as in mathemati-
cal control theory [Smirnov, 1981]. In this paper we con-
sider the Earth-observing mini-satellite weighing of 250
kg, which is separating from the launch vehicle in a sun-
synchronous orbit with altitude 600 km. We are assum-
ing that considered miniature SC is equipped with the

ACS that contains a strapdown inertial navigation system
(SINS) with correction by signals of GPS/GLONASS
satellites and star trackers, cluster of the gyro angular
rate sensors (ARSs), magnetometer (MM) and also the
following drives: cluster of four flywheels – reaction
wheels (RWs) under the scheme General Electric (GE),
see Fig. 1, and magnetic drive (MD).

We study the SC nonlinear control problems in the fol-
lowing IOMs: (i) the SC calm down in the inertial refer-
ence frame (IRF) at the ARS cluster’s signals by the MD
digital control while the angular velocity vector module
ω ≡ |ωωω| > ω∗

1 at the specified value ω∗
1 ; (ii) initializa-

tion of RW cluster, switching on it into the SC control
loop and then the SC bringing to the required orientation
in the ORF when the SINS signals are used; (iii) the SC
angular stabilization in the ORF by autonomous digital
control of the RW cluster with its unloading from the ac-
cumulated angular momentum (AM) using MD [Somov
et al., 2018]. The problem of the SC autonomous angu-
lar guidance is solved while tracking the reference model
for vector of the modified Rodrigues parameters (MRP)
using a modularly limited digital control torque vector of
the RW cluster at bringing the satellite orientation from
arbitrary one to the required one in the ORF.

Figure 1. The GE scheme (a) and its AM variation domain (b)
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2 Mathematical Models and the Problem Statement
In what follows, we use the notations { · } ≡ col(·),

[ · ] ≡ line(·) for vectors with scalar 〈·, ·〉, vector
({·}×{·}) and dyad [{·}·{·}] products; for matrices
[·×], (·)t, d·c ≡ diag(·) and ◦, ·̃ for quaternions ΛΛΛ =
(λ0,λλλ),λλλ = {λ1, λ2, λ3}, and also for the MRP vector
σσσ = e tg (Φ/4) with Euler unit vector e and angle Φ
of own rotation, i = 1, 2 . . .m ≡ 1÷m. The vector σσσ
is connected with quaternion ΛΛΛ of the spacecraft BRF
orientation in the IRF by relations σσσ = λλλ/(1 + λ0) and
λλλ=2σσσ/(1 + σ2);λ0 =(1− σ2)/(1 + σ2).

The model of the SC angular motion takes into account
the flexibility of its structure and has the form

Λ̇ΛΛ = ΛΛΛ◦ωωω/2; Ao{ω̇ωω, q̈, Ω̇ΩΩ} = {Fω,Fq,Fr}, (1)

Fω=−ωωω×G+Mo; Fq=−Aq(Vqq̇+Wqq);

Fr =m−mf ; ωωω={ωi}; q={qj}; ΩΩΩ={Ωp};
i=1÷3; j=1÷nq; , p=1÷4

Ao=

 J Dq Dr

Dt
q Aq 0

Dt
r 0 Ar

; Aγ=

Cγ Cγ Cγ Cγ

Sγ −Sγ 0 0

0 0 Sγ −Sγ

;

Dr=JrAγ , Ar=JrI4; Cγ≡cos γ, Sγ≡sin γ;

matrix Aγ composed of unit vectors of the RW’s axes;
Mo≡Mm+Md; G = Go + Dqq̇ is the AM vector of
whole mechanical system, Go = K +HHH,K = Jωωω; the
columnsHHH = {Hi} and h ≡ {hp}, hp ≡ JrΩp represent
AMs of the RW cluster and individual RWs related by ra-
tioHHH = Aγ h; Aq=dµjc; Vq=d δ

q

π Ωqjc; Wq=dΩqj)2c;
a vector of the MD torque is Mm = {mm

i } = −L×B,
where vector of electromagnetic moment (EMM) L =
{li} with components |li|≤ lm and the induction vector
of the Earth magnetic field (EMF) B=Bb with unit vec-
tor b are defined in BRF; the columns m = {mp} and
mf ={mf

p} represent the control torques and torques of
dry friction forces along the axes of the RW rotation, and
vector Md – external disturbing torques.

The values of control torque and own AM for each
RW are limited, |mp(t)| ≤ mm; |hp(t)| ≤ hm. Fur-
ther on, for the RW cluster we use the torque vector
Mr ≡ {Mr

i} = −HHH∗ = −Aγ ḣ with the symbol (·)∗ of
a local time derivative.

When the SC with RW cluster is considered as a free
solid (Mo = 0) and the ACS has a balance by its total
AM vector (G ≡ 0), the SC angular motion in inertial
reference frame (IRF) is described by the model

Λ̇ΛΛ = ΛΛΛ ◦ωωω/2; ω̇ωω=J−1Mr =εεε≡u. (2)

At applying the MPR vector σσσ this kinematic model of
the SC angular motion takes the form

σ̇σσ=(1−σ2)ωωω/4+(σσσ ×ωωω + σσσ 〈σσσ,ωωω〉)/2; ω̇ωω=u (3)

with initial conditions σσσ(to) = σσσo, ωωω(to) = ωωωo and the
vector σσσo≡eo tg(Φo/4) is arbitrary when |Φo|< 2π.

For the SC guidance law ΛΛΛp,ωωωp, εεεp = ω̇ωωp in the IRF
the error quaternion E = (e0, e) = Λ̃ΛΛp◦ΛΛΛ corresponds

to Euler parameters’ vector EEE = {e0, e} with e = {ei},
the angular error matrix Ce ≡ C(EEE) = I3 − 2[e×]Qt

e

with the matrix Qe ≡ Q(EEE) = I3e0 + [e×], the MRP
vector σσσe = ee tg (Φe/4) and the angular error vector
δφφφ = {δφi} = 2{eoei}. The error vector δωωω ≡ ωωωe in
angular rate is calculated by the ratio ωωωe = ωωω −Ceωωωp.

Assume that a discrete measuring of the SC orientation
ΛΛΛl ≡ ΛΛΛ(tl) is performed by the SINS with period Tp,
l∈N0≡ [0, 1, 2, . . . ). Let’s also assume that at the time
moments tk, k ∈N0 with the period Tu, the RW digital
control is formed, and the MD digital control acts when
t ∈ [tr, tr+1), r∈N0 with a period Tm

u � Tu.
In this paper we research the following problems:

(i) development of discrete algorithms for digital control
of both the MD and the RW cluster;
(ii) synthesis of a nonlinear digital control law uk ≡
u(σσσk,ωωωk) for the reference model (2) & (3) with the
bounded modules of both control and angular veloc-
ity vectors, which provides asymptotic stability of the
closed nonlinear continuous-discrete reference model;
(iii) synthesis of nonlinear digital control law for the RW
cluster, which after completing the satellite’s calming
down mode provides the SC transition to its required an-
gular position in the ORF;
(iv) computer simulation of the ACS performance in the
IOMs for mini-satellite in a sun-synchronous orbit when
using the SC autonomous angular guidance.

3 Digital Control of Magnetic Drive
When the SC is modelled as a solid (Md =0; Mr =0

and G = K) the model of the SC rotation dynamics in
(1) is presented in the form K̇+ωωω×K = M where K̇ ≡
K∗ = Jω̇ωω and external control torque M = Mm. For
synthesis of the locally optimal continuous control laws
M = M(ωωω) we used Lyapunov function v = 〈K,K〉.
As a result, we have established that during the SC calm
down with minimum coercion M2 =‖M‖2 a control law
has the form M = −aKk with the AM unit vector k =
K/K and parameter a > 0, and control law M=−mk,
with a module bounded by a parameterm>0, represents
the time-optimal control torque.

Assume that in the time moments tr = rTm
r , r ∈

N0 the EMF induction vector Br = Brbr and vec-
tor ωωωr are measured by the MM and the ARS clus-
ter. At formation of the command Mr = −aKr

for the MD torque vector on each time semi-interval
t ∈ [tr, tr+1) with period Tm

r , first, we define vector
Mp

r of required variation for a pulse of control torque

Mp
r ≡

tr+1∫
tr

K(τ) dτ = −Kr(1− exp(−aTm
r ))kr

with its presentation Mp
r =br×(Mp

r×br)+br〈Mp
r ,br〉.

Then we assign value Mpm
r = br × (Mp

r × br) with
condition br〈Mp

r ,br〉 = 0, that ensures the MD en-
ergy saving. Next, vector of required variation for a
pulse of control torque Mpm

r ≡ −∆Imr kr with module
∆Imr = Kr(1 − exp(−aTm

r )) and unit vector kr is ap-
plied to form the EMM digital control vector Lr = {lir}
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Figure 2. Changing the SC angular velocity vector at digital control by the MD and RW cluster in the IOMs

for magnetic drive. Moreover, a mutual orientation is
defined for the unit vectors br and kr in the BRF. If
|〈br,kr〉|>cos(π/3) than the MD is not switched on at
the current control period, otherwise vector Lr = {lir}
with restricted components |lir| ≤ lm is formed by ex-
plicit relation Lr=(∆Imr /T

m
r )(br×kr)/Br. That algo-

rithm is applied also for the RW cluster unloading from
accumulated angular momentum.

4 Digital Control of the RW Cluster
Normalized to hm form the RW’s AM vector h =
{hp} with hp = hp/h

m, |hp| ≤ 1 is applied for com-
puting the RW cluster normed AM as follows

h ≡HHH/hm = {x, y, z} = {x1 + x2, Sγh
−
12, Sγh

−
34},

x1 =Cγh
+
12, x2 =Cγh

+
34; h±12 =h1 ± h2, h±34 =h3 ± h4.

For the RW cluster, the fundamental problem is si-
multaneous distribution of its AMHHH and control torque
Mr=−HHH∗ vectors between four RWs. Main idea of the
employed explicit distribution law consists in achieving
the strict uniformity in terms of the saturation resources
for the first and second RW pairs. In the normalized
form, the law is described by the relations

fρ(h)= x̃1 − x̃2 + ρ(x̃1x̃2 − 1) = 0;

ḟρ(h)=〈af(h), ḣ〉=Φρ(fρ(h)) ≡ −sat(µρfρ(h), φρ),

where x̃1 ≡ x1/qy; x̃2 ≡ x2/qz; qs = (4C2
γ−s2)1/2,

s = y, z; 0 < ρ < 1 and φρ, µρ, ρ are positive para-
meters, and column af(h) = {afp} = ∂fρ(h)/∂ h has
the components
af1,2 =2Cγ(2C2

γ ± S2
γh2h

−
12)(1 + ρCγh

+
34/qz)/q

3
y;

af3,4 =2Cγ(2C2
γ ∓ S2

γh4h
−
34)(1 + ρCγh

+
12/qy)/q3z .

With notation q±yz ≡ qy ± qz, b ≡ x/2, c≡ qyqz − b2
the normed AM vector h = {x, y, z} is distributed as
per condition fρ(h) = 0 firstly among RW pairs by the
relation x1 = (x+ ∆)/2, x2 = (x−∆)/2, where

∆≡(q+yz/ρ)(1− (1− 4ρ[q−yzb+ ρ c]/(q+yz)
2)1/2),

and next among two RWs in each pair by evident re-
lations. To define column m, the relation Aγḣ = ḣ
is supplemented with equation 〈af(h), ḣ〉= Φρ(fρ(h)).
As a result, we obtain four linear equations and the col-
umn m of the RW cluster control torques is calculated
as m ≡ {mp}={Aγ , [a

f
p]}−1{−Mr,hmΦρ(fρ(h))}.

The RW cluster is unloading from the accumulated

AM using a direct compensating scheme: simultaneous
formed digital command vectors Lr to magnetic drive
and Mc

k to the RW cluster are equivalent in the torque
pulse and have opposite signs, taking into account the
multiplicity of periods Tm

u and Tu. Therefore, the pre-
liminary digital control vector m̃k of the RW cluster is
calculated in the form
m̃k = {Aγ , [a

f
k]}−1{−(Mr

k + Mc
k),hmΦρ(fρ(hk))}.

Each RW has a built-in micro-processor for identifica-
tion of the RW dry friction torque, here we consider only
one RW rotation axis, without index p.

The simplest approximate model of the RW rotation
is presented in form Ω̇(t) = a(t) − af(t), where the
control acceleration a(t) = m(t)/Jr and acceleration
af(t)=afo sign(Ω(t)) ∈ [−afo, afo] describes the dry fric-
tion torque, moreover for known RW moment of inertia
Jr the parameter afo =mf

o/Jr=const is unknown.
Assuming that af(t) = afs = const ∀t ∈ [ts, ts+1), s ∈

N0, the discrete Luenberger observer
Ω̂s+1 =Ω̂s + (as − âfs)Tq + gf1 δΩs;

âfs+1 = âfs + gf2 δΩs; δΩs+1 =Ωs+1 − Ω̂s+1

with period Tq � Tu is applied when the RW rotation
velocity Ω(t) changes only in a small neighborhood of
its value Ω = 0 for obtaining an estimate âfs, where pa-
rameters gf1 and gf2 are defined by explicit relations.

In this case, a discrete estimation of the RW dry fric-
tion torque has the form m̂f

s = Jr â
f
s. This allows to

obtain the estimations m̂f
k(t) ∀t ∈ [tk, tk+1), k ∈ N0

taking into account the multiplicity of periods Tu and
Tq. Approximate compensation of the RW’s dry fric-
tion torques is implemented by using the vectors m̃k =
{m̃pk} and m̂f

k = {m̂f
pk}. As a result, the final vector

mk of the RW cluster digital control is formed by rela-
tion mk = m̃k + m̂f

k.

5 The Reference Guidance Model
Direct and inverse kinematic equations for the MRP

vector σσσ are represented in the form σ̇σσ = B(σσσ)ωωω and
ωωω = D(σσσ)σ̇σσ with the matrices

B(σσσ) ≡ 1
4 (1− σ2)I3 + 1

2 ([σσσ×] + [σσσ · σσσ]);

D(σσσ) ≡ B−1(σσσ) = (8/(1 + σ2)2)Bt(σσσ).
Compact notation of second derivative of function σσσ
σ̈σσ=(1/2)[−〈σσσ, σ̇σσ〉ωωω+(1/2)(1−σ2)εεε+σ̇σσ ×ωωω

+σσσ × εεε+ σ̇σσ 〈σσσ,ωωω〉+σσσ 〈σ̇σσ,ωωω〉+ σσσ 〈σσσ,εεε〉]
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Figure 3. Changing the EMM vector at the MD digital control in the mini-satellite’s calm down mode

Figure 4. Changing the MD torque vector at its digital control in the mini-satellite’s calm down mode

brings the controlled part of the reference guidance
model to the form σ̈σσ = v ≡ b(σσσ,ωωω) + B(σσσ)u with
function b(σσσ,ωωω)=([(B(σσσ)ωωω)×] + [σσσ ·B(σσσ)ωωω])ωωω/2.

Using the methods of feedback linearization, modal
synthesis and vector Lyapunov functions [Somov, 1996]
for model σ̈σσ = v on a single desired spectrum S∗ =
−α ± jβ with j =

√
−1, we have obtained the con-

trol law v(σσσ, σ̇σσ) = −(kσσσσ + kωB(σσσ)ωωω). In discrete
form with period Tu this control law is represented as
vk=−(kdσσσσk + kdωB(σσσk)ωωωk). Here, for a given norma-
lized regulation time Tr, the coefficients kdσ and kdω are
calculated using explicit relations
ω∗ = 3/(ξTr); α = ξω∗, β = ω∗(1− ξ2)1/2;
a1 = −2 exp(−αTu) cos(βTu), a2 = exp(−2αTu);
kdσ = (1 + a1 + a2)/T 2

u , k
d
ω = (3 + a1 − a2)/(2Tu),

which are fair ∀ ξ > 0. Preliminary control law is de-
fined as ũ(σσσ,ωωω) ≡ {ũik} = D(σσσ)(v − b(σσσ,ωωω)), that
provides uniform asymptotic stability of trivial solution
for model (3), and its discrete form is represented as

ũk=−[D(σσσk)(kdσσσσk + b(σσσk,ωωωk)) + kdωωωωk]. (4)

When digital control is finally formed at the time tk, the
restrictions on control vector module (|u| ≡ u ≤ um)
and angular velocity vector module (|ωωω| ≡ ω ≤ ωm)
are taken into account in (4) according to the following
simple algorithm A:
1) by the value of digital control ũk (4) at the time tk,
there is calculated predictive value of angular velocity
vector ωωωqk =ωωωk + ũkTu achieved at the end of the time
interval duration Tu, and if |ωωωqk| > ωm then control vec-
tor ũk is redefined as ũk=(ωm(ωωωqk/ω

q
k)−ωωωk)/Tu;

2) next, if |ũk|≡ ũk > um then vector uk=um ũk/ũk
∀t ∈ [tk, tk+1) is formed, otherwise vector uk= ũk.

Checking the operability of this digital control law was
presented in our article [Somov et al., 2021].

6 Autonomous Digital Control
The autonomous guidance and digital attitude control

of the mini-satellite is based on analytical relations link-
ing the required coordinates of the SC state with the mea-
sured coordinates of its angular movement.

Considered problem consists in the synthesis of the SC
autonomous control laws in the initial orientation modes,
including the SC bringing from an arbitrary orientation
in the IRF to the specified orientation in the ORF, for
simplicity coinciding with this reference frame. In this
case, at quaternion ΛΛΛo of the BRF orientation in the IRF
we obtain the SC guidance law ΛΛΛp = ΛΛΛo, ωωωp = ωωωo

and εεεp = εεεo. In the ORF Oxoyozo the SC orientation
is defined also by the Euler-Krylov angles φ1 (roll), φ2
(yaw) and φ3 (pitch) in the sequence 312 of elementary
turns, that make up the column φφφ ≡ {φi} and the matrix
Co(φφφ) = Ce ≡C(EEE).

All kinematic parameters (ΛΛΛo,ωωωo and εεεo) of the ORF
angular motion in the IRF are formed directly onboard

Figure 5. The angles φi and Φe of the SC rotation in ORF
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Figure 6. Changing the vectorωωω at bringing the SC to ORF

Figure 7. The RW cluster control torques at the ACS switching

Figure 8. The RW’s control torques at the ACS switching

mini-satellite, first with period Tm
u during the SC calm

down in the IRF and then with period Tu based on the
methods of a filtering, approximation and interpolation
[Testoyedov et al., 2017].

On the other hand, quaternion ΛΛΛ of the SC actual orien-
tation in the IRF and vector ωωω of its angular velocity are
measured by the SINS and ARS cluster, so we have an
opportunity for the SC autonomous control in the IOMs.

Assume that SC separates from a booster at the time
t0 =0 and the SC angular rate vectorωωω(t) takes the value
ωωω0 =ωωω(t0) with an arbitrary quaternion ΛΛΛ0 =ΛΛΛ(t0) of its
orientation in the IRF. Then the vector of digital EMM
Lr={lir}, lir = const∀t ∈ [tr, tr+T

m
u ) with |lir|≤ lm

begins to form automatically using measurements only
of the magnetometer and the ARS cluster. As a result,
the vector Mm

r (t) = {mm
ir(t)} ∀t ∈ [tr, tr + Tm

u ), r ∈
N0 is generated to slow downing the SC rotation in the
IRF and the SC’s angular calming mode ends when the
condition |ωωω(t)| ≤ ω∗

1 is met for a given value ω∗
1 =

|ωωω(t∗1)| at any time moment t = t∗1.
At the same time moment the values ΛΛΛ∗1 =ΛΛΛ(t∗1) and

ωωω∗
1 =ωωω(t∗1) are measured by SINS, next they are used at

calculating the initial conditions for the mode of bringing
the SC orientation to the one specified in the ORF.

At t ≥ t∗1 the measured variables ΛΛΛo
k, ωωω

o
k, εεε

o
k and

ΛΛΛk, ωωωk are applied for calculating the values σσσk =
ek tg(Φk/4), Ek, EEEk, Ce

k ≡C(EEEk), σσσe
k = ee

k tg(Φe
k/4),

ωωωe
k ≡ δωωωk =ωωωk − Ce

kωωω
o
k, δφφφk. That allows to calculate

the RW cluster digital control vector by main relation

Mr
k = ωωωk ×Go

k + J(Ce
kεεε

o
k + [Ce

kωωω
o
k×]ωωωk + m̃k), (5)

where vector Go
k = Jωωωk + HHHk and the vector m̃k is

formed in accordance with the following two stages:
1) ∀t ∈ [t∗1, t

∗
2) while Φe(t)>Φe

∗2≡Φe(t∗2) for a given
value Φe

∗2 at any time t= t∗2, vector m̃k = ũe
k is calcu-

lated for error in MPR vector σσσe in the form

ũe
k = −[D(σσσe

k)(kdσσσσ
e
k + b(σσσe

k,ωωω
e
k)) + kdωωωω

e
k], (6)

but taking into account general restrictions on modules
of vectors ωωωk and uk in algorithm A;
2) at the notation εεεk = −δφφφk, the digital vector m̃k is
implemented ∀ t ≥ t∗2 as follows

gk+1 = Bgk + Cεεεk; m̃k = K(gk + Pεεεk), (7)

where B,C,P and K are constant matrices.

7 The Results of Computer Simulation
Let’s assume that a mini-satellite with a mass of 250

kg is placed in a sun-synchronous orbit with the alti-
tude of 600 km, inclination of 97.787 deg and ascending
node longitude of 30 deg, and at the time t0 = 0 the SC
is flying over the orbit’s ascending node when separat-
ing from a booster with the angular rate vector module
ω0 = 3 deg/s. Assume also that MD has the constraint
lm = 10 Am2 for components of the EMM vector, the
period Tm

u = 4 s of its digital control, and in control law
of the RW cluster with period Tu = 0.25 s, restrictions
ωm = 1 deg/s, um = 0.3 deg/s2 in the reference model,
the coefficients kdσ and kdω were calculated for parame-
ters Tr=60Tu and ξ=0.95.

In Fig. 2 we present the simulation results for the an-
gular velocity vector ωωω(t) of mini-satellite at its digital
control by both the MD and the RW cluster in all initial
orientation modes.

For given value ω∗
1 = 0.5 deg/s, the time t∗1 = 6336 s

of the SC’s calming mode end is defined automatically,
as well as the values ΛΛΛ∗1, ωωω

∗
1, σσσ

e
∗1 =ee

∗1 tg(Φe
∗1/4) with

Φe
∗1 =175.56 deg and ωωωe

∗1 =ωωω∗
1−Ce

∗1ωωω
o
∗1. Changing the

vectors L and Mm of the MD in this mode are presented
in Figs. 3 and 4. For given value Φe

∗2 = 0.083 deg=300
arcsec, vector law m̃ in (5) is switching from (6) to (7)
at the time moment t∗2 =6583.6 s.

Changing the angles φ1 (roll, blue), φ2 (yaw, green),
φ3 (pitch, red) and the angle Φe (black) of the SC ro-
tation in ORF ∀t ≥ t∗1 = 6336 s are presented in Fig. 5,
and some details in changing the vectorsωωω,Mr and m at
bringing the SC orientation to the ORF – in Figs. 6, 7 and
8. At last, in Figs. 9 and 10 we present the errors in an-
gular velocities δωi and angles δφi at the ACS transition
to the steady-state mode of the SC angular stabilization.



190 CYBERNETICS AND PHYSICS, VOL. 10, NO. 3, 2021

Figure 9. Changing the vector δωωω in the stabilization mode

Figure 10. Changing the vector δφφφ in the stabilization mode

Here, all noises in measurements and disturbing
torques were taken into account, but careful filtering
of measurements and selection of parameters for au-
tonomous digital control laws allowed to achieve good
results on the mini-satellite’s ACS accuracy during the
mini-satellite initial orientation modes.

8 Conclusions
Autonomous angular guidance and modularly limited

vector digital control using a vector of the modified
Rodrigues parameters are applying to bring the space-
craft’s orientation from completely arbitrary to the re-
quired one.

Autonomous vector digital control laws of a three-axis
magnetic drive and a minimally redundant cluster of the
reaction wheels (flywheels) are applying to calm down
of a mini-satellite’s somersaulting after its separating
from a booster and to bring its orientation to a given po-
sition in the orbital reference frame without any propul-
sion unit.

The paper’s main new breakthroughs are the following:
(i) autonomous vector digital control of the flywheel

cluster with explicit distribution of control torque vector
between flywheels taking into account limited resources
of the cluster on vectors of control torque and angular
momentum;

(ii) unloading the flywheel cluster from accumulated
angular momentum using magnetic drive with its digital
control by original compensation scheme;

(iii) built-in identification and compensation of a dry
friction torque on a rotation axis of each reaction wheel.

The developed methods and algorithms for au-
tonomous guidance and digital control of mini-satellite
in the initial orientation modes are presented, as well as
the results of computer simulation taking into account all
noises in measurements and disturbing torques. These
results were demonstrated good accuracy of the mini-
satellite’s attitude control system, achieved by careful
discrete filtering of measurements and choice of para-
meters in simple digital control laws.

The developed algorithms for autonomous guidance
and digital control of geodetic mini-satellites are sim-
ple, reliable, and implementable in space technology
[Testoyedov et al., 2017].
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