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Abstract: This note provides the general set-up and solution method for a friction-
coupled system (the ‘body’) moving in the landscape. This separates the shape (or
configuration) space from the state space. The quotient space is the space where
the motion of the body can be envisioned as a point mass. In particular we are
interested in cases where the inertial forces are small in comparison to applied
forces, and propose a simple perturbation expansion. Next we consider a periodic
regime for the motion in shape space and pose and solve the optimal control
problem via Fourier techniques. This is illustrated on a simple toy system: the
two-piece worm with differential friction. Alternative friction models are proposed.
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1. FRICTION COUPLED SYSTEMS

In this section we consider the general framework
of the locomotion of an object coupled to the
landscape by friction. By locomotion, it is under-
stood that the forces causing the motion of the
object originate within the object itself (Holmes
et al., 2006; Ross, 2006).

Let the object be described in its own configura-
tion space Θ, and let the rate of change of con-
figuration be ω. We further assume the following
model for the configuration dynamics

θ̇ = ω (1)

εω̇ = f(ω, θ, u, c). (2)

Here u is the vector of inputs (forces and/or
torques) internally applied to the body, and c
is the coupling vector, coupling the body to the
environment (landscape) via sliding or viscous
friction. The n-dimensional vector θ encodes all
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positions (prismatic or angular) coordinates that
comprise the configuration or shape of the body.
In the underactuated problem, the dimension of u
is less than n.

Our ineterest is in the case where the parame-
ter ε is small, meaning that the motion is such
that inertia is almost negligible. In an underac-
tuated system, the number of actuators is less
than number of degrees of freedom (DOF), which.
are governed by springs and mechanical limits. No
special control is needed. This is manifest in many
biological locomotion systems (Alexander, 2003).
We model the body in the landscape from a
macroscopic view as a point mass, obeying dy-
namical equations

ẋ = v (3)

εv̇ = F (x, v, c). (4)

where it is noted that - as the name suggests
- the coupling term c appears in both sets of
equations. This coupling itself is determined by
a static equation



c = Γ(θ, ω; x, v). (5)

The components of x involve position and possibly
the orientation. Hence its dimension is at most 6.
In this paper we apply the above setup for the
modeling and optimal control of some systems
and make a few remarks about the necessity and
approach towards stochastic models. We close
with a high level motion planning.

Instead of considering the most general case
directly, we focus here first on systems with
nice symmetry properties. The first class of sys-
tems to be discussed are the ones for which
f(ω, θ, u, c) is semi-linear, meaning that for each θ,
f(kω, θ, ku, kc) = kf(ω, θ, u, c). Likewise we shall
assume semi-linearity of F (x, v, c) for each x, and
semi-linearity of Γ for each θ and x.
Finally we discuss the modeling and optimal con-
trol of some systems and make a few remarks
about the necessity and approach towards sto-
chastic models. We close with some remarks on
high level motion planning.

2. INERTIA FREE SOLUTION AND
APPROXIMATION

The inertia free solution is the solution assuming
that the mass of the object is zero. The real
solution will approximate this one if the inertial
force is small compared to the other forces con-
sidered. This is for instance applicable for motion
in fluids at low Reynolds number (Shapere and
Wilczek, 1987). Hence, we solve the above system
for ε = 0 in a systematic way. First, F (x, v, c) =
F (x, v, Γ(θ, ω;x, v)) = 0 yields by the implicit
function theorem

v = Ω(x, ω, θ), (6)

provided ∂F
∂v + ∂F

∂c
∂Γ
∂v 6= 0 is nonsingular. Then,

f(ω, θ, u,Γ(θ, ω;x, Ω(x, ω, θ))) = 0 yields the req-
uisite body controls, provided that in turn the
matrix ∂f

∂u has full rank. Indeed, since dim c may
be smaller than dim f = n, arbitrary parameters,
p, may need to be be introduced here. We shall
refer to a particular choice of parameter as a
gauge, consistent with its usage in physics. Let

u = U(ω, θ, x; p) (7)

exist. Finally, if the matrix ∂U
∂ ω has full rank the

inverse function theorem gives

ω = K(θ, x, u; p), (8)

θ̇ = ω, (9)

ẋ = v. (10)

The work done, W (t) =
∫ t

0
u(τ) dθ(τ), can now

easily be computed as a nonlinear output.

2.1 Matching expansions

The solution to the original system may now
be approximated by the technique of matching
expansions. We set z = z0 +εz1 +ε2z2 + . . ., where
z is any of the variables, x, v, u, θ, ω and c.

Restricted to the first perturbation only, we find
for the zeroth order term

θ̇0 = ω0 (11)

0 = f(ω0, θ0, u0, c0) (12)

ẋ0 = v0 (13)

0 = F (x0, v0, c0) (14)

c0 = Γ(θ0, ω0; x0, v0) (15)

Of course its solution is the inertia free solution,
described above. The first order terms are

θ̇1 = ω1 (16)

ω̇0 =
∂f

∂ω
ω1 +

∂f

∂u
u1 +

∂f

∂c
c1 (17)

ẋ1 = v1 (18)

v̇0 =
∂F

∂x
x1 + +

∂F

∂v
v1 +

∂F

∂c
c1 (19)

c1 =
∂Γ
∂θ

θ1 +
∂Γ
∂ω

ω1 +
∂Γ
∂x

x1 + +
∂F

∂v
v1. (20)

All functions and their derivatives are computed
at the zero-th order solution. Hence,

θ̇1 = ω1 (21)

ω̇0 = f1(ω1, θ1, u1, c1) (22)

ẋ1 = v1 (23)

v̇0 = F1(x1, v1, c1) (24)

c1 = Γ1(θ1, ω1, x1, v1). (25)

This is solved as before: F1(x1, v1, Γ1(θ1, ω1, x1, v1))−
v̇0 = 0 yields by the implicit function theorem

v1 = Ω1(x1, ω1, θ1, v̇0). (26)

Then f1(ω1, θ1, u1, Γ1(θ1, ω1; x1, Ω1(x1, ω1, θ1, v̇0)))−
ω̇0 = 0 yields the first order perturbation in the
requisite body controls for a suitable gauge.

u1 = U1(ω1, θ1, x1, v̇0, ω̇0). (27)

Finally, the inverse function theorem gives

ω1 = K1(θ1, x1, u1, v̇0, ω̇0), (28)

θ̇1 = ω1, (29)

ẋ1 = Ω1(x1, ω1, θ1, v̇0). (30)

2.2 Invariance under time scaling

The semi-linear case is defined by: for all k > 0,



F (x, v, c) = 0⇒ F (x, kv, kc) = 0 (31)

f(ω, θ; u, c) = 0⇒ f(kω, θ; ku, kc) = 0 (32)

Γ(θ, kω; x, kv) = kΓ(θ, ω; x, v). (33)

Introduce the time scaling operator Sα, defined
via (Sαx)(t) = x(αt) for all t, Using the fact that
Dx = v implies DS1/kx = kS1/kv, gives from c =
Γ(θ, ω; x, v) that kc = Γ(θ, kω;x, kv). Combining
with F (x, kv, kc) = 0 yields kv = Ω(x, kω, θ) and
then

f(kω, θ, ku, Γ(θ, kω, x, Ω(x, kω, θ))) = 0,

and by inverse function theorem ku = U(kω, θ, x).
Thus speeding up the velocity requires speeding
up the coupling and internal forces. Finally, this
is consistent with a time scale, S1/k of all (gener-
alized) coordinates.
The work done by the internal forces is of the form
W (t) =

∫ t

0
u(τ) dθ(τ). To speed up the motion

by a factor k, requires that the forces must be
scaled by a factor k. while the time to reach
a certain fixed distance is proportional to 1/k.
Hence, the work required to reach this distance
will be proportional to k. We conclude that the
smaller the speed, the less energy is required to
reach a given distance. Expressed another way,
the product TE(x), where E is the energy to
reach x remains constant under scaling of speed.
In principle, a transfer to the desired position is
possible with zero energy, but requires an infinite
time. An optimization problem of the form: “Find
the control requiring minimum energy to reach
a given distance x” will then only make sense if
we restrain the total time somehow, i.e., the only
problem that makes sense in this case is the one
for determining the optimal profile of the force
over some dimensionless time.

3. THE TWO-PIECE WORM

Consider a toy model for a worm, consisting of two
blocks separated by a spring (spring constant k),
and an actuator, exerting a force u to the block
on the right, and −u to the one on the left (Fig.
1). The configuration space for the worm consists

u

k

θ1 θ2

Fig. 1. The Two Piece Worm

of the two excursions θ1 and θ2. Consequently, the
object (configuration) dynamics is given by

θ̇1 = ω1 (34)

εω̇1 =−k(θ1 − θ2)− u + c1 (35)

θ̇2 = ω2 (36)

εω̇2 =−k(θ2 − θ1) + u + c2 (37)

The landscape is modeled for simplicity in one

x

V (x)

φ

Fig. 2. The Landscape V(x)

dimension with topography given by some func-
tion V (x). With g the gravitational acceleration
at the surface, we obtain for the point mass in the
landscape

ẋ = v (38)

(2ε)v̇ =−2εg
V ′(x)√

1 + V ′(x)2
+ c1 + c2. (39)

Here V ′(x) = dV (x)
dx (more generally, the gradi-

ent). tan φ = V ′(x) yields sin(x) = V ′(x)√
1+V ′(x)2

.

This system was analyzed for Coulomb friction
in (Chernousko, 2002). Here we depart from this
situation and consider the motion with some lu-
brication, implying a viscous friction, but with a
friction coefficient µ that may be a function of
the position in the landscape (x-variables) and
the absolute velocity, v + ωi. In addition, if the
viscous friction coefficient is independent of mass,
one may take a quasi static approach, (neglecting
inertia). The friction coupling gives

ci = −µ(x, ωi + v)[ωi + v], i = 1, 2. (40)

The solution v(ω1, ω2, θ1, θ2, x) is obtained from 2

c1 + c2 = 0

Integration gives x, and the requisite force u can
be calculated.

3.1 Motion on a flat surface with differential
friction

Consider the simplest case, where the potential
function is constant, and with viscous friction co-
efficient depending on the direction of the motion.
This means,

µ(x, ω1 + v)[ω1 + v] + µ(x, ω2 + v)[ω2 + v] = 0.

2 The author is indebted to Deryck Yeung (Georgia Tech)
for pointing out a mistake in the original manuscript.



This problem bears some similarity to (Chernousko,
2006). Since the friction coefficient is always pos-
itive, the velocities v1 = v + ω1 and v2 = v + ω2

must have opposite signs. By symmetry, it suffices
to study the case v + ω1 < 0, for which µ(v +
ω1) = µFW and µ(v + ω2) = µBW . We assume
that the positive direction is towards the right,
but the natural motion of the worm is towards
the left. It follows from this that

v = −µFW ω1 + µBW ω2

µFW + µBW
. (41)

This gives in turn

0 =−u− µFW [ω1 + v]− k(θ1 − θ2)

0 = u− µBW [ω2 + v]− k(θ2 − θ1).

Note that only one of these relations is needed,
as can be seen by substituting the expression (41)
for v. This leads to

u = − µFW µBW

µFW + µBW
(ω1 − ω2)− k(θ1 − θ2), (42)

This is only one equation in two unknowns, but
we bring in a special gauge (Shapere and Wilczek,
1989), which would appropriately be called the
momentum gauge, by requiring that ω1 + ω2 = 0.
This gives

ω1 = −ω2 = −u + k(θ1 − θ2)
2

(
1

µFW
+

1
µBW

)
.

In addition, (42) implies ω1 + v = 2µBW

µF W +µBW
ω1.

The condition ω1 + v < 0 is thus equivalent to
ω1 < 0. Since ω1 +ω2 = 0 also implies that θ1 +θ2

is constant, 2θ0 say, in this gauge we can write:

u = − 2µFW µBW

µFW + µBW
ω1 − 2k(θ1 − θ0).

Next, from this

θ̇1 = −θ̇2 = −u + k(θ1 − θ2)
2

(
1

µFW
+

1
µBW

)
.

It is however simpler to leave it in terms of the
symmetric components

d
dt

(θ1 − θ2) =−[u + k(θ1−θ2)]
(

1
µFW

+
1

µBW

)

d
dt

(θ1 + θ2) = 0. (43)

The case ω1 + v > 0 is analogous, but in that
case ω1 +v = µF W

µF W +µBW
(ω1−ω2) = 2µF W

µF W +µBW
ω1.

Again, ω1 + v > 0 is equivalent to ω1 > 0. From
here on we shall denote ω1 and θ1 respectively by
ω and θ. The expression for v is, for all t

v = −µBW − µFW

µBW + µFW
|ω|. (44)

It is interesting to see that despite the hybrid
nature of the friction coupling, the systems (43)
producing the symmetric components from the
input are smooth. Finally, integration of v gives x.
If u is periodic, then |ω| is periodic. In one period,
the distance x traveled is then 4µBW−µF W

µBW +µF W
∆θ,

where ∆θ is the amplitude of θ.

3.2 Optimal Periodic Control

In this section we obtain the optimal periodic
steady state using Fourier techniques. We shall
only illustrate the works for the zero-th order
term. Assuming that u is periodic (Shiriaev et
al., 1995) with period 2π (recall the similitude
with respect to time scaling), we assume the
existence of Fourier series expansions

u(t) =
∞∑

n=−∞
un ejnt and θ(t) =

∞∑
n=−∞

θn ejnt .

Defining 1
µ = 1

µBW
+ 1

µF W
, we get from (43) that

θn = − 1
2(jnµ + k)

un. (45)

Also

ωn = − jn

2(jnµ + k)
un. (46)

Since ω(t) is positive in an interval of half the
period, we may set |ω(t)| = ω(t)sgn(sin t), from
which the Fourier series expansion of ω(t) follows
as the convolution

|ω|n = (ω ∗ s)n =
∞∑

`=−∞
ωn−`s`,

where {sn} is the sequence of Fourier series coeffi-
cients of the block wave s(t) = sgn(sin t). But the
latter gives sn = − 2j

nπ for odd, and 0 for even n.

|ωn| = −
∑
m

2j

(2m + 1)π
ωn−2m−1. (47)

Hence, it follows also from (44) that

vn = −κ|ω|n (48)

where we defined the parameter κ = µBW−µF W

µBW +µF W
.

The distance traveled in one period is readily
computed as the integral of v, noting that the
only term in the Fourier series contributing to the
integral is the v0 term. Thus, the distance moved
in one period is

x = 2πv0 =
∑
m

4κj

(2m + 1)
ω−2m−1. (49)



The work done is − ∫ T

0
u(t)ω(t)dt. The “−” sign

stems from the fact that the positive direction
for force and excursion were taken in opposite
directions. With

u(t) = −2
µFW µBW

µFW + µBW
ω(t)− 2k(θ(t)− θ0)

sthe work done during one period, T = 2π, equals

W (T ) =−2
µFW µBW

µFW + µBW

T∫

0

ω2
1 dt,

since θ1(T ) = θ1(0) by periodicity. By Parseval’s
theorem,

2π∫

0

ω2(t) dt =
∑

n

|ωn|2. (50)

Reconsider now the problem of moving a given
distance x in one period, while minimizing the
work done. This is a standard complex linear-
quadratic (albeit infinite dimensional) parameter
optimization problem.

inf
∑

n

ψn|un|2 s.t.
∑

n

φnun = x. (51)

Standard Lagangian optimization methods yield

ψnu∗n + λφn = 0. (52)

Hence, un = −λ∗ φ∗n
ψ∗n

. Back substitution gives

x = −λ∗
∑

n
|φn|2
ψ∗n

, and thus the optimal Fourier
coefficients of the applied force are

un = x

φ∗n
ψ∗n∑

m
|φm|2
ψ∗m

. (53)

In the problem at hand, φn and ψn are zero
for even n, and φ2m+1 = − 1

2(k+j(2m+1) , while

ψ2m+1 = − µF WµBW

2(µF W +µBW )
(2m+1)2

k2+µ2(2m+1)2 .
This leads to un = 0 for n even and

u2m+1 = −2
k + jµ(2m + 1)

(2m + 1)2
1∑

`
1

(2`+1)2

.

Note that the summation in the denominator con-
verges to π2/4. so that the odd Fourier coefficients
for the optimal solution are

u2m+1 = − 8
π2

k + jµ(2m + 1)
(2m + 1)2

. (54)

In figure 3, the Fourier approximation to the op-
timal periodic control for the two piece worm is
given over two periods for the parameters k = 1,
µFW = 0.1 and µBW = 1. This is the normalized
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Fig. 3. The Optimal Periodic Control

solution for x(2π) = 1. It is clear that the optimal
control is a piecewise linear function of t. This
can also be deduced directly from the analytic
form of the Fourier coefficients. The corresponding
evolutions of the shape functions ω, θ are shown
below. We note that since ω is a block wave, the
landscape coordinate v = |ω| is constant, so that
the motion is uniform. The distance traveled by
the worm is then a linear function of time.
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Figure 4: The Optimal Periodic Shape Change,
ω, and Shape θ.

4. OTHER FRICTION MODELS

The result of the previous sections may seem unre-
alistic due to the fact that a transfer from 0 to x is
possible with arbitrarily small energy expenditure
if unlimited time is available. A remedy to this
would be to consider a performance index which
combines time and energy to reach a given x. For
instance, we could take

J = ρT +

T∫

0

u(t) dθ(t).

See for instance (Verriest and Lewis, 1991). Al-
ternatively, we may change the friction model.
Recent studies (Persson, 2000) substantiated four
regimes of friction: static friction, a transition
from standing to the sliding condition, a level of
friction at low sliding speed known as the kinetic
friction, and a regime with positive slope labeled
as viscous friction. The curve representing the
force of friction as function of velocity is known as
the Stribeck curve. For the static friction, a whole
interval of equilibria (v = 0) exist. The function



µ(v) =
√

(v − a)2 + b2 gives a simple approxi-
mation for a symmetric (no differential friction)
Stribeck curve. The minimum occurs for v = a
and is µ(a) = b. If the block is initially at rest, and
a force F is applied, the block will remain at rest
as long as F <

√
a2 + b2. If F =

√
a2 + b2 then

a slight perturbation will jerk the block towards
an equilibrium velocity v = 2a according to the
nonlinear equation

εv̇ +
√

(v − a)2 + b2 =
√

a2 + b2.

For small ε, we know that when the applied force,
u, increases from 0 to us, the static friction,
the velocity will remain zero. The instant us is
traversed, the operating point shifts to some point
v′ ≥ v1, where v1 is the solution on the Stribeck
curve, where f(v1) = us. If ε → 0, then v̇(t) →
∞, and since the translation is instantaneous,
the force equals us during this transition. This
gives the horizontal line segment AB on the (v, u)
diagram. See Figure 4. The actual trajectory for
nonzero ε must lie above this horizontal, since
u̇(t) > 0 by assumption. This is indicated by dash-
dotted line. A rough bound on the transition time

umin

us

v

f (v)

vm v1

A
B

C

Fig. 4. Stribeck curve and trajectory for u.

for AC is T > ε v1
us−umin

.

Singular perturbation techniques on the general
equation εv̇ + f(v) = u where u is the driving
force, show that the minimum energy required to
travel a given distance is bounded away from zero.
For motion on dry sand, a fluid model may be
appropriate (Tardos and Mort, 2005; Zhu, 2005),
justifying our earlier approach with a pure viscous
friction model.

5. CONCLUSIONS

We have discussed a class of locomotion systems
that can be analyzed easily and effectively. In
more complicated multi-link systems exhibiting
symmetry, it is expected that the individual con-
trols are easily generated by some central pattern
generator (Holmes et al., 2006; Iwasaki, 2006). For
instance, for a snake like device, torques generate
curvature of the body, but this curvature can
be propagated down the snake body as a wave.

There is a large literature on snake locomotion, see
for instance (Chernousko, 2000; McIsaav and Os-
trowski, 2003; Ostrowski et al., 1995; Zhuravlev,
2002). In a continuum model such a wave can be
generated as the solution to a (wave) partial differ-
ential equation. Spatial discretization of the wave
equation gives then a nearest neighbor command
control: The control signal is propagated from one
actuator to the next (Verriest, 1989).
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