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Abstract
We exploit the relationship between classical instabil-
ity and entanglement to control the creation of entan-
gled states in an open system of three coupled quantum
parametric oscillators at high temperature. Introducing
a suitable pulsed perturbation in the classical system we
are able to control the transition from stable to unstable
behaviour. Entanglement arises in the same parameter
regions where the classical system is unstable display-
ing features different from the case of two coupled os-
cillators. Entangled states are particularly sensitive to
negative pulses and to the size of the duty cycle.
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1 Introduction
In the last decades, the peculiar features of quantum

mechanics have been exploited in multiparty systems
to introduce promising information methodologies. Al-
though superposition effects in composite systems are
well known in classical physics, a new quantum-
mechanical effect arises when a tensor product struc-
ture for the space of states is considered,namely, quan-
tum states can be entangled. Based on this feature,
it has been realized that entangled states allow new
practical applications, ranging from quantum com-

putation [Barenco, 1996 ; Vedral and Plenio, 1998]
and secure cryptographic schemes [Bennett and Bras-
sard, 1984; Ekert, 1991] to improved optical frequency
standards [Bollinger, Itano, Wineland, Heinzen, 1996;
Huelga, Macchiavello, Pellizzari, Ekert, Plenio and
Cirac, 1997]. In view of this, many efforts, both at
the theoretical and experimental level, have been made
to better understand and control such a quantum prop-
erty. Particular interest has been devoted to the interac-
tion with a hot environment which determines in gen-
eral the disappearance of quantum behaviour. Several
schemes have been proposed to overcome or, at least,
reduce the influence of temperature in the loss of coher-
ence. Duan and Guo [Duan and Guo, 1997] proposed
to pair each qubit with an ancilla qubit and to encode
the states of the system into states of qubit pairs. On
the same line Gonzalez-Henao and Roversi [Gonzalez-
Henao and Roversi, 2015] have proposed a third qubit
to protect entanglement in a two qubit system at high
temperature regime. In this communication we use an
external pulse to control the dynamic instabilities in a
system of three coupled oscillators. The pulse drives
the quantum system towards or away from entangled
states. This feature allows to maintain the entangle-
ment state for a long time. In our view, this method
may open a way for manipulating quantum features at
high temperature regimes.



2 Theory and results
Here we consider a system of three coupled quantum

parametric oscillators in equilibrium with a common
heat bath at a temperature different from zero. The
Hamiltonian of the system for N oscillators is:

HT = HS +HSR (1)
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The total Hamiltonian HT is given by HS that repre-
sents a system of N oscillators and their interactions
and HSR representing the interaction between oscil-
lators and thermal reservoir. ω(t) is the angular fre-
quency and {Xi, Pi} are the position and momentum
operators for the oscillators; ωk and {xk, pk} are the
corresponding quantities for the environment oscilla-
tors. Each one of these oscillators is coupled to the
others by the function c(t) and connected to the envi-
ronment through the constants ck.
In order to diagonalize the Hamiltonian HT we use

the transformation [X] = R.[X ′] and [P ] = R.[P ′]
based on the orthogonal matrixR defined in [Gonzalez-
Henao, Pugliese, Euzzor, Meucci, Roversi and Arec-
chi, 2017, supplementary information]:
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that transforms HT , for the case of three oscillators,
into the following form:

HT = H ′1 +H ′2 +H ′3 (5)
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where Ω2
+(t) = [ω (t)

2
+ 2c (t) /m0]/ω2

0 and Ω2
−(t) =

[ω (t)
2− c (t) /m0]/ω2

0 are the effective frequencies of
the second and third parametric oscillator.

The main difference between the case with two and
three oscillators is the presence of the additional decou-
pled parametric oscillator of coordinates (X ′23 , P

′2
3 ).

The case of two parametric oscillators was studied in
[Gonzalez-Henao, Pugliese, Euzzor, Abdalah, Meucci
and Roversi, 2015]. The effective frequencies Ω2

± (t)
of the systems with N = 2 and N = 3, depend
on the functions ω (t) and c (t). We specialized the
discussion to the case c(t) = cm0ω

2
o and ω(t)2 =

ω2
o [1 +A(1 +mf(t))cos(ωdt)] where ωd is an ex-

ternal driving pulsation. The function f(t) regulates
the amplitude of the function Ω2

± (t), as shown in
Fig.1. A dimensionless pulsation can be introduced
as Ω2

− = [ω(t)2 − c(t)/m0]/ω2
0 = ω(t)2/ω2

o − c =
ω2
r + A [1 +mf(t)] cos(ωdt), with ω2

r = 1 − c. The
periodic function f (t) is defined as:

f (t) =

{
0 if 0 < t < a

1 if a < t < b+ a
with a+ b = 2π/ωd.

(a)

(b)
Figure 1. (a) Schematic representation of the external perturbation
mf(τ): the blue curve is the result of superposition of the first five
Fourier harmonics (a = 1 and b = 1); the red step function is
the experimental stimulus introduced into the Mathieu’s oscillator.
(b)Schematic representation of the Ω(t)2−/ω

2
r as a function of the

time τ = ω0t withm = 0 ( green line) andm = 2 (blue line)

Considering that the introduced coordinate transforma-



tion X → X ′ is orthonormal, it can be easily shown
that the operators X ′ and X satisfy the same commu-
tation rules. This also implies that the solutions can
be found independently. As initial condition we con-
sider coherent states ρ̂ (0) = |Ψ〉 〈Ψ| where |Ψ〉 =
|α1α2α3〉. In the new coordinate system these states do
not change in form since they remain coherent states.
The only change is the coefficient α which obeys the
same transformation of the coordinate system. The
coherent character of the initial Gaussian state is pre-
served by the orthonormal transformation originated
from R and it is maintained during the time evolu-
tion due to the bilinear character of the Hamiltonian
(6). This implies that every quantum correlation can
be obtained from the Covariance Matrix (CM) whose
elements are given by

σRiRj
=

1

2
〈RiRj +RjRi〉 − 〈Ri〉 〈Rj〉 (9)

with [R] = (X1, P1, X2, P2, X3, P3). The
CM elements are more easily obtained by
first calculating them in the prime coordinates
(X1

′, P1
′, X2

′, P2
′, X3

′, P3
′) and then using the

inverse transformation to determine them in the initial
coordinates (X1, P1, X2, P2, X3, P3).
To calculate the CM elements for the Hamiltonians
(7) and (8)) we have used the Heisenberg represen-
tation, whereas to obtain the CM elements of the
Hamiltonian (6) we have used the Feynman‘s path
integral formulation [Feynman and Hibbs, 1965],
[Caldeira and Leggett,1983] as we have already done
for two oscillators [Gonzalez-Henao, Pugliese, Euzzor,
Abdalah, Meucci and Roversi, 2015].
Roque et al. [Roque and Roversi, 2012] and Gonzalez-
Henao et al. [Gonzalez-Henao, Pugliese, Euzzor,
Abdalah, Meucci and Roversi, 2015] showed that the
onset of the quantum entanglement is strongly tight to
the presence of diverging solutions of the CM element
equations of the operators X ′ and P ′. In particular,
only the CM elements of the oscillator Ω− are crucial
in this analysis. Their amplitude X− evolves in time
according to the following differential equation,

Ẍ− (t) + Ω2
− (t)X− (t) = 0. (10)

In terms of first order differential equations the system
dynamics is ruled by :

{
ẋ = y

ẏ = −{ω2
r +A [1 +mf(τ)] cos(ω̃dτ)}x

(11)

where we assumed ω̃d = ωd/ωo and τ = tωo, with ωo

related to the ground state energy of quantum oscilla-
tors. The term m · f(τ) represents the analytic form
of the external stimulus consisting of a pulse train with
adjustable amplitude and duty cycle (see blue curve in

Fig.1(a)). The factor m plays a crucial role in the tran-
sition to entangled states and, at variance with the case
recently explored in [Gonzalez-Henao, Pugliese, Euz-
zor, Meucci, Roversi and Arecchi, 2017], negative val-
ues of m are more effective as we will show.
Experimental — The experimental tests were per-

formed on an electronic analog circuit obeying to Eq.
11 where the function f(t) is a square wave function.
Adjusting the parameters m,A and b̃ = b/(a + b) we
were able to determine the boundaries between the sta-
ble and the unstable regions. In Fig.2(a) the red dots in-
dicate these boundaries form = 0. The stability map in
the plane b̃ -m for ω̃d/ωr = 2.06 is shown in Fig.2 (b).
From a mathematical point of view, the system is sta-
ble in the regions where the Floquet coefficient is zero
(µ = 0) and it is unstable in the regions where µ > 0,
respectively. The blue color in Fig.2 (b) indicates the
stable region (see side color bar in Fig.2(b) for Floquet
coefficient µ). The experimental points were overlaid
on the numerical simulations.
Quantum approach — As the system evolves as a
Gaussian state we can consider the positive partial
transposition theorem (PPT ) [Peres, 1996; Simon,
2000] as a criterion for quantum entanglement. Here
we extend the description of the bipartite entanglement
to the system of three parametric oscillators. This can
be done by considering subdivisions of the global sys-
tem into the subsystems formed by one oscillator and
the subsystem composed by the other two remaining
oscillators. As the Hamiltonian in Eq. 1 is invariant
under oscillator exchanges we can show that bipartite
entanglement is invariant with respect to the chosen
subdivision, whether it is 1|23, 2|13 or 3|12. This is
a manifestation of the fact that CM is fully symmet-
ric. Thus to quantify the bipartite entanglement of the
three oscillators system (between the oscillator 1 and
the oscillators 2 and 3) we use the bipartite Logarith-
mic Negativity given by

E
1|23
N =

{
0 if ñ− ≥ 1

− log ñ− if ñ− < 1
(12)

where ñ− is a symplectic eigenvalue of the CM
transpose (only one of the 6 symplectic eigenvalues
of the σ transpose can be negative) of the system with
three oscillators [Adesso, Serafini, and Illuminati,
2004].

Results — In all calculations we used the following
values A = 0.215, ω̃d/ωr = 2.06, c = 0.0591,
temperature of the reservoir T̃ = KBT/~ω0 = 100
and dissipation rate γ = 0.01ω0, for three values
of m, (i.e, m = −0.5, m = −1.5, m = −2.5).
The initial condition of the system with three oscil-
lators is the coherent state |Ψ〉 = |α1α2α3〉 α1 =
−α
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comparison we present results for the case of two os-
cillators with the initial condition being a coherent state
|Ψ〉 =

∣∣√2α0
〉

and in the coordinates ’′’ |Ψ〉 = |αα〉.
In Fig.2 (c) we report, for m = −0.5, the logarithmic
negativity E1|23

N against the dimensionless time τ , for
different values of the duty cycle b̃. For values of b̃
for which µ = 0 (see Fig.2 (b)) the system does not
present entanglement. Otherwise, only for b̃ closed to
1, where µ = 0 and after a certain threshold time the
system presents entanglement. Once the system has ac-
quired entanglement, it approximately grows linearly
with small superimposed oscillations. Fig.2 (c), (d) and
(e) shows the bipartite logarithmic negativity E1|23

N for
m = −0.5, m = −1.5 and m = −2.5, respectively.
As it can be seen b̃ is of great importance for the control
of entanglement. This is shown in the Fig.2 (c) where
for all values of b̃ there is entanglement and in Fig.2 (d)
where a narrow region of b̃ allows entanglement. The
pulse intensity m is the most relevant parameter in the
definition of dynamic instabilities. It causes the sys-
tem to range from full entanglement to any value of the
pulse width, b̃, or even to a negligible amount of entan-
glement. Fig.2 (c) and in Fig.2 (d) represent the signa-
ture of this behavior. This strong correlation between
instability and entanglement supported by parametric
pathways (intensity and width of the external pulse)
allows us to sustain entanglement for long periods of
time and at high temperatures. This brings us a support
in the search for more robust systems against decoher-
ences and in the processing of quantum information.

We have also observed that for the same values of
b̃ and µ > 0 where entanglement is detected for
three oscillators, a similar behaviour emerges for
two oscillators with the difference that the function
E

1|23
N (τ) < EN (τ). This reduction of entanglement,

due to the third oscillator, is consistent with the
monogamy inequality conjectured by Coffman, Kundu
and Wootters [Coffman, Kundu and Wootters, 2000]
and extended by Osborne and Verstraete [Osborne
and Verstraete, 2006]. Figure 3 (a) reports the initial
entanglement time against b̃ for two (blue curve) and
three (red curve) oscillators showing that entanglement
occurs first in latter case, but the entanglement E1|23

N is
less than that for two oscillators. This is due to the fact
that the system with three oscillators has more degrees
of freedom, which create faster entanglement.
In Fig.3 (b) the mean entanglement rate E1|23

N and the
real part of the Floquet coefficient µ corresponding
to Fig.2 (d) and Fig.2 (c) are plotted. In these figures
we can see that the behavior of ζ and µ is similar,
although in the region 0.55 < b̃ < 1.00 a change
in the concavity of µ as function of b̃ arises. In the
inset of Fig.3 (b) a plot of ζ as a function of µ is
reported. In the interval 0.00 < b̃ < 0.06 the behavior
of ζ is approximately linear, whereas in the interval
0.55 < b̃ < 1.00 ζ it shows a discontinuous behavior
due to a change in the concavity of µ versus b̃.
Figure 4 (a) shows the bipartite logarithmic nega-

(a)

(b)

(c)

(d)

(e)
Figure 2. (a) Stability mapA vs ω̃d/ωr of the dynamical system
(10) for m = 0; (b) Stability map m vs b̃ for the (10), assuming
ω̃d/ωr = 2.06 and A = 0.215. The colorbars are associated
with the Floquet coefficientµ. (c), (d) and (e) Logarithmic negativity

E
1|23
N vs τ , for N = 3 oscillators and m = −0.5, m =
−1.5 andm = −2.5, respectively (ω̃d/ωr = 2.06 andA =
0.215.



(a)

(b)
Figure 3. (a) Plots of the initial entanglement time for two (blue
dots) and three (red dots) oscillators respectively. (b) Real part of
the Floquet coefficient µ and average rate ζ of bipartite entangle-

ment E
1|23
N as a function of b̃ with the same parameters as in (a).

Parameter values: ω̃d/ωr = 2.0,A = 0.215 andm = −2.0.

tivity E
1|23
N for three oscillators as function of τ for

different temperature values. As it can be seen an
increase of temperature does not change the behavior
of the entanglement. Figure 4 (b) shows the initial
entanglement time against T̃ , showing an almost linear
behavior between these two quantities. As it can be
seen from Fig.4, also in the case of tripartite system,
the entanglement persists even at high temperatures.

3 Conclusions
In this work we considered the bipartite quantum en-

tanglement for a system of three oscillators in contact
with a thermal reservoir at high temperature. The anal-
ysis of the classical counterpart explored on a single
parametric oscillator is of crucial importance because
it allows to know the regions where entanglement will
be originated. Peculiar differences emerge when neg-
ative perturbations are used. Minor perturbations are
required to enter in a entanglement region . For partic-
ular m values the transition is controlled by the other
parameter b̃ in two distinct regions. This strong cor-
relation between dynamic instability and entanglement
supported by parametric pathways encourages us to
continue searching for more robust systems in the case
of decoherence and quantum information processing.

(a)

(b)
Figure 4. (a) Plots of the bipartite entanglement as a function of
time τ for the system with three oscillators for different values of
temperature T̃ . (b) Entanglement initial time function of the temper-
ature T̃ to the same parameters as in (a). For the two plots we have
used ω̃d/ωr = 2.0,A = 0.215, b̃ = 0.900 andm = −2.0
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