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Abstract: The application of the divided derivative filters is described, applied and compared to the most 
popular tool in estimation , the extended Kalman filter (EKF). In our work the first order divided 
difference filter and the second order divided difference filter were simulated and applied to integrated 
navigation system including inertial measurement unit and global positioning system. These filters were 
tested and applied for low cost inertial sensors with very low accuracy, finally, the results are discussed 
and compared in different conditions.  
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                               1. INTRODUCTION 

In low cost integrated system, generally, the kalman filter is 
used to combine the outputs of IMU ; accelerations and 
angular rate for strapdown configuration, with kinematics’ 
model of vehicle. Using too, GPS outputs as position and 
velocity to correct INS errors growing during time. This 
correction is possible using in the linear model case, the  
Kalman filter and in the non linear case , the extended 
Kalman filter witch is the most useful filter in integrated 
navigation system. The main important problem in inertial 
navigation system is the bias and drift of the accelerometers 
and gyrometers. To salve this problem different approaches 
can be used such as indirect and direct mode and using 
different filters . The first means estimate the errors of the 
state vector using linear Kalman filter (Kim, J.2004) and add 
these values at the output of the inertial system calculation. It 
is for what we said indirect mode. For the second ; direct 
mode, it means that we estimate directly the state vector 
through non linear estimator as EKF or other non linear filter 
as Sigma point Kalman filters(Bo,T; Cui,P; Chen ,Y,2005),   
(Cho,S,Y; Wan ,S,C 2006). So, a new were introduced by 
(Norgaard. M, N. Poulsen, and O. Ravn.2000)as a divided 
derivative filters using polynomial Stirling’s interpolation 
(Simandl,M.and J.Duik 2006).  To compare and test the 
efficiency of these new algorithms, we use very low accuracy 
inertial sensors with a very high bias and drift. They were 
compared and tested to estimated position, velocity and 
attitude of an aerial vehicle. 

                2. INERTIAL NAVIGATION SYSTEM 

The inertial navigation system is based on the using of the 
inertial sensors as accelerometers and gyroscopes, for 
plateforme inertial navigation systems, but usually these are  

very expensive and in several applications , we used 
strapdown inertial navigation systems , using gyrometers than 
gyroscopes. To understand more the inertial navigation, we 
have to distinguish the different frames included in this kind 
of navigation as in the below in figure(1). 

 

 

 

 

 

 

 

 

 

Fig.1. inertial (i) frame, earth frame (e) and navigation 
frame(n) 

The mechanisation of strapdown inertial navigation is done 
as this (Savage 1998)( Crassidis, J.L 2006): 

The attitude of the vehicle as, yaw , pitch and roll angle are 
obtained using the following integration : 
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According to the director cosines matrix and attitude 
integration’s matrix: 
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ϕ : latitude of the vehicle. 

Ω : earth angular rate. 

For position and velocity integration we have to use the 
following equations in North, East and Down direction of 
navigation frame (n): 
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Where [ ]TLLar h    λϕ=  is the vector of the three 

positions: latitude, longitude and altitude of the vehicle. 

By this, we can integrate the last equation to obtain the 
position in the navigation frame using the following equation: 
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2.2 Errors in inertial sensors 

The principals errors in the inertial system are: bias, scale 
factors and non linearity as in the following equation: 

     

 

 

The inertial navigation system presents some advantages and 
disadvantages as follow  : 

-Advantages: complete output solution, good accuracy during 
short time, high data rate and small size. 

-Disadvantages: accuracy decrease after a long time, gravity 
sensitivity and obligatory external aid for initialization. 

     

    3.EXTERNAL AID FOR INERTIAL NAVIGATION 

To correct the inertial navigation system we have to use an 
external aid as radio navigation system providing solutions in 
position and velocity (Kim,J,2004), in the best case attitude 
of the vehicle as it is presented in the figure2(Van der 
Merwe.R, E. Wan, and S. J. Julier 2004). 

 

Figure.2. integrated navigation system using GPS as external 
aid of navigation. 

In our work we assumed that the external aid is the global 
positioning system outputs as position ,velocity and using 
three receivers the attitude angles of the vehicle. 

                            4. STATE EQUATIONS  

In this case, we have choose to integrate the positions using 
the distances north, east and down without use latitude 
,longitude and altitude as presented in previous paragraph,  
the velocities are integrated in north ,east and down 
directions, and the angles integration provide yaw, pitch and 
roll angles of the vehicle  the state equations in discrete time 
could be written as the following forms (Sukkarieh.S 1999): 

 

[ ]{ }
[ ] 
















+
















∆+−+−
∆++−+−

∆−+−
=
















)(w

)(w

)(w

)()()1(E)1(ψ

)(f)(f)1(C)1(v

)1(v)1(p

)(ψ

)(v

)(p

k

k

k

tkkkk

tgkkkk

tkk

k

k

k

n

n

n

v

p

bbn
bn

n
bb

b
nn

nn

n

n

n

ψδωω
δ       ( 7 ) 

 

 Where ))(w),(u),1(xf()(x kkkk −= is the state vector 

to estimate and contains three positions, three velocities and 
three angles of vehicles attitude (Sukkarieh.S 1999). 
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The observation equation from GPS is linear as: 

                             kkk VXHZ +=+ )(1                       (10) 

Where observation matrix is as follow: 
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)(kQ is the noise covariance matrix of GPS measurement. 

The noise is assumed white Gaussian additive noise. 

                                    5. FILTERING 

In this section the three algorithms are presented, the 
extended Kalman filter, the two divided difference filters at 
the first order and the second order interpolation and are as in 
the following subsections. 

5.1Extended Kalman filter (EKF)  

It is the  most used technique in non linear filtering . for each 
time of calculation of the algorithm, the non linear dynamic 
and the measurement functions are approximated to the first 
order of Taylor development  around the current estimates. 
The algorithm of EKF is done as this (Haykin, S. 2000) 
(Kim.J2004): 

 

 

The extended Kalman filter is the useful filter in all 
engineering domains and especially in aerospace. 

5.2 The 1st order Divided difference filter  DD1 

As a starting point of the derivation of the divided difference 
1st order the basic structure of the Kalman filter can be 
supposed (Norgaard,M.,N.K.Poulsen and O.Ravn ,2000). 
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Sk  is the Cholesky decomposition of the covariance matrix 

Pk .The functions kf and kh  are approximated using a 

polynomial interpolation of  Stirling’s first order. 

 
5.3 The 2nd order Divided difference filter  DD2 

As presented , the algorithm use the second order polynomial 
interpolation of Stirling’s and we have to define two other 
matrix comparing with the 1st order divided difference filter 
DD1. these matrix are presented in the following expressions: 
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• Filtering :  
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The algorithm  DD2 

The length of the difference interval is h=1   
(Norgaard,M2000 ). 

   

Note: in our case the state model is non linear only 
according to the system equation , the measurement equation 
is linear as for GPS observations ,position and velocity. 

 

 

                                  6. SIMULATION 

In our work the duration of simulation was 25 s at first time 
and 100s at second time, EKF, DD1 and DD2 were 
implemented using MATLAB software, with and without 
selective Availability of GPS outputs conditions, an we 
assumed that all noises are white Gaussian noises ,the 
simulations data are as in following: 

 Sample time ∆ t=0.005s, receiver noise=10m, accelerometer 

bias=1m/s2 , gyrometer’s bias=2°/s ,velocity=150-220m/s, 
initial Uncertainty in North distance  :  1000m, initial 
Uncertainty in East distance :   1000m, initial Uncertainty 
initial in Down distance  :  100m , initial Uncertainty in VN :  
5m/s, initial Uncertainty in VE :  5m/s, initial Uncertainty in 
VD : 10m/s, initial Uncertainty in ϕ(yaw): 1°, Uncertainty  in  
θ (pitch) : 1° , initial Uncertainty initial in ψ (roll) : 1°, and 
GPS data in SA conditions are augmented from 10m to 1000 
m during 40 seconds for positions ,from 5 m/s to 50m/s for 
velocities and from1° to 10° for attitudes angles . concerning 
the initialization step of the three filters , it was the same and 
the following value: 80% from the true values of the state 
vector. GPS data were used at the frequency of 10Hz and the 
inertial integration process was made at the frequency of 200 
Hz. We can observe in the following  figures the simulation 
results and comment them easily. 

 

6.1. velocity estimation 

 

 

 

 

6.2. Attitude estimation (yaw,pitch and roll) 
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Fig.3. North velocity estimation (m/s) during time (s) 

  Fig.5 .Down velocity estimation(m/s) during time in second (s) 

Fig.7 .pitch angle estimation in degrees (°) during timle in second (s) 

Fig.6. Roll angle estimation in degrees (°) during time in second (s) 

Fig.4. East velocity estimation (m/s) during time (s) 



 
 

     

 

 

 

The simulations were repeated in selective availability 
conditions and have provided the following results: 

6.3. velocity estimation with selective availability 

 

 

 

 

 

6.5 Observation 

These simulations were made in order to proof the efficiency 
of the efficiency of the difference divided filters comparing 
with the extended Kalman filter as it is clear on the pictures 
witch show that EKF can’t track the true trajectories or the 
true values of the state vector elements. So, when the 
selective availability is introduced , we observe that DD1 and 
DD2 return immediately on the tracked trajectory at the 
opposite of the EKF witch take more time to track and return 
on the desired values. 

6.4. Attitude estimation  

 

 

 

 

For the attitude estimation, the same observations ,in addition 
to the fact that DD1 and DD2 present some instabilities to 
estimate the angles of attitude during selective availability 
period.  

 

7. CONCLUSION 

After testing the various algorithms to estimate a nonlinear 
kinematics’ model, we can conclude that DD1 and DD2 
provide better results than EKF in all conditions of 
simulations, due to the low accuracy of the inertial sensors , 
the EKF can’t estimate accurately the true positions, 
velocities and attitudes, at the opposite of the interpolation 
filters , they are centered on the true trajectories and provide 
high efficiency too, in selective availability conditions, when 
DD1 and DD2 return immediately after the end of Selective 
availability period, the EKF take more time to track the true 
values . To obtain the equivalent results with EKF, it will be 
necessary to estimate and augment the state vector with bias 
and drift estimation however with DD1 and DD2, with the 
simple state vector , we can estimate with very high accuracy 
the positions , velocities and the attitude of the vehicle. We 
can also said that in our case, DD1 and D2 provide same 
estimation’s accuracy because the non linear function in our 
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Fig.8. Yaw angle estimation in degrees (°) during time in second (s) 

Fig.9. North velocity estimation (m/s) during time (s) 

  Fig.10. East velocity estimation (m/s) during time (s) 

Fig.11. North velocity estimation (m/s) during time (s) 

 Fig.12. Roll angle estimation in degrees (°) during time in second (s) 

   Fig.13. Pitch angle estimation in degrees (°) during time in second 

  Fig.15. Yaw angle estimation in degrees (°) during time in second (s) 



 
 

     

 

model is only the dynamic equation witch is used in the 
predictive step only , however the measurement equation is 
linear. In other way, some instabilities are observed using the 
interpolation filters in angle’s integration due to the non 
linear model of the three angles ; yaw, pitch and roll, so, in 
the future work we will try to modify the angle integration 
model to obtain a stable estimators an confirm these results 
by real experience on digital signal processing and will apply 
these algorithms using a non linear state model both on 
dynamic equation and measurement equation. 
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