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Abstract
In this paper, an active flutter control scheme is in-

vestigated for a 2dof airfoil with nonlinear torsional
stiffness. We use a simple graphical method to char-
acterize all possible system equilibria. With the help
of this method we study how an active flutter suppres-
sion system can lead to ”parasitic” steady states, which
are different from the nominal zero-pitch, zero-plunge
trim conditions. It appears that these equilibria can be
induced by the presence of non-smooth saturation func-
tion, which describes amplitude constraints imposed on
the system actuators. With control system built us-
ing only knowledge of ”nominal” system dynamics,
the closed-loop system becomes structurally unstable
in the sense that a small change in its parameters or the
addition of infinitesimal unmodeled dynamics can lead
to the ”parasitic” steady states appearance or disappear-
ance.
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1 Introduction
Active flutter suppression approach has been studied

for many years to prevent catastrophic structural failure
due to excessive vibrations in aeroelastic systems. Con-
trol surfaces such as spoilers and flaps have been gen-
erally used to generate auxiliary aerodynamic lift and
moment, although some non-standard actuators, such
as piezoelectric and jet reaction torquer, were also in-
vestigated.
In post-design analysis of flutter suppression methods

the attention so far has been concentrated mainly on the
limit cycle oscillations (LCO), as their prevention is the
main goal of any such method. It is usually expected
that the designed feedback stabilizes the closed-loop
system around nominal zero-pitch, zero-plunge equi-
librium. Nevertheless, due to the nonlinear nature of

aeroelastic systems, it is theoretically possible that the
feedback will induce in the closed-loop system new,
undesirable stable or unstable trim conditions that are
different from the nominal one. An unstable equilib-
rium can also be surrounded by a stable limit cycle
having small amplitude or can change the system dy-
namics qualitatively in some other way. As a result, the
closed-loop performance can degrade not only because
of insufficient LCO prevention, but also because of un-
desirable equilibria that were created by the feedback
itself (Goman and Demenkov, 2008).
Although this aspect of aeroservoelastic feedback de-

sign was not systematically studied before in the liter-
ature, one can find there a few examples of undesired
attractors existence due to a particular form of feedback
control. These examples are connected with the aeroe-
lastic apparatus developed in Texas A&M University.
The existence of a stable non-zero equilibria has been
experimentally confirmed for the closed-loop system
with one (Kurdila et al., 2001) and two (Platanitis and
Strganac, 2004) actuators under feedback linearization
control. In both cases one cannot detect the ”para-
sitic” attractors via the closed-loop model investiga-
tion. These effects were attributed by authors to inex-
act cancelation of the stiffness nonlinearity, unmodeled
Coulomb friction, aerodynamic loading. The particular
source of these problems was not, however, clear.
In this paper we propose an approach based on the

notion of structural stability that can help to explain
these effects, which seem to have an importance for
the vibration control in general. For the illustration, we
use the model given in (Platanitis and Strganac, 2004).
We assume that the system parameters cannot be mea-
sured exactly and there are exist unknown dynamics,
i.e. equations that govern the apparatus in nature but
were not included in the system model due to simpli-
fication assumptions. We show that in some circum-
stances the controller, designed using only the knowl-
edge of ”nominal” system dynamics, can lead to un-
expected changes in the dynamics of the closed-loop
system if the real-life system even slightly differs from



Figure 1. The aeroelastic system (courtesy of the American Insti-
tute of Aeronautics and Astronautics).

that used for the synthesis. The steady-states, which
can randomly appear in the system in this case, are to-
tally absent in the nonlinear model that is used for the
closed-loop system design and simulation. However,
with the proposed methodology it is possible to iden-
tify structurally unstable configurations without the ex-
act knowledge of system dynamics.

2 System model
The equations of motion for a wing section with two

degrees of freedom are taken here as in (Platanitis and
Strganac, 2004):

[
mT mW xαb

mW xαb Iα

] [
ḧ
α̈

]
+

[
chḣ
cαα̇

]
+

[
Fh

Mα

]
=

[−L(t)
M(t)

]
,

(1)
where h - the plunge displacement, α - the pitch angle,
mT - the total mass of pitch–plunge system, mW - the
total wing section plus mount mass, Fh(h) = khh -the
plunge force due to the plunge stiffness kh, Mα(α) =
kαα - the pitch moment due to the pitch stiffness kα.
It is important to note that the sole source of nonlinear-

ity in these equations arises from the polynomial model
of the pitch stiffness (see Fig. 2):

kα(α) = 12.77 + 53.47α + 1003α2. (2)
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Figure 2. The pitch moment.

Using the nondimensional distance from midchord to
elastic axis position a and the semichord of wing sec-
tion b, we first compute the nondimensional distance
from elastic axis to center of mass xα and then distance
rcg (see Fig. 1):

xα = −(0.0998 + a), rcg = bxα. (3)

Viscous damping coefficients for plunge and pitch
motion are represented in the equations by ch and cα,
respectively. The total pitch moment of inertia about
elastic axis Iα is computed as

Iα = Icam + Icg−wing + mwingr
2
cg, (4)

where Icam - pitch cam moment of inertia, Icg−wing

- wing section moment of inertia about the center of
gravity, mwing - mass of wing section.
We assume that the quasi-steady aerodynamic force L

and moment M are modeled as

L = ρU2bs{Clα [α + (ḣ/U) + (1/2− a)b(α̇/U)]
+Clβ β + Clγ γ},

M = ρU2b2s{Cmα−eff [α + (ḣ/U)+
(1/2− a)b(α̇/U)] + Cmβ−effβ + Cmγ−effγ},

(5)
where ρ - air density, U - freestream velocity, s - wing
section span, γ and β - leading- and trailing-edge con-
trol surface deflections.
The effective dynamic and control moment deriva-

tives due to angle of attack (Cmα−eff ) and trailing- and
leading-edge control surface deflection (Cmβ−eff and
Cmγ−eff , respectively) about the elastic axis are de-
fined as follows:

Cmα−eff = (1/2 + a)Clα + 2Cmα ,
Cmβ−eff = (1/2 + a)Clβ + 2Cmβ

,
Cmγ−eff = (1/2 + a)Clγ + 2Cmγ

(6)



Table 1. System parameters
Parameter Value

ρ 1.225 kg/m3

a -0.6719
b 0.1905 m
s 0.5945 m
kh 2844 N/m
ch 27.43 kg/s
cα 0.0360 kg·m2/s
mwing 4.340 kg
mW 5.230 kg
mT 15.57 kg
Icam 0.04697 kg·m2

Icg−wing 0.04342 kg·m2

Clα 6.757
Clβ 3.774
Cmβ

-0.6719
Clγ -0.1566
Cmγ -0.1005

where Clα,β,γ
-lift and Cmα,β,γ

- moment coefficients
per angle of attack and control surface deflections, re-
spectively. Note that Cmα = 0 for a symmetric airfoil,
as in our case.
The parameters of the model are given in Table 1.
Let us write the system in the following convenient

form:

Aẍ + Bẋ + C(α)x = Du (7)

where

x =
[

h
α

]
, u =

[
β
γ

]
, A =

[
mT mW xαb

mW xαb Iα

]
,

B =
[

ch + ρUbsClα ρUb2sClα(1/2− a)
−ρUb2sCmα−eff cα − ρUb3sCmα−eff(1/2− a)

]
,

C(α) =
[

kh ρU2bsClα

0 kα(α)− ρU2b2sCmα−eff

]
,

D =
[ −ρU2bsClβ −ρU2bsClγ

ρU2b2sCmβ−eff ρU2b2sCmγ−eff

]

(8)
Now it is easy to write the system in the Cauchy form

(note that the equations are given for α, β and γ in ra-
dians):

[
ẋ
ẍ

]
=




0 0 1 0
0 0 0 1

−A−1C(α) −A−1B




[
x
ẋ

]
+




0 0
0 0

A−1D


 u

(9)

The actuator deflections are subject to strong ampli-
tude constraints:

− umax ≤ β, γ ≤ umax. (10)

The controller given in (Platanitis and Strganac, 2004)
is in the form of a simple nonlinear dynamic inversion:

u(x, ẋ) = D−1[C(α)x+Bẋ+A(Kxx+Kẋẋ)], (11)

where

Kx =
[

Kh 0
0 Kα

]
, Kẋ =

[
Kḣ 0
0 Kα̇

]
. (12)

Here we use a simplification in comparison
with (Platanitis and Strganac, 2004) - we discard
the adaptive terms of the control law.
The feedback gain pairs Kh,Kḣ and Kα,Kα̇ are de-

signed so that to stabilize the two-dimensional integra-
tor with states (h, ḣ) or (α, α̇), correspondingly. In the
absence of control constraints, this design leads to the
closed-loop system where dynamics for h and α are to-
tally separated from each other. In the cited paper these
gains where obtained via the linear-quadratic regulator
synthesis (Skogestad and Postlethwaite, 1996).
Problems with this design arise, however, when con-

trol constraints (10) are active and the control system
cannot cancel the nonlinear term anymore.

3 Equilibria analysis in a plane
It is obvious that at an equilibrium ẋ = 0, ẍ = 0,

and it follows from (7) that we only need to find all
solutions of the following two nonlinear equations:

f(x) = A−1(Du(x, 0)− C(α)x) = 0, (13)

where term u(x, 0) corresponds to (11) with ẋ = 0 and
also supplemented with the saturation function to take
into account control constraints:

u(x, 0) = sat(D−1[C(α)x + AKxx]). (14)

Here sat() is the standard saturation function, defined
for each component of its vector argument as:

sat(u) = sign(u)min{umax, |u|}.

In that regions of the plane (h, α) where both β, γ are
unsaturated, we will not find any equilibria in the sys-
tem that are different from the nominal one. It is there-
fore the regions were at least one of actuators is satu-
rated, which should attract our attention.
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POSSIBLE EQUILIBRIA

Figure 3. The pitch-plunge plane for U=18 and 20 m/s.

To visualize the solution of equation (13), we employ
the standard function contourc in the MATLAB envi-
ronment. We treat each equation in (13) as a function
and then draw its zero level contour in the plane (h, α).
Then, an intersection of these two curves gives us a so-
lution of (13), i.e. a closed-loop system equilibrium.
We also draw the curves corresponding to β = ±umax

and γ = ±umax. In this way we can divide the plane
into saturated and unsaturated regions.
For the following example we took umax = 15o

and synthesized linear-quadratic regulator with identity
weighting matrices, which gives us Kh = Kα = −1.
In Fig. 3, (a) all curves are shown for U = 18 m/s.
Green and magenta curves correspond to extremal val-
ues of control function: solid to β = ±umaxand
dashed to γ = ±umax. Region that includes the ori-
gin and is overall bounded by these curves is the un-
saturated region. Blue curves depict zeros of the first
(solid) and the second (dashed) equation in (13). From
the given picture it is clear that there are no other equi-
libria exist for U = 18 m/s except for the nominal one.
In the next picture (Fig. 3,(b)) the situation is changed

with increase of the flow velocity U up to 20 m/s. In
the vicinity of the arrow pointer one can see that zero
curves for both equations are very close to each other,
despite there is actually no intersection between them.
It is reasonable to pose a question in this case about

how small should be a perturbation of the system that
could provoke an intersection of the curves.

4 Structural stability
The notion of structural stability was first introduced

in (Andronov and Pontryagin, 1937). Informally, we
say that a system is structurally stable if small varia-
tions in the model does not change qualitatively the set
of trajectories originating from all initial conditions in
the state space. This notion is of great importance in
dynamical systems theory, since it is possible to de-
fine bifurcations in both smooth and non-smooth sys-
tems via the structural stability concept (di Bernardo et
al., 2008). Any dynamical system at bifurcation values
of its parameters is structurally unstable (small vari-
ations of its dynamics can change the number and/or
stability properties of steady states, limit cycles, etc.)
Structural stability has attracted attention for a long

time since (Palis and Smale, 1970) conjectured that
a smooth dynamical system is structurally stable if
and only if it satisfies the so called Axiom A plus the
strong transversality condition. A subclass of such sys-
tems is called Morse-Smale systems (Guckenheimer
and Holmes, 1986). The non-wandering set of a Morse-
Smale system is composed of a finite number of hyper-
bolic singularities and periodic orbits, whose stable and
unstable manifolds intersect transversally.
For systems defined on two-dimensional mani-

folds the conjecture is contained in the classical
work (Peixoto, 1962). For the general case, the re-
sult was proved independently in (Wen, 1996) and
(Hayashi, 1997; Hayashi, 1999). For the recent discus-
sion of the conjecture see also (Moriyasu et al., 2001).
Despite the great interest attracted towards the struc-

tural stability in the pure mathematics community, one
can hardly find real-life applications of the concept.
The author aware only of four such papers (Pai et al.,
1995a; Pai et al., 1995b; Kaslik and Balint, 2007; Sum-
ida et al., 2007) published relatively recently. The
later paper noted that even any numerical degree of
the structural stability was not defined previously. It is
clear that engineering applications of the concept are of
great interest in these circumstances. Could it be pos-
sible to accidentally create a system that is constantly
situated at a verge of some bifurcation? A feedback
provided for the structurally stable system might turn it
into the opposite. This is the possibility that we try to
confirm in this paper.
Even with the existing achievements in the theory of

structural stability, on the first look we face difficul-
ties applying the existing theory to our system. First,
a proof that our system is not structurally stable seems
not very easy, since it is multidimensional and in gen-
eral case we need to study its invariant manifolds. Sec-
ond, because of non-smooth control constraints, the
existing theory is not directly applicable. In order
to meet the smoothness requirement, one can use a
smoothed version of the saturation function, which can



introduce some deviations in the system behaviour. It
is also hard to study our system directly in the con-
text of non-smooth dynamical systems theory (Simic
et al., 2001; Broucke et al., 2001; Leine and Nijmei-
jer, 2004; di Bernardo et al., 2008), since this theory is
still in its beginning stages.
Fortunately, in our case we study much more sim-

pler problem. The nature of it become more clear in
Fig. 4, were U = 22 m/s. In the area catched by the el-
lipse one can see both zero curves following the bound-
ary of unsaturated region with γ = −umax. They
are clearly going practically in parallel to each other.
The picture is therefore indicating the structural insta-
bility in the closed-loop system. Despite there is still
no intersection between the curves, with a very small
change in the closed-loop dynamics one should expect
the appearance of new equilibria in the system, which
are impossible to observe in the model using only the
nominal system dynamics. This is what probably hap-
pened in experiments (Kurdila et al., 2001; Platanitis
and Strganac, 2004). Note that the structural instability
is caused by the actuator constraints, as there is no way
for undesired equilibria to appear in the unsaturated re-
gion.
Since the steady states of our system are completely

characterized by the zeros of two-dimensional vector
function (13), we only need to show that this function
is going to change the number of its zeros with any
slight variations of the function.
We have generally two ways to achieve this - either

change of the system parameters or introduction of
some unmodeled dynamics. In the control theory the
former corresponds to the structured and the later to
the unstructured uncertainty (Skogestad and Postleth-
waite, 1996).
Even if it is not possible to create an intersection of

the curves by a small change in the system parameters,
the introduction of some unstructured uncertainty can
always create some fixed points in this area, and that
is why we investigate this possibility below. From the
physical nature of our problem (equations composed of
moments and forces) it is reasonable to expect the un-
known dynamics to be of additive type and therefore
consider the addition of infinitesimal unknown func-
tion:

fmod(x) = f(x) + g(x) (15)

From the adopted definition of structural stabil-
ity (Kuznetsov, 2004), our system is not structurally
stable if fmod(x) has different number of zeros than
f(x) while they are C1-close, i.e. norms of g(x) and
its first partial derivative are very small. The particu-
lar numerical definition of ”small” is, of course, not so
simple and should be better judged by those who per-
form real-life experiments.
It is possible to numerically solve the equation

fmod(x) = 0 in some pitch-plunge range to find any
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Figure 4. The pitch-plunge plane for U=22 m/s.

g(x) with a minimum possible norm. The particular
value of this norm might serve as a numerical measure
of structural instability.
As an example, let us artificially create a linear-type

g(x) so that it produces a steady-state. We pick the
point h = 0.001636157 m, α = −0.1000768 rad in the
middle of the structural instability region for U = 22
m/s. After that, we have to solve the following equa-
tions:

g(x) = Gx =
[

g11h g12α
g21h g22α

]
= −f(x) =

[−0.0048
−0.0054

]

(16)
To minimize the coefficients of our unmodeled dy-

namics, we use the formula for the minimum distance
from the origin in (gi1, gi2) -plane to lines gi1h +
gi2α = −fi:

gi1 =
−fih

h2 + α2
, gi2 =

−fiα

h2 + α2
, i = 1, 2. (17)

The hypothetical unmodeled dynamics in this case is
given by

Gx =
[−0.0008h 0.0479α
−0.0009h 0.0538α

]
(18)
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To understand how small is that, one can compare it to
the corresponding open-loop nominal dynamics, given
by

−A−1C(α)x =
[−214.1395h −24.3894α

859.9288h −129.7758α

]
(19)

Despite being insignificant while considering the
open-loop model, with the addition of the hypothetical
dynamics to the closed-loop equations like

Aẍ + Bẋ + C(α)x−AGx = Du (20)

it will produce a new steady-state at h = 0.001636157
m, α = −0.1000768 rad, ḣ = α̇ = 0, shown by ma-
genta point in Fig. 5. Blue curves correspond to zeros
of the first (solid) and the second (dashed) component
of fmod(x).
To find out stability properties of the artificially cre-

ated equilibrium, we perform simulation of the closed-
loop system with and without the hypothetical unmod-
eled dynamics. The results of time integration using
MATLAB function ode45 with the initial conditions
h = 0.001 m, α = −0.15 rad, ḣ = α̇ = 0 clearly
show that the equilibrium is stable (see Fig. 6 for the
magenta plot of α vs. time). The ”nominal” system,
simulated from the same initial condition, at the same
time tends to the zero origin. Therefore, in an experi-
ment the system could stabilize itself at some nonzero
position, despite one cannot expect it even from very
extensive simulations or any theoretical analysis of the
original system.

5 Conclusion
A simple graphical method has been used to reveal

structural instability arising in a closed-loop aeroelastic
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Figure 6. Simulation results with (magenta) and without (blue) the
unmodeled dynamics.

system under amplitude actuator constraints. The theo-
retical explanation is proposed for some ”mystical” ex-
perimental results appeared in the literature previously.
The result points out to the importance of structural sta-
bility in the active vibration suppression problem. The
proposed methodology identifies regions of structural
instability and can help in practical regulator design.
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