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Abstract
The paper deals with the value function and the op-

timal synthesis in the optimal control problems with
Lipschitz continuous payoffs. New sufficient optimal-
ity conditions are obtained for the problems. Numer-
ical algorithms are proposed and results of numerical
solution of the model problems are presented.
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1 Introduction
The paper is devoted to the construction of the value

function and the optimal synthesis in the optimal con-
trol problem with the Lipschitz continuous payoff. The
key role in the researches presented in the paper plays
the value function. Our researches are based on the fact
that the value function coincides with the generalized
(minimax/viscosity) solution of Hamilton—Jacobi—
Bellman equation.
Construction of the value function is obtained with

the help of generalized method of characteristics. This
method was suggested in the papers by A.I. Subbotin,
N.N. Subbotina.
Applications of the generalized method of character-

istics to the considered optimal control problem are
based on the fact that necessary optimality conditions
in the Hamiltonian form [Clarke, 1983] are expressed
in terms of characteristics of Bellman equation.
The paper continues the works [Kolpakova,2010;

Subbotina, 2006a; Subbotina and Tokmantsev, 2006].
We introduce new tools of the nonsmooth analysis,
namely, partial subdifferentials in the direction. The
new sufficient optimality conditions in terms of these
subdifferentials are obtained and applied to the con-
struction of the optimal synthesis.
This approach is close to the approach propsed by B.

Mordukhovich [Mordukhovich, 2006].

The numerical algorithm for the considered problem
is created. The results of simulation are presented.

2 Statement
Let us consider a control system defined by the equa-

tion

ẋ(t) = f(t, x, u), x(t0) = x0, (1)

where (t, x) ∈ ΠT = [0, T ]× Rn.
We want to minimize the Boltza payoff:

It0, x0 (u(·)) = σ(x(T )) +
T∫
t0

g(t, x(t), u(t))dt, (2)

The control u ⊂ Rk satisfies the geometric restriction

u ⊂ U ⊂ Rk,

where U is a compact.
Let us define the set of admissible controls by the rule

Ũ = {u(·) : [0, T ] → U are measurable functions}.

The problem is considered under the following as-
sumptions.

A1 Functions f(t, x, u), g(t, x, u), ∂g
∂xi

, ∂f
∂xi

, i =
1, . . . , n are defined and continuous on the set
ΠT × U .

A2 There exists constant K1 > 0 such that

∣∣∣∂fi(t, x′, u)
∂xj

− ∂fi(t, x
′′, u)

∂xj

∣∣∣ ≤ K1||x′ − x′′||,

∣∣∣∂g(t, x′, u)
∂xj

− ∂g(t, x′′, u)

∂xj

∣∣∣ ≤ K1||x′ − x′′||,
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i, j = 1, . . . , n, for any x′, x′′ ∈ Rn.
A3 There exists constant K2 > 0 such that

||σ(x′)− σ(x′′)|| ≤ K2||x′ − x′′||,

for any x′, x′′ ∈ Rn.
A4 The set

arg min
(f,g)∈F (t,x)

⟨s, f⟩+ g = {(f0, g0)}

is a singleton for any s ∈ Rn, (t, x) ∈ ΠT . Here
F (t, x) = {(f(t, x, u), g(t, x, u)) : u ∈ U}.

Define the Hamiltonian of problem (1), (2)

H(t, x, s) = min
u∈U

[⟨s, f(t, x, u)⟩+ g(t, x, u)].

We suppose additionally that

A5 Functions DxH(t, x, s) and DsH(t, x, s) exist
and have sublinear growth with respect to s, that
is ∣∣∣∣∣∣DxH(t, x, s)

∣∣∣∣∣∣ ≤ K2(1 + ||s||),

∣∣∣∣∣∣DsH(t, x, s)
∣∣∣∣∣∣ ≤ K2(1 + ||s||).

Here DxH(t, x, s) =
(

∂H
∂x1

, . . . , ∂H
∂xn

)
,

DsH(t, x, s) =
(

∂H
∂s1

, . . . , ∂H
∂sn

)
.

Note, that the partial derivatives of the Hamiltonian
have the form

DxH(t, x, s) =
⟨
s,
∂f0(t, x, s)

∂x

⟩
+
∂g0(t, x, s)

∂x
,

DsH(t, x, s) = f0(t, x, s) +
∂g0(t, x, s)

∂s
.

It is well known [Subbotin, 1991], that functions
f0(t, x, s), g0(t, x, s) are continuous with respect to all
variables.

2.1 Properties of the Value Function
The map

(t0, x0) → V (t0, x0) = inf
u(·)∈Ũ

It0,x0(u(·))

is called the value function.

Assertion 1 [Subbotina and Tokmantsev, 2006].
If assumptions A1–A4 are hold then

V (t0, x0) = min
u(·)∈Ũ

It0,x0(u(·)).

It is well known that under assumptions A1–A5 the
value function is continuous, but it can be nonsmooth.
Recall the notions of nonsmooth analysis.
Definition 1. [Rockafellar and Wets, 1983]
The lower Dini derivative d−φ(y)

h of a function φ :
Rm → R at the point y in the direction h ∈ Rm is
defined as follows:

d−φ(y)

h
= lim inf

δ→0,h′→h

φ(y + δh′)− φ(y)

δ
.

Similarly the upper Dini derivative d+φ(y)
h is defined

by means of lim sup.
Definition 2. [Subbotin, 1995]
A function φ(·, ·) : ΠT → R is called the minimax

solution of (3), (4), if

φ(T, x) = σ(x), ∀x ∈ Rn,

sup
s∈Rn

inf
h∈Rn

{d−φ(t,x)
1,h − ⟨s, h⟩ + H(t, x, s)} ≤ 0,

inf
s∈Rn

sup
h∈Rn

{d+φ(t,x)
1,h − ⟨s, f⟩+H(t, x, s)} ≥ 0,

for all (t, x) ∈ (0, T )× Rn.
Assertion 2 [Crandall and Lions, 1983; Subbotin,

1995].
If assumptions A1–A4 are true, then the value func-

tion V (t, x) in optimal control problem (1), (2) coin-
cides with the unique minimax/viscosity solution of the
problem

∂V (t,x)
∂t +H(t, x,DxV (t, x)) = 0, (t, x) ∈ ΠT , (3)

V (T, x) = σ(x), x ∈ Rn. (4)

Assertion 3. [Subbotina, 2006b]
Under assumptions A1–A4 the value function of the

problem (1), (2) is local Lipschitz continuous.
Definition 3. [Clarke, 1983]
The set

∂ψ(y) = co{q ∈ Rm : q = lim
yk→y

Dψ(yk)}

is called the subdifferential of the function ψ(·) :
Rm → R at the point y ∈ Rm.
Here Dψ(yk) is the gradient of the function ψ(·) at

the points yk. The symbol co denotes the convex hull.
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We shall construct the value function with the help of
the generalized method of characteristics.
Consider the Hamiltonian system for the problem (3),
(4)

˙̃x = Ds̃H(t, x̃, s̃),
˙̃s = −Dx̃H(t, x̃, s̃),
˙̃z = ⟨Ds̃H(t, x̃, s̃), s̃⟩ −H(t, x̃, s̃)

(5)

with the boundary conditions

x̃(T, ξ) = ξ, s̃(T, ξ) ∈ ∂σ(ξ),
z̃(T, ξ) = σ(ξ), ξ ∈ Rn.

(6)

Solutions x̃(·, ξ), s̃(·, ξ), z̃(·, ξ) of the problem (5), (6)
are called the characteristics of the problem (3), (4).
Assertion 4.
If assumptions A1–A5 are true, then for any x̃(T, ξ),
s̃(T, ξ), z̃(T, ξ), ξ ∈ Rn there exists the unique solu-
tion of the characteristic system (5)-(6), and it is de-
fined on the interval [0, T ].
Recall the Pontryagin’s maximum principle [Pontrya-

gin et al, 1962] in the Hamiltonian form.
Assertion 5 [Clarke, 1983].
Let conditionsA1–A5 be satisfied, (t0, x0) ∈ (0, T )×
Rn, u0(·) ∈ Ũ and

It0,x0(u
0(·)) = V (t0, x0),

then there exists such a function s∗(·) : [t0, T ] → Rn,
that the following conditions are valid for all t ∈ [t0, T ]

dx0

dt = DsH(t, x0(t), s∗(t))
ds∗

dt = −DxH(t, x0(t), s∗(t)),
x0(t0) = x0; s

∗(T ) ∈ ∂σ(x0(T ));

(7)

The following statement is valid.
Theorem 1.
Let assumptions A1–A3 hold, (t0, x0) ∈ ΠT , then

V (t0, x0) = min
ξ:x̃(t0,ξ)=x0

z̃(t0, ξ), (8)

where x̃(·, ξ), s̃(·, ξ), z̃(·, ξ) are characteristics (5), (6).
Remark.
Formula (8) is proven in the paper [Subbotina, 2006a]

under assumptions of the smooth data in the optimal
control problem. The proof of theorem 1 is similar to
one of smooth case.

3 Structure of the Minimax Solution
According to assertion 2,3 the value function can be

studied with the help of minimax/viscosity solutions of
the problem (3), (4).

Below we recall the statements first proved in [Sub-
botina and Kolpakova,2009] and introduce new tools
of the nonsmooth analysis.
Assertion 6. [Subbotina and Kolpakova,2009]
Let assumptions A1–A5 be true and let function
σ be continuous differentiable. The minimax solu-
tion φ(t, x) of the problem (1) is not differentiable at
(t0, x0), iff there exist ξ1, ξ2 ∈ Rn, ξ1 ̸= ξ2 such that

x̃(t, ξ1) = x̃(t, ξ2) = x,
z̃(t, ξ1) = z̃(t, ξ2) = φ(t, x),
s̃(t, ξ1) ̸= s̃(t, ξ2).

(9)

Assertion 7 [Kolpakova,2010].
If conditions A1-A5 are valid, function σ is con-

tinuous differentiable and the state space is one-
dimensional, then all points of nondifferentiability of
the minimax solution φ(t, x) lie on at most denumer-
able family of lines t → x∗(t) : 0 ≤ t∗ < t ≤ T
satisfying the Rankine-Hugoniot condition:

dx∗(t)
dt = H(t,x∗(t),D+φ(t,x∗(t)))−H(t,x∗(t),D−φ(t,x∗(t)))

D+φ(t,x∗(t))−D−φ(t,x∗(t))
,

(10)

D+φ(t, x∗(t)) = lim
x→x∗(t)+0

∇φ(t, x),

D−φ(t, x∗(t))) = lim
x→x∗(t)−0

∇φ(t, x),

and the inequality

D−φ(t, x∗(t))) < D+φ(t, x∗(t))).

Here ∇φ =
(

∂φ
∂t ,

∂φ
∂x

)
.

We introduce the new tool of nonsmooth analysis to
describe properties of the local Lipschitz continuous
value function in the problem (1), (2).
Definition 4. [Subbotina, 2006b]
The set

∂hψ(y) = co{ξ ∈ Rm : ξ = lim
δk↓0

ψ(yk)− ψ(y)

δk
}

is called the partial subdifferential of the local Lipschitz
continuous function ψ(·) at the point y in the direction
h.
Here yk = y + hδk are the points of differentiability

of function ψ(·).
The main result of the paper is following.
Theorem 2.
Let assumptionsA1–A5 hold, (t0, x0) ∈ (0, T )×Rn,

and there exist characteristics x̃(·, ξ∗), s̃(·, ξ∗), z̃(·, ξ∗)
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of the problem (1), (2) such that x̃(t0, ξ∗) = x0, and
the following relations are valid for all t ∈ [t0, T ]

α∗ = −H(t, x̃(t, ξ∗), s̃(t, ξ∗)), p
∗ = s̃(t, ξ∗)

(α∗, p∗) ∈ ∂h(t)V (t, x̃(t, ξ∗)),
(11)

h(t) = (1, DsH(t, x̃(t, ξ∗), s̃(t, ξ∗))).
Then x̃(·, ξ∗) is optimal trajectory of the problem (1),
(2) and h(t) is the optimal direction.
Proof.
We shall show, that the derivative of the value func-

tion V in the direction DsH(t, x, s), satisfying (11) is
equal to 0. It is the necessary and sufficient optimality
condition [Subbotina, 2006a].
According to the formula, proved in [Subbotina,

2006b], the following inequalities are valid for any
(t, x) ∈ ΠT

min
(α,p)∈∂hV (t,x)

⟨(α, p), h⟩ ≤ d−V (t, x)

h
≤

d+V (t, x)

h
≤ max

(α,p)∈∂hV (t,x)
⟨(α, p), h⟩.

Let us consider the expression

⟨(α, p), h⟩, where (α, p) ∈ ∂hV (t, x).

Remind that

α = lim
k→∞

−H(tk, xk, DxV (tk, xk)),

p = lim
k→∞

DxV (tk, xk). Then ⟨(α, p), h⟩ =

lim
k→∞

⟨(−H(tk, xk, DxV (tk, xk)), DxV (tk, xk)), h⟩.

The set ∂h(t)V (t, x) is convex and closed. Hence

arg min
(α,p)∈∂h(t)V (t,x)

⟨(α, p), h⟩ = (α0(h), p0(h)).

The function (α0(h), p0(h)) is continuous [Subbotin,
1991]. This assertion is valid also for function
argmax.
Note that

lim
k→∞

hk = lim
k→∞

(1, DsH(tk, xk, DxV (tk, xk))) = h.

Then

lim
hk→h

⟨(α0(hk), p
0(hk)), hk⟩ =

⟨(−H(tk, xk, DxV (tk, xk)), DxV (tk, xk)), hk⟩ = 0

= ⟨(α0(h), p0(h)), h⟩

because tk, xk are the points of differentiability of
function V . Therefore we get

d−V (t, x)

h
=
d+V (t, x)

h
= 0.

�
This theorem provides sufficient optimality conditions

for the case of Lipschitz continuous terminal function
σ in the problem (1), (2).
Let us introduce the following notion.
Definition 5. The set

∂Mh φ(t, x) = { lim
k→∞

∇φ(tk, xk)}

is called nonconvex subdifferential at the point (t, x) in
direction h ∈ Rn. Here lim

k→∞
δk = 0, lim

k→∞
hk = h,

(tk, xk) = (t + δk, x + δkhk) are the points of differ-
entiability of the function φ.
We can prove the sufficient condition of optimality in

terms of nonconvex subdifferential in the direction h of
the value function.
Theorem 3.
Let conditions A1–A5 hold. Assume that there ex-

ist such characteristics x̃(·, ξ∗), s̃(·, ξ∗), z̃(·, ξ∗) of the
problem (1), (2) such that x̃(t0, ξ∗) = x0, and the fol-
lowing relations hold for all t ∈ [t0, T ]

α∗ = −H(t, x̃(t, ξ∗), s̃(t, ξ∗)), p
∗ = s̃(t, ξ∗),

(α∗, p∗) ∈ ∂Mh(t)V (t, x̃(t, ξ∗)),
(12)

h(t) = (1, DsH(t, x̃(t, ξ∗), s̃(t, ξ∗))).
Then the trajectory x̃(t, ξ∗) is optimal in the problem
(1), (2).
Proof.
We shall prove that dV ±(t,x̃(t,ξ∗))

h = 0, satisfying (12).
Note that

min
(α,p)∈∂hV (t,x)

⟨(α, p), h⟩ = min
(α,p)∈∂M

h V (t,x)
⟨(α, p), h⟩ =

max
(α,p)∈∂hV (t,x)

⟨(α, p), h⟩ = max
(α,p)∈∂M

h V (t,x)
⟨(α, p), h⟩

for any (t, x) ∈ ΠT .
Hence, we obtain dV ±(t,x̃(t,ξ∗))

h = 0.
�
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4 Optimal Synthesis
Let us consider the optimal control problem in the

class of feedbacks

[0, T ]× Rn(t, x) 7→ u(t, x) ∈ U

and allow them to be discontinuous. We use a for-
malization of discontinuous feedbacks, proposed by
N.N. Krasovskii ([Krasovskii and Subbotin, 1988]).
Recall the main notions of the approach.
Consider a partition

Γ = {ti, i = 0, 1, . . . , N} ⊂ [t0 = 0, tN = T ]

with the fineness

diam (Γ) = max
i=1,...,N

(ti − ti−1).

Definition 6.
The step-by-step motion xΓ(·) of the system (1) is de-

fined in the following way

xΓ(·) : [ti−1, ti] 7→ Rn, i = 1, . . . , N ;
uΓ(t) = ui−1 = u

(
ti−1, xΓ(ti−1)

)
= const;

∀t ∈ [ti−1, ti),
dx
dt = f(t, x, ui−1), ∀t ∈ [ti−1, ti);
xΓ(t0) = x0.

(13)

Define

CΓ

(
t0, x0;u(t, x)

)
= It0,x0

(
uΓ(·)

)
.

Definition 7.
The value C

(
t0, x0;u(t, x)

)
of the form

C = lim sup
diam(Γ)→0

CΓ

(
t0, x0;u(t, x)

)
(14)

is called the value for the feedback u(t, x) in the system
(1) at the initial state (t0, x0).
Definition 8.
A feedback u(t, x) satisfying the equality

C
(
t0, x0; u(t, x)

)
= V (t0, x0) (15)

is called the optimal feedback at the initial state
(t0, x0).
Definition 9. A universal optimal feedback u0(t, x)

satisfying the relations

C
(
t0, x0; u

0(t, x)
)
= V (t0, x0),

∀(t0, x0) ∈ [t0, T ]× Rn (16)

is called the optimal synthesis.
From theorem 3 and work [Subbotina and Tokmant-

sev, 2010] the following theorem is valid.
Theorem 4.
The optimal synthesis u0(t, x) : (t, x) → U in the

problem (1), (2) has the form:

u0(t, x) ∈ Argmin
u∈U

r(t, x, p, u),

where r(t, x, p, u) = ⟨p, f(t, x, u)⟩ + g(t, x, u) and p
satisfies the condition

(−H(t, x, p), p) ∈ ∂Mh(t)V (t, x),

where h(t) = (1, DpH(t, x, p)).
To derive an optimal synthesis in the considered prob-

lem we apply the method suggested in ([Subbotina and
Tokmantsev, 2009]). The method is based on a back-
ward procedure of integrating the characteristic system
for the Bellman equation.
We use the numerical procedure, see ([Subbotina and

Tokmantsev, 2010]) to provide adaptive grids in the
phase space and to define a grid feedback at nodes of
this grids according to theorem 4. This feedback is
called an optimal grid synthesis. The step-by-step mo-
tions x0(·) generated by the optimal grid synthesis are
considered to solve the problem (1), (2). It is proven,
see ([Subbotina and Tokmantsev, 2009]) that the value
of the optimal grid synthesis is close to the optimal re-
sult at all nodes of the mentioned grids.

5 Example 1
Let the dynamics of the system be given by

ẋ1 = x2, ẋ2 = u− sinx1,
|u| ≤ 1, t ∈ [0, T ].

(17)

We want to minimize the payoff functional of the form

It0,x0

(
x(·), u(·)

)
=

|x1(T )|+ |x2(T )|+
T∫
t0

εu2(t)
2 dt.

(18)

Define the Hamiltonian

H(x, p) = p1x2 − p2 sinx1 −
(p2)

2

2ε
.

Note, that the Hamiltonian and the dynamics satisfy
the conditions A1–A5. We construct the characteristic
system


dx̃1

dt = x̃2,
dx̃2

dt = − sin x̃1 − p̃2

ε ,

dp̃1

dt = p̃2 cos x̃1,
dp̃2

dt = −p̃1, dz̃
dt = − (p̃2)

2

2ε .
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with boundary conditions

x̃1(T, y) = y1, x̃2(T, y) = y2,

p̃1(T, y) =


−1, y1 < 0,

1, y1 > 0,

[−1, 1], y1 = 0,

p̃2(T, y) =


−1, y2 < 0,

1, y2 > 0,

[−1, 1], y2 = 0,

z̃(T, y) = |y1|+ |y2|.

The grid in the phase space of the final time T = 5.0 is
considered within the domain D = [−2, 2] × [−2, 2],
the step of partition Γ is ∆t = 0.05, the parameter
ε = 10−7. The numerical results are in figures 1-6.

Figure 1. The optimal trajectories x1(t) of the problem (17)–
(18).

Figure 2. The optimal trajectories x2(t) of the problem (17)–
(18).

Figure 3. The optimal trajectories (x1(t), x2(t)), t ∈ [0, T ],
of the problem (17)–(18).

Figure 4. The graph of the value function V (0, x1, x2) of the
problem (17)–(18).

Figure 5. The graph of the functional I(0, x1, x2;u
0(·)) (18).

Figure 6. The graph of the optimal controls u0(0, x1, x2) of the
problem (17)–(18) at instant t = 0.

6 Example 2
Let the dynamics of the system be given by

ẋ1 = cosx3, (19)
ẋ2 = sinx3,

ẋ3 = u,

|u| ≤ 1, t ∈ [0, T ].
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We want to minimize the payoff functional

It0,x0

(
x(·), u(·)

)
= |x1(T )| − |x2(T )|+

T∫
t0

εu2(t)

2
dt.

(20)

According to the algorithm consider the characteristic
system

dx̃1

dt = cos x̃3,
dx̃2

dt = sin x̃3,
dx̃3

dt = − p̃3

ε ,

dp̃1

dt = 0, dp̃2

dt = 0, dp̃3

dt = p̃1 sin x̃3 − p̃2 cos x̃3,

dz̃
dt = − (p̃3)

2

2ε .

with the boundary conditions

x̃1(T, y) = y1, x̃2(T, y) = y2,

p̃1(T, y) =


−1, y1 < 0,

1, y1 > 0,

[−1, 1], y1 = 0,

p̃2(T, y) =


1, y2 < 0,

−1, y2 > 0,

[−1, 1], y2 = 0,

z̃(T, y) = |y1| − |y2|.

The grid in phase space in the instant T = 7.0 is
considered within the domain D = [−2, 2] × [−2, 2],
the step of partition Γ is ∆t = 0.1, the parameter
ε = 10−4. The numerical results are in figures 7-9.

Figure 7. The optimal trajectories x1(t) of the problem (19)–
(20).
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