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Abstract
Usually beam dynamic modeling in beam lines is

implemented using a piecewise approximation for of
steering magnet fields. Real magnet fields have a bell-
shaped form, which describes a field distribution along
the electrical axis of a steering element. Influence of
fringe fields in beam lines is taken into account only
on tuning stage, practically on final steps before usage.
This paper deals with methodology, which allows in-
cluding fringe field effects during an initial stage of
a modeling process. Also wide spectrum of model-
ing functions for fringe field distributions is presented.
It is known, that fringe field effects are intrinsic and
unremovable effects and could heavily impact on the
beam dynamic and corresponding beam characteris-
tics. Mathematical and computer models for fringe
field help to estimate their influence and include infor-
mation of real magnet field into the designing model.
Research is based on the matrix formalism for Lie al-
gebraic tools. This approach gives large flexibility, be-
cause it could admit the usage of computer algebra
methods and technologies. Computer algebra meth-
ods can be easily paralleling, which gives line benefit
with increasing number of processors (cores). Besides,
this approach can be extended for nonlinear aberrations
without loss of generality.
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1 Introduction
In the last years Focusing Probe Systems (FPS) like

microprobe or nanoprobe became very popular. Such
systems allow forming particle beams with specified
sizes, forms and even particle distributions. Also re-
cently there was attracted huge interest in design of
nanosize beam systems. Nanoprobes are very high-
precision systems and sensitive to linear and nonlin-
ear aberrations in accordance with experimental (see

e. g. [Andrianov, 2004; Andrianov, Dymnikov and Os-
etinsky, 1978]) data and theoretical investigations (see,
e. g. [Tereshonkov, Andrianov, 2008]). Moreover, the
latest researches show that selection problem of op-
timal FPS variant is not limited with one or two al-
ternatives (see e. g. [Tereshonkov, Andrianov, 2008]).
To solve this problem it is necessary to estimate thor-
oughly a large number of possible variants and ensure
many contradictory requirements (beam quality, mis-
alignments, errors and so on). An approximate defini-
tion of FPS could be formulated as the following

Definition 1. Focusing Probe System (FPS) is a trans-
port and forming beam line, which satisfied the follow-
ing conditions:
1) beam line is intended for “transfer” a beam from one
part of space to another part (“transportation”);
2) the main purpose is crosscut beam focusing, where
the demagnification value of beam size are in the range
from 50 to 100 or even more (“focusing”);
3) approximation models of beam evolution description
admit hierarchical structure of particle motion equa-
tions (meanwhile so-called linear model is considered
as elementary model);
4) a linear model admits optical analogs of perfor-
mance criterion;
5) nonlinear models is constructed as disturbed with re-
spect to linear models and described with the aids of
different nature aberration concept.

High sensitivity of FPS and similar beam lines leads to
necessity of thorough preliminary analysis and synthe-
sis of beam line. Moreover, is is required to include a
possible configuration influence of control systems and
unremovable aberrations in their technological charac-
teristics. This analysis must be made on basis of inten-
sional mathematical models with performing series of
calculating experiments (with obligatory stage of veri-
fication and comparison with known experimental da-
ta).
In the present paper, one of the most significant fac-

tor, which affects on beam characteristics, is so-called



fringe field of control elements (magnet lenses) (see
e. g. [Berz, Erdélyi and Makino, 2000; Venturini,
Abell, and Dragt, 1998]):

Definition 2. Fringe field is a changeable part of elec-
tromagnetic field, which is generated by control FPS.

According to the features of control elements (magnet
lenses) it is required to differ the “in” and “out” fringe
fields.
Information about fringe fields could be obtained us-

ing experimental data from various sources or field
maps, or as the result of numerical solution of
Laplace’s equation. All applied papers are attached to
specified magnet lenses or some types of lenses. There
are no mass measuring of real fringe fields due to high
cost of similar measuring. So it is impossible to cre-
ate some new system structures. One can create sys-
tems, which based on previous systems. In order to
construct absolutely new system structure it is neces-
sary to consider a set of approximation modeling func-
tions for fringe fields. These functions help investigat-
ing of fringe field influence on beam characteristics. In
spite of sufficiently great list of publication according
to fringe fields (see e. g. [Berz, Erdélyi and Makino,
2000; Venturini, Abell, and Dragt, 1998]), there is not
enough of investigations of fringe fields features and
their impact on beam characteristics. In this paper a
methodology of constructing modeling functions for
fringe fields are described, many examples and basic
principles are presented. This methodology gives nec-
essary toolbox for system designers and helps select-
ing appropriate modeling functions which are optimal
for approximating real steering field. The modeling
functions have to be sectionally continuous and satisfy
smoothness conditions.
The aim of the approximation process is to prepare

a set of suitable functions in some appropriate class,
in which the search of optimal configuration of control
FPS will be performed. In other words, it is required
to solve an “inverse problem”: using the required final
beam characteristics it is necessary to find a number of
possible variants of steering fields.

2 Simulation scheme of FPS
A structure of control FPS could be defined in terms

of linear model with particle beam description in terms
of beam matrix envelope [Andrianov, 2004]. Mean-
while, on the first stage this structure is described in
terms of so-called “rectangular model” (piecewise con-
stant approximation) of steering field. On this stage it is
required to select collection of optimal (in some sense)
structures. The detailed investigation of selected col-
lection implements on the next stages of modeling pro-
cess.
On the second stage it is required to realize investi-

gation of fringe fields influence on basic beam char-
acteristics in linear model. In terms of this investiga-
tion it is considered some set of modeling approximat-
ing functions for fringe fields. An ability of simulation

using some set of modeling functions allows selecting
the most appropriate functions from the set. Thereby it
helps to give a certain recommendations for “manufac-
turer” of control elements (magnet lenses).
Finally, on the third stage it is discussed issues of

fringe fields impact on basic beam characteristics in-
cluding third-order aberrations. Similar aberrations are
intrinsic for a control FPS, which intends for transport
and focusing particle beams with linear axis.

3 Mathematical model of beam dynamics
In the present paper the mathematical model of FPS is

constructed with the aids of Lie algebraic tools [Dragt,
1982], which are realized in terms of matrix formalism
[Andrianov, 2004]. It helps using advantages of ma-
trix algebra, group theory methods and Lie algebras for
building the matrix beam propagator with the aids of
investigation of different effects impact on basic beam
characteristics.
In this paper, evolution operator (matrix propagator)

is constructed as infinite dimensional up-triangular ma-
trix, which consists of block matrices according to rep-
resentation in Poincare-Witta basis(see e. g. [Andri-
anov, 2004]). With a glance of above mentioned as-
sumptions matrix propagator is not depend on initial
beam status if a space charge is neglected.
Particle motion equation in the neighborhood of opti-

cal axis in common case can be written as following:

dX(s)
ds

= F(X, s), F(0, s) ≡ 0. (1)

Using quite suitable assumption one can solve the ini-
tial value problem (1) in Poincare-Witta basis and ob-
tain an infinite dimensional Taylor series as a solution.
The corresponding equation and its solution in terms of
matrix formalism can be written as following

dX(s)
ds

=
∞∑

k=1

P1k(s)X[k](s), X(s) =
∞∑

k=1

R1k(s|s0)X
[k]
0 ,

(2)
where X[k](s) is the Kronecker k-th power for the
phase vector X(s), X0 = X(s0) is an initial phase
vector, s0 is an initial point. Here P1k(s) are matri-
ces with the entries equal to k-th derivative of the com-
ponents of vector function F(X(s), s). The matrices
R1k(s|s0), k ≥ 2 are called k-th order aberrations
matrices, and they store the influence of all nonlinear
effects up to k-th order.
FPS can be considered as some sequence of parts of

control influence. The whole matrix propagator can be
presented exactly as production of partial matrix propa-
gators using group property. For propagator block ma-
trices one can write the following recurrent equality:

Rik(s2|s0) =
k∑

j=i+1

Rij(s2|s1)Rjk(s1|s0), (3)



where j ≥ 1, k ≥ 2, Rij(s|s0) are an auxiliary matri-
ces for constructingR1k(s|s0), which are the main. Eq.
(3) is the exact representation of matrix propagator for
any number of segmentation intervals, any distribution
function k(s) of steering field along the optical axis of
a beam line. Moreover, the propagator is not depend on
segmentation algorithm.
The segmentation is generated using the structure of

FPS, and helps marking the intervals with different
steering field behavior. It is a pity, but there is only
narrow class of functions, for which there are known
the analytical representations of linear matrix propa-
gator. One of the purpose of the present paper is the
investigation of different fringe field forms and length
influence on beam characteristics. Special attention is
given to representation of fringe fields in some classes
of functions (function approximation). In this case, the
basis set of control parameters are: locations of mag-
net lenses, length and field gradients of magnet lenses,
and locations of drifts. On the intervals with noncon-
stant field (intervals with fringe fields) the character of
field variation can be quite arbitrary. Since on stand
one can check only specific control element, so similar
information is not enough for the whole system simula-
tion. During the modeling and synthesis of a new sys-
tem designer must formulate some recommendations
about fringe fields, which should be realized in order to
obtain the necessary characteristics. The selection of
splitting intervals and their number are determined by
a set of control elements and form of representation of
steering fields along the optical axis. The schematic

Figure 1. Fringe field of control element.

representation of fringe field of some control element
is given on Fig. 1. The influence of similar element is
determined by combination of input and output fringe
fields, and a central part. Is is known several paper,
which deals with different forms of fringe fields rep-
resentation and investigations of fringe fields influence
on beam characteristics with a glance of experimental
data (see, e. g. [Berz, Erdélyi and Makino, 2000; Ven-
turini, Abell, and Dragt, 1998]. In the present paper the
fringe field modeling performs in some classes of func-
tions in order to find an influence of fringe fields in ar-
bitrary FPS. It allows giving some recommendations to
designers of similar facilities in order to make purpose-
ful selection of control elements characteristics, which
is also depends on decided tasks.

In order to determine the matrix propagator on one of
the intervals with steering field one can approximate
the generated field in class of suitable functions (see,
e. g. [Andrianov, 2004]). In common case it is possi-
ble to approximate steering field with piecewise con-
stant (see Fig. 1), piecewise linear or more smoothness
functions, for which the analytical matrix propagators
are known or can be determined. Sometimes for some
classes of steering fields one can find modeling func-
tions (including composite), for which it is known the
analytical solution (matrix propagator), and these func-
tions are very closely to steering fields in norm. Usage
of such functions is reducing a calculation time and al-
lows increasing the accuracy of numerical modeling.
Moreover, analytical propagators for necessary

classes of functions can be stored in specific database,
which can be used for any further calculations (both an-
alytical and numerical). This is exactly the approach,
which is proposed in present paper. With the aids of
proposed approach one can use native methods of par-
allel and distributed calculus, due to using matrix alge-
braic tools.
Finally, on conclusive stages of FPS modeling with a

glance of fringe fields it is efficient to use numerical
calculation schemas in order to check and correct the
results (according to known experimental data), which
is obtained analytically. In the present paper, analytical
calculations are privileged due to its flexibility, light-
ness of parameters varying and multiple applicability
in similar classes of tasks. It helps to make a decision
about fundamental construction possibility of alike FPS
with the glance of technological features of manufac-
turing and alignment for a quite wide class of facilities.

4 Linear Model
A character of considered tasks impose some con-

straints on steering fields: stationarity, absence of cur-
rents and charges, which generate fields in the region of
particle beam motion, representation of steering fields
as expansion in a series by multipole components. The
latest point means that, we do not use Maxwell equa-
tions for obtaining a magnet fields. In the present paper
only magneto-static steering fields are considered.

4.1 Particle motion equations.
In linear approximation particle motion equations can

be represented as following for quadruples and linear
optical axis:{

x′′ + k(s)x = 0, x′ = dx/ds,

y′′ − k(s)y = 0, y′ = dy/ds,
(4)

where k(s) = qG/(m0cβγ), c is a light speed, β =
|v|/c, γ = 1/

√
1− β2, G = ∂Bx/∂y|x=y=0 =

∂By/∂x|x=y=0 is a gradient of magnet field, s is a
length, which is measured along some reference orbit.
Scalar equations (4) could be written in vector form
dX(s)

ds
= P(s)X(s), where X0 = X(s0) is a initial



vector. The aim of linear approximation (4) is to con-
struct linear propagator R11(s|s0) (matrizant) for the
whole system, with a glance of steering fields along the
optical axis.
In order to work with rigorous mathematical models

is is required to make dimentionless the equation (4).
It can be done by choosing attached length of the beam
line. For example, one can select length of magnet lens,
the whole system length, period length for cyclic accel-
erator, one meter or any other unit of length.

4.2 Control functions and parameters
In the present paper FPS structure allows representing

control function k(s) as piecewise smooth functions

k(s) =





0, s ∈ [s0, s1), ∆s1 = s1 − s0,

k2(s), s ∈ [s1, s2), ∆s2 = s2 − s1,

0, s ∈ [s2, s3), ∆s3 = s3 − s2,

. . .

kn(s), s ∈ [sn−1, sn),∆sn = sn − sn−1,

0, s ∈ [sn, sn+1), ∆sn+1 = sn − sn+1.

(5)

where ki(s) is a field of i-th control element, which
can be also split on intervals. In mathematical model
input and output fringe fields are control functions. Let
us introduce the additional segmentation, which allows
interpreting fringe fields as virtual control parameters,
during modeling process for optimal solutions retrieval.
After similar segmentation the task of optimization

of FPS can be formulated in terms of control func-
tions and control parameters. The right part in (1)
can be rewritten as F(X,U,B, s), where U(s) =
(u1(s), . . . , un(s)) = (0, k2, . . . , kn) is a vector of
control functions and B = (∆s1, . . . , ∆sn+1) is
a vector of control parameters. Segmentation per-
forms according to control elements location. Pre-
sentation of ki(s) as input and output parts of
fringe field, and central part leads to increasing
a set of control functions and parameters. In
other words, U(s) = (kin

2 , kout
2 , . . . , kin

n , kout
n ), where

kin
i , kout

i are modeling functions for input and output
fringe field parts of i-th control element correspond-
ingly. The vector of control parameters in this case
B = (∆s1, k

2
max, L

2
0, . . . , k

n
max, L

n
0 , ∆sn+1), where

ki
max, L

i
0 is a maximum value of field gradient and

length of central part of i-th control element. After
introducing virtual modeling functions one can con-
vert the control of functions and parameters to the
whole set of control parameters, where parameters:
∆si, k

i+1
max, L

i+1
0 and Ain

i+1, A
out
i+1 are vectors of param-

eters describing i + 1-th input and output fringe field
modeling functions.

4.3 Fringe field forming problem
Some special case of fringe field are discussed, for ex-

ample, in [Berz, Erdélyi and Makino, 2000; Tereshon-
kov, Andrianov, 2008; Venturini, Abell, and Dragt,

1998]. However it is not enough for thorough anal-
ysis and detailed modeling. Mathematical and com-
puter models of fringe fields are not work out in detail.
Therefore, the present paper deals with thorough and
consistent developmental of mathematical tools and
computer models of fringe fields. Moreover, the pro-
posed approaches allow calculating matrix propagators
for quite wide class of modeling functions and binding
a fringe field form to specific experimental data.
Topology and geometry of fringe fields can be differ

even for one-type control elements. Therefore, the in-
vestigation of influence of a fringe field form is very
significant.
All standard control elements generate magnet field,

which is symmetric relative to the center of control
element. Thereby, in the present paper we consider
only symmetric fringe fields (see e. g. [Berz, Erdélyi
and Makino, 2000]) relative to the center point sc =
(s2−s1)/2 for each element (see Fig. 1). Possible devi-
ation from serial parameters of control elements can be
investigated with the aids of perturbation theory meth-
ods or using new fringe fields models. In the present
paper is supposed, that fringe fields of nearby control
elements (doublets, triplets) do not interact and the re-
sult steering field is determined as linear fields super-
position.
Due to laws of electrodynamics and experimental da-

ta, control magnet field is a smoothness function, which
can be presented in following form:

f(s) = f0





fin(s), s ∈ [s0, s1),
kmax, s ∈ [s1, s2),

fout(s), s ∈ [s2, s3].
(6)

Functions fin(s) and fout(s) describe input and output
fringe fields correspondingly. In order to make f(s)
smooth in positions of joint it is required to demand
the additional conditions:

fin(s0) = fout(s3) = f ′in(s0) = f ′out(s1) = f ′in(s2)
= f ′out(s3) = 0, fin(s1) = fout(s2) = 1,

(7)

where f ′(s) = df(s)/ds. Then fin(s) is determined
with the aids of different functions approximation.
The output fringe field fout(s) can be automatically
found using the symmetric reflection relative to sc (see
Fig. 1). With a glance of (7), we will consider fringe
field approximation for its modeling by quite simple
functions in terms of their construction and analysis.
Instead of Eq. (7) it is possible to introduce the asymp-

totic analogues, which allow considering more exten-
sive class of modeling functions:

lim
s→+s0

fin(s) = lim
s→+s0

f ′in(s) = lim
s→−s1

f ′in(s) = 0,

lim
s→−s1

fin(s) = lim
s→+s2

fout(s) = 1,

lim
s→−s3

fout(s) = lim
s→+s2

f ′out(s) = lim
s→−s3

f ′out(s) = 0.

(8)



In terms of functions fin(s), fout(s) topology it is pos-
sible to discuss two extreme cases. The first one is the
case of sharp boundary field (rectangular representa-
tion or piecewise constant form. The second case is a
bell-shaped form. All the rest cases are intermediate in
a manner.
Using the approach which is described in [Antone and

AL-Maaitah, 1992], it is possible to suggest the schema
of solution classes retrieval of perturbation equation
with the aids of solution of nonperturbed equation. It is
allow purposeful finding of analytical expressions for
matrix propagators.
If fringe field can be presented analytically, param-

eters of the function k(s) can be control parameters.
In other case, one can approximate fringe field us-
ing piecewise constant, piecewise liner and even more
smoothness functions. Then, as the control parame-
ters one can consider the parameters, which form some
approximation modeling function (e. g. for piecewise
constant model such parameters are height and length
of “steps”). It is allow formulating the corresponding
optimal control tasks in terms of nonlinear program-
ming tasks.

4.4 Fringe fields in linear model
In linear model one can find a set of optimal parame-

ters of FPS in terms of required demagnification value.
Some numerical experiments (see e. g. [Berz, Erdélyi

and Makino, 2000; Tereshonkov, Andrianov, 2008])
show, that in linear model fringe fields always make
worse the demagnification value of the beam on target.
In other words, optimal parameters in linear model are
no more optimal if some control elements have fringe
fields. However, the proposed methodology allow find-
ing a set of optimal FPS parameters with a glance of
fringe fields.

4.5 Fringe fields simulation
On the initial stage of modeling it is easy to use the

piecewise constant model for fringe fields approxima-
tion, which allow varying number of segmentation in-
tervals. Also, it provides the initial solution of the fo-
cusing and transport tasks. On the basis of piecewise
constant model the first variant of FPS is synthesized
(see e. g. [Andrianov, 2004]). This is the very popu-
lar approach, which can be found in many papers ac-
cording to modeling of FPS. However, it is known, that
similar variant is just the fist stage of modeling pro-
cess before constructing a real FPS. If it is necessary
to consider some fringe field effects in detail, one can
use piecewise linear approximation of steering fields,
which is better than piecewise constant model. In this
case, matrix propagator (linear propagator is called ma-
trizant) consists of Airy functions. For the real calcula-
tions with the aids of symbolic matrizants one can rep-
resent Airy functions as the series and use only several
first terms of series. The similar models are sufficient
only for a small class of tasks, but it is more interest-

ing to consider more extensive class of modeling func-
tions (which can be replenished). For example, one can
use bell-shaped function, Enge functions [Berz, Erdélyi
and Makino, 2000] and so on.
On the next stage it is required to find modeling func-

tions, which can approximate fringe field on the whole
interval or on its parts. It is useful to approximate
fringe fields with modeling functions, for which it is
known an analytical solutions (matrizants). Modeling
functions can be composed and consists two or more
parts. Meanwhile the “sewing together” conversion al-
lows taking into account many specific features of real
steering fields. One can use “sewing together” conver-
sion for F (s), determined on s ∈ (s1, s2) in order to
get new function which consists of F1(s) and F2(s)
functions. They could be found using the following
equations

F1(s) = F (2s)/2, s ∈ (s1, sc) F2(s) =

−F
(
2(−s + s2 − s1)

)
/2 + F (s2), s ∈ (sc, s2),

(9)

where sc = (s1 + s2)/2. Modeling functions satis-
fied sewing together conditions and some regular con-
ditions (7)–(8) It is preferred to select modeling func-
tions with free parameters in order to approximate real
steering field more accurately with a glance of experi-
mental data and find some optimal solutions for FPS.
In the present paper, modeling functions for fringe

fields are considered as analytical formulas, which in-
clude many control parameters. Similar approach is
useful on modeling stage for performing investigations
before constructing real facilities. For example, an in-
put fringe field fin(s) can be presented as function of s:
fin([fmod,A], s), where fmod is a model function vari-
ant and A is a vector of parameters, which character-
ized all features of fringe field modeling function.
As above mentioned the selection of fringe field mod-

eling functions are determined by some conditions and
parameters. One can reject some conditions or pa-
rameters if it is necessary. Varying some parameters
of selected modeling function for fringe field, one can
change its form or length in order to get more suitable
variant.

4.6 Some function classes with analytical solution
Using the methodology from [Antone and AL-

Maaitah, 1992] let us show, for example, three classes
of functions and some their entries, for which on can
found the analytical solution (matrizants): f1(s) =
ψ(s)eϕ(s), f2(s) = ϕ(s) cos ψ(s), f3(s) = ψnψ̇m.
Examples from the first class can be the following func-
tions:
(a + bs)−4

, α2 + (a sinαs + b cosαs)−4, 1 + 2n −
s2 + (e2s2

)/[Hn(s)]4, where Hn(s) is a n degree Her-
mitian polynomial. On the Fig. 2 examples of the first
and the last functions are presented, where F1 and
F2 are constructed using “sewing together” conversion
for above mentioned basic functions. For the second
class one can find the following examples n2s2n−2 −



Figure 2. Examples of piecewise smooth fringe field model-
ing functions.

(n2− 1)/(4s2), 1/2− cos2 αs + 3/4 tan2 αs. Finally,
third class consists of e. g. the following functions
n−n(n−1) tan2 αs, n(3−s2)−n(n−1)(s−1/s)2,
(1 + 4s2 − 4n2)/(4s2) − 2Jn(s)/ (sJn+1(s)), where
Jn(s) is a n degree Bessel function.

4.7 Optimization tasks in terms of functionals
Optimization tasks in beam physics are known to be

multicriterion. Some criterions can be antagonistic. In
the present paper is is required to find optimal struc-
ture of FPS with a glance of fringe fields. In terms of
similar task it is taking into account some technolog-
ical restrictions on control elements construction and
their possible arrangement. In this paper the task of get-
ting nanosize beams is considered with the aids of stan-
dard control elements of mainstream production. Sim-
ilar task leads to functional minimization, which de-
scribe beam phase portrait on target. In terms of linear
model it is possible to consider the following functional
inf
A

max(sup
M

x, sup
M

y), where x, y are particle beam di-

mensions in {x, s} and {y, s} planes correspondingly,
A is a vector of parameters of fringe field modeling
function. All the rest demands can be selected as equal-
ity and inequality.
One of the most essential problem of beam physics

is beam focusing. Similar task can be described with
the aids of different functionals, for example, minimal
size of radius of beam phase portrait on target, minimal
area of circle, which contains the whole beam phase
portrait of maximum area of circle, which located in
beam phase portrait and so on. In linear model all simi-
lar functionals can be reduced to minimization on beam
size on target in {x, s} or {y, s} planes, or both simul-
taneously.

5 Optimization problem in nonlinear model
For the quadrupole lenses the next aberration order af-

ter first is third, which is corresponding to spherical and
geometrical aberrations. The most harmful are spher-
ical aberrations, which is bind with coefficient before
x′3 and x′y′2 in entries of corresponding propagators.
The matrix propagator R13(sN |s0) with the glance of
third order aberrations can be calculated using the fol-
lowing formula (see e. g. [Andrianov, 2004]):

R13(sN |s0) =
sN∫
s0

R11(sN |s)P13(s)R33(s|s0)ds,

where s0, sN are locations of beam source and tar-
get correspondingly. In order to find analytically the
integral it is required to select specific approximation
functions of steering fields or use expansion procedure.
With the increasing of complexity of selected modeling
functions, propagator R13(sN |s0) entries can be very
bulky.

6 Conclusion
In the present paper the methodology for mathemat-

ical and computer modeling of fringe fields are pre-
sented in detail. Some parts of fringe fields can be
presented as virtual control elements with the num-
ber of parameters. It allows transferring from control
functions to the representation with control parame-
ters only. Moreover, several examples of fringe fields
modeling functions, which have analytical solutions
are presented. For functions which do not have ana-
lytical propagators it is proposed to approximate them
with piecewise constant, piecewise linear or even more
smoothness functions in order to get analytical propa-
gator in common case. Similar procedure can be ap-
plied to any modeling functions. In the present paper
some examples of propagator entries are given for some
modeling functions. The proposed approaches allows
finding optimal working modes and structure of FPS
with a glance of fringe fields effect. Moreover, it is
possible to investigate fringe fields influence on beam
characteristics.
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