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Abstract: In this paper, it is described a control-design procedure for a specific class of nonlinear 
systems that can partially be put in the so called strict feedback form. It is used a mixed technique: 
backstepping and sliding modes, in order to systematically construct the command for a system in more 
general-form. To illustrate the procedure, an application to a propulsion system micro-pump for small 
satellites is given. Some practical aspects are then discussed as for instance: how to simplify the 
analytical form of the command (using decoupling hypothesis) and also how to choose the adjustment 
parameters involved in the command by using an appropriate optimization technique, in order to preserve 
a good robustness/performance ratio in case of perturbations. 
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1. INTRODUCTION 

The aim of this paper is to show the possibility to design a 
robust controller through a simple procedure, similar to the 
one used in backstepping technique and which is being 
standard today (Krstic et al., 1995). It is known that this 
technique is quite nice when dealing with strict feedback 
form systems, namely systems where the new state variable 
appears in an affine way. There exists backstepping based 
approach for systems which are not described in this 
aforementioned form or which cannot be put neither in pure- 
feedback forms and nor into a lower triangular form (Fontaine 
and Kokotovic, 1998).  The global stabilization of nonlinear 
systems in the strict feedforward form, i.e. referering to upper 
triangular form is presented in (Sepulchre et al., 1997). 

So the procedure described herein consists of using a 
mixed backstepping technique and sliding modes and may be 
seen as a kind of an extension due to the fact that, in the one 
hand discontinuous terms are involved in the application 
under study as well as in the time derivative of the controlled 
Lyapunov function and in the other hand the new state 
variable is not necessarily involved in affine way. In doing 
so, it is shown that the level of robustness with regards to 
perturbations is improved, at least through the performed 
application for which one is paying a particular attention. 

The first part of the paper is dealing with some theoretical 
aspects for systematically implementing the proposed 
command (derived through the combination of both known 
control techniques: backstepping and sliding modes). It is 
also emphasized the real interest to this type of command, 
and it is specified some examples of actuators that might take 

profit from this procedure as well. An application to a micro-
pump system is shown. This one has been studied by the 
authors in previous work (Teodorescu et al., 2008a-b) but 
more investigations are needed in order to increase the 
performance and especially to enlarge the operating domain 
while still reaching a good level of robustness. Moreover, the 
aim is also to reduce as much as possible the complexity of 
the control law in the perspective of an implementation. 
     The paper is organized as follows: Section 2 deals with 
theoretical aspects concerning the design of the command in 
case of a strict feedback form system. Section 3 briefly 
presents the micro-pump’s discontinuous system. In Section 
4, the proposed design-scheme is applied to this system. 
Section 5 shows the simulation results in the nominal case as 
well as in the perturbed one, which turn out to be quite 
satisfactory in terms of the required performance.  Finally a 
conclusion is drawn in Section 6. 

2. PROPOSED CONTROL-METHOD SCHEME 
 
Consider strict feedback form system (1) as it has been 
widely defined in the literature concerning nonlinear control 
systems (Krstic et al., 1995, Khalil, 2002). 
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where  and  are nonlinear continuous 
functions depending on the state variables . 
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     According to the theory presented in (Krstic et al., 1995), 
one may conceive the control for system (1) using 
backstepping  whose key idea is to let some state variables as 
virtual controls of others. System (1) may be considered as 
being a particular form of a more general nonlinear system, 
and according to the sliding modes technique, one may 
implement it or any of its variants (see for example Utkin, 
1996). Nevertheless, backstepping approach is based on 
Lyapunov theory and therefore can offer robust controller 
especially needed during the transient regime, by using an 
increased number of adjustment parameters. It is also used 
continuous-form command, unlike the case of sliding modes 
which might cause fatigue on actuators, others than electrical 
ones, due to its discontinuous analytical form. Moreover, for 
high order systems, the choice of an appropriate sliding 
surface might be difficult to infer, causing instability and 
(sometimes) poor performance during steady state regime.  
     Since the goal herein is to control a special type of 
systems that can partially be put in form (1), meaning that the 
overall system concerned has a more general form, it is then 
proposed, in this paper, to combine both control techniques, 
namely backstepping and sliding modes, in order to take 
benefit as much as possible from the advantages offered by 
the first one, while maintaining a simple analytical form for 
the command u. Interesting results may be found in (Swaroop 
et al., 2000), where a synthetic input technique similar to 
backstepping using multiple surface control methods with 
filters is described for systems in strict feedback form. 

As a remark, it is worth mentioning that since the order of 
complexity for the command u (if purely designed by 
backstepping and then by sliding modes) is the same when 
independently using any of both techniques. 
 
     Now, let us consider a class of nonlinear systems having 
the following form: 
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where ,  and  are nonlinear smooth functions. if jh lg
     One may notice that overall system (2) can be divided into 
two subsystems: the first one corresponds to the first k 
equations concerning the state variables  and 
belongs to the class of strict feedback form systems, while the 
second one (corresponding to the equations of the state 
variables  has a lower triangular form. In the 

next sections, we may refer to simply as first part (or first 
subsystem) and second part (or second subsystem) of (2). 
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Even though, the proposed design procedure combines 
backstepping and sliding modes based approaches, there are 
some essential differences with respect to the literature, 
systematically presented in  steps below. As known, the 
main idea in backstepping is to let certain state variables as 
“virtual controls” for others and which along with the 
controlled Lyapunov function can be used to find a globally 
stabilizing controller. 

1+k

     In a similar manner, the main idea of this proposed 
scheme is to systematically design a controlled Lyapunov 
function in order to ensure global stability of overall system 
(2) and as results an asymptotic convergence of  towards 
its reference signal . So, let’s describe the procedure step 
by step. 

1x

refx1

 
     First step: Using the reference of the first state variable 
which is denoted as , and first equation of (2), let the 
tracking error: 

refx1

refxx 111 −=ε           (3) 

to be forced to converge asymptotically towards zero.  For 
this, let us choose the Lyapunov function 

2
111 2

1)( εε =V ; 0)0(1 =V . (4) 

and by imposing the negative definite condition for the time 
derivative of , one gets the virtual command (i.e. the 
desired value) for – namely 

1V

2x
2xφ , so that the asymptotic 

stability is guaranteed for the first equation of (2). 

2xφ will thus become a reference signal for the second step. 

In other words,  is used to impose the desired dynamics on 
, i.e.  tracks . 

2x
x11x 1x ref

2.1  Simplified scheme 

     Second step: Let’s now define the tracking error: 

222 xx φε −=  (5) 

and the controlled Lyapunov function  

2
211212 2

1)(),( εεεε += VV ,  (6) 0)0(2 =V

in conjunction with the first two equations of (2) in order to 
calculate the desired evolution for , referenced as 3x

3xφ . By 

iterating this procedure for a total of k  steps, one obtains the 
virtual command corresponding to – namely 1+kx

1+kxφ .  

     Step k+1: Using 
1+kxφ , a sliding surface can be designed: 
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with 
111 +

−= ++ kxkk x φε  (8) 

and jα  are constant values. The time derivative of ℑ , 

namely  reveals  through its analytical 
form. Using the Lyapunov function  
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1

+−
+ℑ=ℑ kn

kε&& ) u

2
1 2

1
ℑ+=+ kk VV  (9) 

with ∑
=

=
k
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ixii x φε −= ,  },..,1{ ki ∈

and imposing the negative-definite condition on the time 
derivative , after some relatively tedious calculus, one 
gets u . 

1+kV&

     Thus we have proved the global stability of overall system 
(2) and consequently the asymptotic convergence towards a 
stable point while ensuring that  tracks . 1x refx1

As matter of fact, one can significantly simplify the controller 
expression. Indeed, from dynamics (2), one might decouple 
the system into two subsystems, making a simplification 
hypothesis, which is: if the dynamics of the strict feedback 
form subsystem of (2) are (relatively) slow compared to the 
second subsystem one, one might treat the two subsystems 
independently and may obtain a more simple analytical form 
for . As commonly used in the literature (see for instance 
Khalil, 2002), the slow part of (2) will be used to derive the 
reference signals for the fast one. Also, the simplification 
hypothesis guarantees that large variations of the state 
variables within the non strict feedback form part of (2) 
cannot not render unstable the first subsystem. Intuitively, for 
hypothetic system (2) where the first part is very slow 
compared to the other one, the state variables belonging to 
the first subsystem act like quasi-constant parameters with 
regards to the second subsystem. Many efficient examples of 
this kind of system decomposition may be found in several 
papers (e.g.  Rontani et al., 2007). 

u

2.2  Extension to discontinuous functions 

Consider the system 

ℜ∈∈= unjiuxfx jii },..1{,);,(&  (10) 

with  and  being discontinuous functions. It is 
possible to also systematically construct a continuous 
Lyapunov function  in the case of a discontinuous 
system written down in form (2).  
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2.3 Some practical remarks 

One has briefly introduced the theoretical aspects, and let’s 
now make the connection with an industrial need.  

     The practical interest of the proposed control scheme 
might concern for example the class of solenoid valve 
actuators (Atmann, 2005) like pinch valves and globe valves 
where fast response is needed (usually 8-12 ms) and where 
robust nonlinear control might be preferred or suitable in the 
detriment of complexity (and thus cost). The basic principle 
of these actuators consists of a coil wrapped around a free 
metallic piston (sometimes referred to as plunger in the 
known literature), which moves forward and backward 
determining the opening ratio of the valve. When modelling 
each of these systems, the electromagnetic force into the 
piston depends on the square value of the current according 
to the relationship: 

2)(
2
1 I

dx
xdLFelmg =  

where is the coil inductance depending on the position 
of the inner mobile metallic part, that is the plunger. 

)(xL

     By letting the current I as a state variable when modelling, 
and by properly arranging the overall system, one might 
come upon nonlinear SISO system as it can be seen a little 
later on, through an example. 
More precise processes examples may include systems like 
fuel injectors found in most of nowadays-produced spark-
ignition and combustion-ignition engines; EGR (Exhaust Gas 
Recirculation) valve (e.g. Ribbens, 2003); EVR (Electronic 
Vacuum Regulator) and magnetic suspensions. Further on, a 
new concept of micro pump future generation for small 
satellite propulsion systems will be treated. 
 
3. MICRO PUMP SYSTEM 

Roughly speaking, the pump consists of a piston that is 
actuated by an inducing current into a coil wrapped around 
the piston. By using classical Newton laws for modelling the 
micro-pump, one can derive the following state space 
representation of the system: 
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and ;  (13) 
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1x

L =

is the piston position;  is the piston speed;  is the 
current intensity;  denotes the voltage across the coil; 

 is the coil inductance; 

2x 3x
u

),( 1 xLL R  is the windings 
resistance; , , , , , ,  and are 
constants. The goal is to find the command u so that  
tracks a reference sine-wave signal of frequency preferably 
over 100Hz. 

m resP hi aa b accP A ix1 f
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     The discontinuous part of system (11) is due to the 
presence of two bumpers (an upper and a lower one) thus 
limiting the position’s movement. The controller-design 
constraint is aimed to avoid any contact with the bumpers. 
For more information regarding modelling of (11), one may 
refer to (Teodorescu et al., 2008), where the physical aspects 
are described in details. 
     One of the physical constraint concerns the current which 
is always positive, i.e.  I >0, and which might be justified due 
to the type of the power converter realized on the prototype 
system (Teodorescu et al., 2008), which is reverse current 
protected. Since solenoids have high inductance, when 
actuating, one would expect a short lived but very high power 
voltage spike to occur. After this short lived (~50ms) voltage 
spike, the voltage will balance at the initial voltage. This is 
just like driving a dc motor in one direction, then suddenly 
reversing the direction (see e.g. Krishnan, 2001). 
 

4. CONTROLLER DESIGN 

Since the term  appears in the second equation of (11), the 
overall system of the micro-pump is not in a strict feedback 
form. Thus, one can follow the controller design-procedure 
described in Section 2, where the strict feedback form 
subsystem of (2) consisting of the first equation in (11), and 
the other two equations will be used in conjunction with a 
sliding surface in order to get the command u .  

2
3x

So then, let  

refxx 111 −=ε  (14) 

1ε  is being the first tracking error. Using the first equation of 
(11) in conjunction with the controlled Lyapunov function 

( ) 2
111 2

1 εε =V  (15) 

one may calculate the desired value for – namely 2x
2xφ , in 

order to ensure asymptotic convergence of . Thereby, 

the time derivative can be made negative definite, thus 
yielding 

0→1V
)( 11 εV&

2xφ : 

( ) 011111 2
<−== refx xV &&& φεεε  (16) 

 by choosing 1112
εφ kx refx −= & , in other words 

)( 11112 refrefx xxkx −−= &φ  (17) 

     Next, let us define the sliding surface  and derive the 
command :    

ℑ
u

22 αεε +=ℑ & , 0>α  (18) 
with 

222 xx φε −= ; 2ε  is the second tracking error. Once all 
calculus are done, it thus yields: 
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     Notice that , so the command u  will be 

extracted from . The controlled Lyapunov function is: 
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     By imposing the condition , it comes out the 
expression of the command u. For simplicity reasons, at this 
point it may be made the decoupling simplification 
hypothesis i.e. the first state variable  of (11) has slow 
dynamics contrary to the two other states variables  and 

3 , which have fast dynamics. Using the simplified scheme 
presented in the above section, one has: 

02 <V&

x1

2x
x
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2 2

1
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     Hence, the time derivative of (21) is: 

ℑℑ= && *
2V  (22) 

     By choosing  

)(2221 ℑ−ℑ−=ℑ signkk&  (23) 

one obtains 022
2

21
*

2 <ℑ−ℑ−= kkV& . Therefore, the 
asymptotic stability of decoupled system (11) is guaranteed. 
 
     Some tedious calculus leads to the command expression: 
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Remark: in order to simplify a little bit more expression of 
command (24), according to classical theory one might stick 
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with  and . Nevertheless, from numerical 
point of view, it is recommended to use the continuous part 
of the command too, i.e. . In case of 

021 =k 022 ≠k

021 ≠k 021 =k

22k
and 

 one might then have to use a high value for  in 
order to ensure efficient tracking of the reference signal (one 
of the requirements is the high frequency imposed to the 
reference sine wave signal). This might causes problems (due 
to the chattering effect) once the sliding surface has been 
reached (i.e. in steady state regime).  

022 ≠k

4.1  Reference trajectory 

The main objective is to control the system such that the 
piston position is capable to track a given desired trajectory 
without chocks with the bumpers. The tracking trajectory 
may be described by the equation 

( )γω −−= refref xx 1
2

1&&  (25) 

with γ+= 101 )( Atx ref ; 
2

11 lh xx −
=γ is the middle of the 

admissible range for , with an upper limit  and a lower 
limit ;  is the amplitude of the signal. 

1x

lx1 1A
hx1

Hence,  

2
)sin()( 11

11
lh

ref
xxtAtx −

+= ω  (26) 

4.2  Optimization 

Since there is no systematic way concerning the choice of 
adjustment parameters i  involved in the command  
designed through backstepping technique, nor one concerning 
the parameters 

k u

ijα  (7) when designing a sliding surface for 
high order systems, so an optimization technique is employed 
in order to get the optimal tuning parameters. 
     The problem now consists of proposing the appropriate 
cost function J, and then determining the optimal parameters, 
by using existing Matlab/Simulink toolbox. One has four 
adjustment parameters for command u  (24), each one is 
introduced in the design procedure in order to guarantee the 
stability: α  from (18), 1k  from (17) and  from (23). 
Thus, an initial optimization problem may be: 

2221,kk
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where  is the penalty function; 
⎩
⎨
⎧

≤
>

=
00
0

)(
2

yif
yify

yh 1ε  has 

been defined in (14), is the maximum admissible 
voltage across the actuator coil; let us denote by  the 
function between brackets in (28). One can use two penalty 
functions 

maxU

1

J

ρ  and 2ρ  in order to specify the importance of 

each term of the cost function. For the numerical simulation, 

it has been used 2

1

2 10≈
ρ
ρ

. 

     Since it is virtually impossible to satisfy the constraint 

maxUu < during the transient regime (according to our 
simulations), it then may be considered: 
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2
11,,, 22211
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kkk

ρερ
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)  (29) 

where the performance criterion penalizes the violation of the 
constraint maxUu <  throughout all simulations time domain. 

5.  SIMULATION RESULTS 

In order to validate the proposed design control procedure 
applied to the micro-pump, it is used simplex algorithm from 
Matlab functions, one may thus check an optimal solution for 

22211 ,,, kkkα . From the numerical simulations, it turns out 
that the cost function from (29) displays many local minima, 
so the choice for the initial starting point is important. For 
this reason, by reviewing the desired performance/robustness 
ratio of the pump-system, in conjunction with controller 
simplicity need, it may be tried an initialization of the search-
algorithm with 021 =k ,  (because of the discussion 
drawn at the end of Section 4 regarding the chattering effect). 

022 =k

 
     The simulations results which are shown hereafter have 
been performed having as priority the overall robustness, so it 
is chosen 2221 10kk = . The simulation time is 0.3 seconds, 
and furthermore, it has been added a white noise of zero 
mean value, within the range g± , , into the 
second equation of (11), within the time interval 0.1–0.2 
seconds. Since this equation corresponds to the acceleration 
of the piston, it makes sense to give a physical meaning to the 
additive unstructured perturbation. Below, the simulation 
results are shown with normalized values: sample 
perturbation signal (Fig.1), piston position and piston 
reference signal (Fig.2), tracking error i.e. 

2/81.9 smg =

1 refxx 11 −=ε  
(Fig.3), the command  i.e. the voltage applied across the 
actuator coil (Fig.4); current intensity (Fig.5) and the cost 
function J as defined in (29) (Fig.6).  

u

 
One may observe the efficient and robust behaviour of the 
overall system in spite of the presence of the perturbation; the 
command  and the current intensity I remain within the 
physical boundaries. 

u

 

 
Fig. 1. Additive white noise perturbation 
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Fig. 2.  Normalized piston position and its reference signal 
 

 
Fig. 3.  Normalized tracking error signal 
 

 
Fig. 4.  Normalized voltage (command u) 
 

 
Fig. 5.  Normalized current intensity 
 

 
Fig. 6.  Cost function J  
 
Remark: In Fig.4, the fact that there is no chattering effect in 
spite of choosing suggests that the sliding surface has 
not been reached throughout the simulation time domain of 
0.3 seconds. 
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6. CONCLUSION 

An efficient control technique applied to a new concept of 
micro-pump for small satellite propulsion system has been 
presented, consisting of mixing backstepping with sliding 
modes in conjunction with a simplification hypothesis 
(decoupling the system into two subsystems: slow and fast 
one). The choice of the adjustment parameters involved in the 
command is made by using an appropriate optimization 
technique. Theoretical concepts have been presented together 
with the simulation results which are shown to be quite 
satisfactory in nominal case as well as in case where a 
perturbation is acting, this is in order to check about the level 

efficiency of the robustness property. The command remains 
within the physical boundaries and the manufacturer’s 
imposed constraints are met. Nevertheless, the major 
drawback of this controller is related to its relative 
complexity, at least for the actual available implementation 
device sampling time in our experimental laboratory. 
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