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Abstract
In this note, we single out some promising classes of

differential-algebraic equations (DAEs) with hysteresis
phenomena, and propose their meaningful generaliza-
tions. We consider DAEs of index 2 having two fea-
tures: i) non-linearity of hysteresis type modeled by a
sweeping process, and ii) impulsive control represented
by a bounded signed Borel measure. For such a DAE,
we design an equivalent structural form, based on the
Kronecker-Weierstrass transformation, and prove a nec-
essary and sufficient condition for the existence and
uniqueness of a solution to an initial value problem. We
propose a notion of generalized solution to a DAE as a
realization of impulsive trajectory relaxation. This relax-
ation is described by a dynamical system with states of
bounded variation and can be equivalently represented
as a system of “ordinary” DAEs.
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1 Introduction
Differential-algebraic equations (DAEs) is a well-

recognized and extensively studied area of the modern
applied mathematics, arisen as a natural generalization
of the concept of ODE. An interest to the framework of
DAEs was attracted by multiple applications in rigid-
body dynamics with friction and hybrid control engi-
neering (see, e.g. [Brogliato, 1999, Song, Krauss, Ku-
mar and Dupont, Stewart, 2000, Heemels, Schumacher,
and Weiland, 2000]), as well as in modeling of electric
circuits with hysteresis phenomena [Adly, Haddad, and

Thibault, 2014, Acary, Bonnefon, and Brogliato, 2011].
In this paper, we investigate and promote a very spe-

cific and poorly-studied class of DAEs, where hystere-
sis phenomena, represented through sweeping processes
[Kunze and Marques, 2000, Moreau, 1977], are com-
bined with impulsive behavior of the modeled dynamic
process. The main motivation for this study is due to the
above mentioned models of electric circuits, where im-
pulses do naturally appear, see, e.g., [Acary, Bonnefon,
and Brogliato, 2011].

2 DAEs with hysteresis
Consider the following DAE of index 2 paired with a

sweeping process of a rate independent hysteresis type
(modeled by the play operator [Brokate and Sprekels,
1996, Krejc̆ı́, 1991]):

Aẋ(t) = Bx(t) + Cy(t), x(t0) = x0, (1)

−ÿ(t) ∈ NQ(t)

(
ẏ(t)

)
,

y(t0) = y0, ẏ(t0) = y1 ∈ Q(t0).
(2)

Here, T = [t0, t1] is a given time interval, x(t), y(t) ∈
Rn; Q(t) = x(t) − Z is a “moving set”, where Z is a
given closed convex subset of Rn, and NQ

(
u
)

denotes
the normal cone to a closed convex set Q at a point u;
A,B,C ∈ R(n×n) are given constant matrices, wherein
A is singular, while the pair (A,B) is assumed to be
regular. Recall that a pair (A,B) of matrices is called
regular, if there exists λ ∈ Rn such that det(λA−B) 6=
0.

By a solution of (1), (2) we mean a pair of absolutely
continuous (W 1,1) functions (x, y) satisfying (1), (2) for
almost all (a.e.) t ∈ T with respect to (w.r.t.) the usual
Lebesgue measure.
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As is known [Gantmacher, 1988], for any regular pair
(A,B), there exist nonsingular matrices M,P such that

MAP−1 =

(
Ek 0

0 N

)
, MBP−1 =

(
J 0

0 En−k

)
,

where J has the Jordan canonical form, andN is a nilpo-
tent matrix of index l (upper triangular matrix with l
square null blocks on diagonal, such that N l = 0) also
having the Jordan form.

We assume that matrixN is nilpotent of index 2. Then,
system (1), (2) rewrites:

ż1(t) = Jz1(t) +G1y(t), z(t0) = Px0, (3)

z2(t) = −G2y(t)−NG2ẏ(t), (4)

−ÿ(t) ∈ NQ(t)

(
ẏ(t)

)
,

y(t0) = y0, ẏ(t0) = y1 ∈ Q(t0),
(5)

where z(t) .
= Px(t) =

(
z1(t), z2(t)

)
, z1(t) ∈ Rk,

z2(t) ∈ Rn−k, MC = (G1, G2), and Q(t)
.
=

P−1z(t)− Z.
The following assertion gives a necessary and suffi-

cient condition for the existence of a unique solution to
system (1), (2) (or rather (3)–(5)).

Proposition 2.1. Let (A,B) be regular. Then problem
(1), (2) has a unique solution on T iff(

0 0
0 En−k

)
Px0 =

(
0

−G2y0 −NG2y1

)
. (6)

The proof is straightforward:
1) Suppose that (A,B) is regular, and problem (1), (2)

has a unique solution on T . The change of variables
x(t) = P−1(z1(t), z2(t)) reduces (1), (2) to (3)–(5), and
(6) immediately follows for t = t0.

2) Assume that (A,B) is regular, and (6) holds. De-
note x

.
= (z1, y, ẏ), f(x)

.
= (J z1, ẏ, 0 ∈ Rn), Q(t)

.
=

Rk+n ×Q(t), t ∈ T , and rewrite (3), (5) as a perturbed
sweeping process

−ẋ + f(x) ∈ NQ(t)(x). (7)

Note that the set Q(t) is closed and convex for all t ∈ T .
Furthermore, function f is linear. Then, the existence
and uniqueness of a solution to an initial value prob-
lem for system (7) follows from the “catching-up” algo-
rithm for perturbed sweeping processes [Adly, Haddad,
and Thibault, 2014]. It remains to agree the value z2(t0)
provided (3) and (4), which is given by condition (6).

Remark 2.1. Let Q(t)
.
= x(t) − Z with x ∈ W 1,1.

Since the addressed sweeping process is defined through
a play operator, differential inclusion

−u̇(t) ∈ NQ(t)

(
u(t)

)
,

u(t0) = u0 ∈ Q(t0),

is equal to the following differential variational inequal-
ity:{〈

ρ− x(t) + u(t), u̇(t)
〉
≤ 0 ∀ ρ ∈ Z, a.e. t ∈ T,

x(t)− u(t) ∈ Z, ∀ t ∈ T.

Example 1: Modeling of an Electric Circuit by
a Differential-algebraic Sweeping Process Consider
an electric circuit involving six resistors, three inductors,
two ideal diodes, and a current source c(t) (see Fig. 1).
Recall that the ideal diode’s voltage/current law is de-
scribed by the complementary condition

0 ≤ −Vd(t) ⊥ i(t) ≥ 0,

where Vd denotes the potential across the diode and i
is the current through the diode. This complementary
condition can be reformulated as an inclusion

Vd(t) ∈ NR+

(
i(t)
)
,

where R+
.
= [0,+∞). Let Rk, Lk > 0, k = 1, 2, 3, de-

note the load resistances and the inductors, respectively.
Then the Kirchhoff’s law writes:

L1ẋ1 +R1x1 +R2(x1 − x2) + Vd1 = 0, (8)

R1x2 −R2(x1 − x2) = 0, (9)

L2ẋ3 +R1x3 +R3(x3 − x4) = 0, (10)

L3ẋ4 +R1x4 −R3(x3 − x4) + Vd2 = 0. (11)

Setting

x =


x1
x2
x3
x4

 , A =


L1 0 0 0
0 0 0 0
0 0 L2 0
0 0 0 L3

 ,

B =


R1 +R2 −R2 0 0
R2 −(R1 +R2) 0 0
0 0 R1 +R3 −R3

0 0 −R3 R1 +R3

 ,

relations (8)–(11) take the form of a differential-
algebraic sweeping process (DASP):

Aẋ(t) +Bx(t) ∈ −NC(t)

(
x(t)

)
, (12)

where C(t) = [c(t),+∞)× R2 × R+ is a moving set.
If c(·) is Lipschitz continuous, one can show that

DASP (12) has a unique solution for any initial condi-
tion x(0) = x0 ∈ C(0) satisfying the relation

x10 =

(
R1

R2
+ 1

)
x20. (13)

Indeed, equality (9) gives: x2 =
R2x1

R1 +R2
. Putting this
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Figure 1. Example 1: Electric circuit with resistors, inductors and
ideal diodes.

expression into (8), we obtain

ẋ1(t) + a x1(t) ∈ −N[c(t),+∞)

(
x1(t)

)
,

x1(0) = x10 ∈ [c(0),+∞),
(14)

where a =
1

L1

(
R1 +

R1R2

R1 +R2

)
. Now, denote ζ =

(x3, x4) and rewrite (10), (11) as follows:

ζ̇(t) + b ζ(t) ∈ −NR×R+

(
ζ(t)

)
,

ζ(0) = ζ0 ∈ R× R+,
(15)

b =


R1 +R3

L2
−R3

L2

−R3

L3

R1 +R3

L3

 .

It remains to note that (14), (15) are perturbed sweeping
processes, and each of them has a unique solution for
given x0 and c(·) [Adly, Haddad, and Thibault, 2014].

Note that the current source in Example 1 can be de-
scribed by a discontinuous control function c(·). In this
case, jumps of the moving set C(t) produce jumps of
the respective state solution, which leads to a concept of
impulsive DAE with hysteresis.

Example 2 Consider a DAE of the form (1), (2) with

A =

 1 0 −1
0 0 −1
0 0 0

 , B =

2 −1 −2
0 −1 2
0 0 1

 (16)

C =

1 −1 0
2 0 −1
0 0 0

 , (17)

paired with the differential inclusion (2) driven by the
moving set Q(t) = x(t) − B1, where B1 is the closed
unit ball in R3, under initial conditions

x(t0) = (0.5, 0.7, 0),
y(t0) = (0.3, 0.7, −0.1),
ẏ(t0) = (0.7, 0.3, 0.1).

(18)

As is clear, the pair (A,B) is regular. Then there exist
nonsingular matrices

M =

 1 −1 4
0 −1 2
0 0 1

 , P =

 1 0 0
0 1 0
0 0 1


such that

MAP−1 =

(
Ek 0

0 N

)
=

 1 0 0
0 0 1
0 0 0

 ;

MBP−1 =

(
J 0

0 En−k

)
=

 2 0 0
0 1 0
0 0 1

 .

The system thus reduces to

ż1(t) = 2z1(t) +
(
−1 −1 1

)
y(t),

z2(t) =

(
2 0 −1
0 0 0

)
y(t),

where
(
z1(t), z2(t) = (z12 , z

2
2)(t)

)
= Px(t) = x(t).

By Proposition 2.1, we see that relation (6) does hold.
Hence, problem (1), (2), (16)–(18) has a unique solution
on any finite interval T = [t0, t1], t1 > t0.

A typical trajectory of this DAE, in its equivalent form
(3)–(5), is presented on Fig. 2.

3 DAEs with Hysteresis and Control Measures
Now, we assume that dynamic processes, model by

system (1), (2), can be externally controlled; further-
more, control influences are admitted to have “shock”,
impulsive nature (e.g., in the spirit of [Acary, Bonnefon,
and Brogliato, 2011]).

Consider a generalization of (1), (2), where the part of
control inputs is played by bounded Borel measures:

Adx(t) = d
(
Bx(t) + Cy(t) +Dh(t)

)
, (19)

ḣ(t) = w(t), dw(t) = µ(dt), (20)

x(t0) = x0, h(t0) = h0, w(t0) = w0, (21)

−dẏ(t) ∈ NQ(t)

(
ẏ(t)

)
, (22)

y(t0) = y0, ẏ(t0) = y1 ∈ Q(t0), (23)

µ ∈ C∗(T,K). (24)

Here, the moving set Q(t) is defined as above, K is
a closed convex cone in Rm, h(t), w(t) ∈ Rm, D ∈
R(n×m) is given constant matrix. Though impulsive
controls — measures µ — do not appear in (19) explic-
itly, the DAE-structure of the model leads to the appear-
ance of discontinuous states with bounded total varia-
tion on T (BV -solutions). In other words, functions
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Figure 2. Example 2: Sweeping of a point by the moving set on the
plane (z1, z

1
2).

x(·), ẏ(·), w(·) can jump, and system (19)–(24) should
be considered within the class of impulsive controls and
BV -solutions (the notion of BV -solution for the sweep-
ing process (22) is given in [Samsonyuk and Timoshin,
2018]).

System (19)–(24) can be interpreted as an impulsive-
trajectory relaxation of the following conventional DAE
with hysteresis:

Aẋ(t) = Bx(t) + Cy(t) +Dh(t), (25)

ḣ(t) = w(t), ẇ(t) = v(t), (26)

x(t0) = x0, h(t0) = h0, w(t0) = w0, (27)

−ÿ(t) ∈ NQ(t)

(
ẏ(t)

)
, (28)

y(t0) = y0, ẏ(t0) = y1 ∈ Q(t0), (29)

v(t) ∈ K for a.e. t ∈ T, (30)

where x(·), ẏ(·), and w(·) are yet of class W 1,1. Again,
similar to (3)–(5), system (25)–(28) could be rewritten
as follows:

ż1(t) = Jz1(t) +G1y(t) + F1h(t),

z2(t) = −G2

(
y(t) +Nẏ(t)

)
− F2

(
h(t) +Nw(t)

)
,

ḣ(t) = w(t), ẇ(t) = v(t),

z(t0) = Px0, h(t0) = h0, w(t0) = w0,

−ÿ(t) ∈ NQ(t)

(
ẏ(t)

)
,

y(t0) = y0, ẏ(t0) = y1 ∈ Q(t0),

v(t) ∈ K for a.e. t ∈ T,

where z(t) = Px(t) =
(
z1(t), z2(t)

)
, MC =

(G1, G2), MD = (F1, F2), z1(t) ∈ Rk, z2(t) ∈ Rn−k,
and Q(t) = P−1z(t)− Z.

Let (z10, z20)
.
= Px0. Then, given µ, the initial condi-

tion guaranteeing the existence and uniqueness of a so-
lution for system (25)–(30) takes the form:

z20 = −G2y0 −NG2y1 − F2h0 −NF2w0.

By the arguments [Samsonyuk and Timoshin, 2018]
and the singular space-time transformation [Miller,
1996, Miller and Rubinovich, 2013, Sesekin and Zaval-
ishchin, 1997], impulsive system (19)–(24) can be trans-
formed to a continuous (non-impulsive) system:

η
′
(τ) = ω0(τ), η(0) = t0, η(τ1) = t1,

ξ
′

1(τ) =
(
Jξ1(τ) +G1ν(τ) + F1ζ(τ)

)
ω0(τ),

ξ2(τ) = −G2

(
ν(τ)+Nν̇(τ)

)
−F2

(
ζ(τ) +Nγ(τ)

)
,

ζ
′
(τ) = γ(τ)ω0(τ), γ

′
(τ) = ω(τ),

ξ(0) = Px0, ζ(0) = h0, γ(0) = w0,

−ν′′
(τ) ∈ NC(τ)

(
ν

′
(τ)
)
,

ν(0) = y0, ν
′
(0) = y1 ∈ C(0),(

ω̄0(τ), ω̄(τ)
)
∈ co K̃1 for a.e. τ ∈ [0, τ̄1],

where prime denotes the derivative w.r.t. the new time
variable τ , C(τ)

.
= P−1ξ(τ) − Z, K̃1

.
= {(ω0, ω) ∈

[0, 1] × K | ω0 + ‖ω‖1 = 1}, ‖ · ‖1 is the Manhattan
norm in Rn, and coA is the convex hull of a set A.

The transformed system is extended to a new
time scale τ , where variables (t, x, y, h, w) become
(η, ξ, ν, ζ, γ), while control measures µ are represented
by bounded measurable functions ω0(·), ω(·). The aux-
iliary system describes BV -solutions of (19)–(24) up to
an appropriate discontinuous time change.

4 Further Generalizations and Concluding Re-
marks

In this section, we shall propose some promising gene-
ralizations of the considered DAEs, and mark out natural
direction of the future work.

The models, overviewed in the previous sections, can
be reformulated under the framework of so-called dif-
ferential variational inequalities (DVIs) [Pang and Stew-
art, 2008]. Such a fact is not surprising in the non-
impulsive setup, where DVIs are known to cover a plenty
of dynamic complementarity problems, sweeping pro-
cesses, and differential algebraic equations [Adly, Had-
dad, and Thibault, 2014, Brokate, Krejc̆ı́, and Schnabel,
2004, Brokate and Sprekels, 1996, Facchinei and Pang,
2003, Krejc̆ı́, 1991, Moreau, 1977].

A natural extension of the impulsive model, ad-
dressed in the previous section, then leads to the con-
cept of measure-driven differential variational inequal-
ity (MDVI), which is a combination of a measure dif-
ferential equation, a finite-dimensional variational in-
equality, and/or a differential quasi-variational inequal-
ity. MDVIs are studied in concern with rate independent
hysteresis processes, and sweeping processes in [Kop-
fova and Recupero, 2016, Recupero, 2011, Recupero,
2015, Samsonyuk and Timoshin, 2018, Samsonyuk and
Timoshin, 2019].
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A class of such dynamical systems, which could be a
challenging object of our further study, formally looks as
follows:

dx(t) = f
(
t, x, y

)
dt+G

(
t, x, y

)
µ(dt),

µ ∈ C∗(T,K),
(31)

〈F
(
t, x(t), y(t)

)
, ρ− y(t)〉 ≥ 0

for all ρ ∈ Z and a.e. t ∈ T.
(32)

Here, Z is a given closed convex subset of Rk, F is a
given map of a certain appropriate type, K is a closed
convex cone in Rm, and x(·) and y(·) are functions of
bounded variation.

Note that (31), (32) can be regarded as a relaxation of
the non-impulsive DVI

ẋ = f(t, x, y) +G(t, x, y) v,

v(t) ∈ K for a.e. t ∈ T,
(33)

〈F
(
t, x(t), y(t)

)
, ρ− y(t)〉 ≥ 0

for all ρ ∈ Z and t ∈ T,
(34)

with absolutely continuous trajectories x(·), y(·) and
“usual” control v(·) ∈ L∞(T,Rm), and can be
treated by the standard singular space-time transfor-
mation [Karamzin, Oliveira, Pereira, and Silva, 2015,
Miller, 1996, Miller and Rubinovich, 2013, Sesekin and
Zavalishchin, 1997].

We also remark that, for Z = Rk and F : T × Rn ×
Rm → Rm, DVI (34) boils down to

F
(
t, x(t), y(t)

)
= 0,

while (33), (34) turns into a DAE.

As a concluding remark, we mention that the concept
of MDVI can be extended to impulsive control systems
paired with another type of complementarity conditions,
namely the “orthogonality” between the driving measure
and an input, depending on the one-sided limits of the
state. Such systems seem to be a meaningful formal-
ization of mechanical systems with blockable degrees of
freedom, and are recently studied in [Goncharova and
Staritsyn, 2017, Goncharova and Staritsyn, 2018, Starit-
syn and Goncharova, 2019].
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