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Abstract: The application of the divided derivative filtessdescribed, applied and compared to the most
popular tool in estimation , the extended Kalmdterfi(EKF). In our work the first order divided
difference filter and the second order divided etihce filter were simulated and applied to integta
navigation system including inertial measuremerit and global positioning system. These filters ever
tested and applied for low cost inertial sensotth wery low accuracy, finally, the results are dssed
and compared in different conditions.
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very expensive and in several applications , weduse

1. INTRODUCTION strapdown inertial navigation systems , using gyetars than
In low cost integrated system, generally, the kalrfier is  gyroscopes. To understand more the inertial navigaive
used to combine the outputs of IMU ; acceleratiamsl have to distinguish the different frames includedhis kind
angular rate for strapdown configuration, with kirtics’ of navigation as in the below in figure(1).
model of vehicle. Using too, GPS outputs as pasitmd
velocity to correct INS errors growing during time&his
correction is possible using in the linear modetecathe
Kalman filter and in the non linear case , the edtd
Kalman filter witch is the most useful filter intagrated
navigation system. The main important problem iartial
navigation system is the bias and drift of the Broeneters
and gyrometers. To salve this problem differentrapphes
can be used such as indirect and direct mode aimd) us
different filters . The first means estimate theoes of the
state vector using linear Kalman filter (Kim, J.20@&nd add
these values at the output of the inertial systaloutation. It
is for what we said indirect mode. For the secordirect
mode, it means that we estimate directly the steetor
through non linear estimator as EKF or other noedr filter
as Sigma point Kalman filters(Bo,T; Cui,P; Chen2005, Fig.1. inertial (i) frame, earth frame (e) and mmtion
(Cho,S,Y; Wan ,S,C 2006). So, a new were introdusgd frame(n)
(Norgaard. M, N. Poulsen, and O. Ravn.2000)as a&etiv o o o
derivative filters using polynomial Stirling’s imeolation The mechanisation of strapdown inertial navigati®rdone
(Simandl,M.and J.Duik 2006). To compare and tést t as this (Savage 1998)( Crassidis, J.L 2006):
efficiency of these new algorithms, we use very Emeuracy The attitude of the vehicle as, yaw , pitch and aolgle are
inertial sensors with a very high bias and drithey were qptained using the following integration :
compared and tested to estimated position, veloaitd
attitude of an aerial vehicle.
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The inertial navigation system is based on thequsihthe ¥
inertial sensors as accelerometers and gyroscofmes,
plateforme inertial navigation systems, but usutibse are



According to the director cosines matrix and adiiu
integration’s matrix:
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mesuré

@ : latitude of the vehicle.

Q : earth angular rate.

For position and velocity integration we have te ube
following equations in North, East and Down direatiof
navigation frame (n):

Vy (ry +h) 0 0 ¢
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Where r'® =[g¢ A h]" is the vector of the three
positions: latitude, longitude and altitude of thehicle.

By this, we can integrate the last equation to iobthe
position in the navigation frame using the follogiequation:
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2.2 Errors in inertial sensors

The principals errors in the inertial system arisp scale
factors and non linearity as in the following eqgoiat
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The inertial navigation system presents some adgastand
disadvantages as follow :

-Advantages: complete output solution, good acgudacing
short time, high data rate and small size.

-Disadvantages: accuracy decrease after a long frasity
sensitivity and obligatory external aid for initizdtion.

3.EXTERNAL AID FOR INERTIAL NAVIGATION

To correct the inertial navigation system we havaise an
external aid as radio navigation system providiolgittons in
position and velocity (Kim,J,2004), in the besteadtitude
of the vehicle as it is presented in the figureZ{\Vaer
Merwe.R, E. Wan, and S. J. Julier 2004).

INS > Integration >
filter
- Position
Velocity
Attitude
GPS

Figure.2. integrated navigation system using GP&xéernal
aid of navigation.

In our work we assumed that the external aid isglobal
positioning system outputs as position ,velocityl arsing
three receivers the attitude angles of the vehicle.

4. STATE EQUATIONS

In this case, we have choose to integrate theipnosiusing

the distances north, east and down without useéudsi

Jongitude and altitude as presented in previousgraph,

the velocities are integrated in north ,east andvrdo
directions, and the angles integration provide ypitch and

roll angles of the vehicle the state equationdigtrete time

could be written as the following forms (Sukkar&1.999):
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Where X(K) = f(x(k —1),u(k),w(k)) is the state vector
to estimate and contains three positions, threeciteds and
three angles of vehicles attitude (Sukkarieh.S 1999
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The observation equation from GPS is linear as:

Z., =H(X,)+V, (10)
Where observation matrix is as follow:
10 0|0
=0 1 0|0 (11)
0 0 10j|0
HV.(K]=0
Where : (12)

BV KV, (0'1=QK)

Q(k)is the noise covariance matrix of GPS measurement.

The noise is assumed white Gaussian additive noise.
5. FILTERING

In this section the three algorithms are presentie,

extended Kalman filter, the two divided differenfiléers at

the first order and the second order interpolasind are as in
the following subsections.

5.1Extended Kalman filter (EKF)

It is the most used technique in non linear fittgr. for each
time of calculation of the algorithm, the non lingynamic
and the measurement functions are approximatehetdirst
order of Taylor development around the currentmedes.
The algorithm of EKF is done as this (Haykin, S.0@D
(Kim.J2004):

 Initialisation : % et p, .

* Prediction :
)Zk+1/k = fk()zk)

Pe/k- :Fk()zk)Pk—l Fk()zk)T +Qy

* Filtering :
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The extended Kalman filter is the useful filter il
engineering domains and especially in aerospace.

5.2 The ' order Divided difference filter DD1

As a starting point of the derivation of the diuiddifference
1* order the basic structure of the Kalman filter dae
supposed (Norgaard,M.,N.K.Poulsen and O.Ravn ,2000)
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Where :
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S, is the Cholesky decomposition of the covariancérima

P, .The functions f and h, are approximated using a
polynomial interpolation of Stirling’s first order

5.3 The 2nd order Divided difference filter DD2

As presented , the algorithm use the second omlgnpmial
interpolation of Stirling’s and we have to defingot other
matrix comparing with the®lorder divided difference filter
DDL1. these matrix are presented in the followingresgsions:
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The algorithm DD2

6.1. velocity estimation

The length of the difference interval is h=1
(Norgaard,M2000 ).
=ch{#}
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Note:

according to the system equation , the measureswrtion
is linear as for GPS observations ,position andeiy.

6. SIMULATION

In our work the duration of simulation was 25 digt time
and 100s at second time, EKF, DD1 and DD2 were
implemented using MATLAB software, with and without
selective Availability of GPS outputs conditionsn ave
assumed that all noises are white Gaussian noibes
simulations data are as in following:

in our case the state model is non linear only

vitesse Nord

vitesse Est

vitesse Doan

6.2.

Sample time/A t=0.005s, receiver noise=10m, accelerometer ©
bias=1m/< , gyrometer’s bias=2°/s ,velocity=150-220m/s,

initial Uncertainty in North distance :

Uncertainty in East distance :

initial in Down distance :

100m,

1000m, initial
1000m, initial Ernainty
initial Unceirity in VN :

5m/s, initial Uncertainty in VE : 5m/s, initial \dertainty in
VD : 10m/s, initial Uncertainty ip(yaw): 1°, Uncertainty in

0 (pitch) : 1°,

initial Uncertainty initial inp (roll) : 1°, and

GPS data in SA conditions are augmented from 106060
m during 40 seconds for positions ,from 5 m/s ton&Ofor
velocities and from1° to 10° for attitudes anglesncerning

the initialization step of the three filters ,

iaw/the same and

the following value: 80% from the true values oé thtate
vector. GPS data were used at the frequency of Holdzhe
inertial integration process was made at the frequef 200
Hz. We can observe in the following figures theudation

results and comment them easily.
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Attitude estimation (yaw,pitch and roll)
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The simulations were repeated in selective avdifgbi
conditions and have provided the following results:

6.3. velocity estimation with selective availa§ilit
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6.5 Observation

These simulations were made in order to proof ffieiency

of the efficiency of the difference divided filtecomparing
with the extended Kalman filter as it is clear be pictures
witch show that EKF can't track the true trajeatsrior the
true values of the state vector elements. So, wthen
selective availability is introduced , we observattDD1 and
DD2 return immediately on the tracked trajectory the

opposite of the EKF witch take more time to traokl aeturn
on the desired values.

6.4. Attitude estimation

roulis vs temps

1000

-1000 [

-1500

-2000 - roulis INS
roulis réel
roulis GPS
- EKF

— — — DD1

-2500

-3000 -

-3500

Fia.12 Roll anale estimation in dearees (°) durina timaa@cond (s

60

tangage INS
tangage réel
tangage GPS
- EKF

a0l

20 |
! DD2

| [
(il
O RS oG L R
§ g : IR g
- g
20} i

_a0| 4

60| 4

-80 L L L L
o 5 10 15 20 25

Fia.13 Pitch anale estimation in dearees (°) durina timeeconc
3500 .

lacet INS
lacet réel
lacet GPS
- EKF

— — — pD1

3000 -

2500 -

2000 B

lacet

1500 B

1000 B

Fia.15 Yaw anale estimation in dearees (°) durina time irond (s

For the attitude estimation, the same observatioraddition
to the fact that DD1 and DD2 present some instaslito
estimate the angles of attitude during selectivailability
period.

7. CONCLUSION

After testing the various algorithms to estimataaalinear

kinematics’ model, we can conclude that DD1 and DD2

provide better results than EKF in all conditions o
simulations, due to the low accuracy of the inéd@nsors ,
the EKF can't estimate accurately the true posijon
velocities and attitudes, at the opposite of therpolation
filters , they are centered on the true trajectodrd provide
high efficiency too, in selective availability catidns, when
DD1 and DD2 return immediately after the end ofeggle
availability period, the EKF take more time to kabe true
values . To obtain the equivalent results with EKRyill be

necessary to estimate and augment the state wsittobias
and drift estimation however with DD1 and DD2, witie

simple state vector , we can estimate with very ligcuracy
the positions , velocities and the attitude of viedicle. We
can also said that in our case, DD1 and D2 prosgia®e
estimation’s accuracy because the non linear fondti our



model is only the dynamic equation witch is usedthe

predictive step only , however the measurement texqués

linear. In other way, some instabilities are obedrusing the
interpolation filters in angle’s integration due tbe non
linear model of the three angles ; yaw, pitch aoit] s0, in

the future work we will try to modify the angle @gration
model to obtain a stable estimators an confirmehesults
by real experience on digital signal processing aitidapply

these algorithms using a non linear state modeh lmot
dynamic equation and measurement equation.

REFERENCES

Bo Tang; Cui Pingyuan; Chen Yangzho{005) Sigma-
Point Kalman Filters for GPS Based Position Estiomat
Information, Communications and Signal ProcessingFifth
International Conferencen 0-0 0 Page(s):213 — 217.

Cho Seong Yun; Wan Sik Choi (2006) ;Robust positign
technique in low-cost DR/GPS for land navigation;
Instrumentation and Measurement, |IEEE Transactions
Volume 55, Issue 4, Page(s):1132 -1142 .

Crassidis, J.L (2006) Sigma-point Kalman filterirfgr

integrated GPS and inertial navigatiomerospace and
Electronic Systems, IEEE Transactions on Volu@elgsue
2, Page(s): 750 — 756

Haykin Simon , editor.Kalman Filtering and Neural
Networks(2001)., chapter 7 - The Unscented Kalman Filter,
E. A. Wan and R. van der Merwe, pages 221-280. thaap
and Learning Systems for Signal Processing,
Communications, and Control. Wiley.

Kim.J,(2004). Autonomous Navigation for Airborne
Applications. PhD thesis, Australian Centre for ItFie
Robotics, The University of Sydney.

Norgaard. M, N. Poulsen, and O. Ravn. (2000) New
Developments in State Estimation for Nonlinear Sywt.
Automatica 36(11):1627-1638.

Savage.P.G.(1998) Strapdown Inertial Navigatioedration
Algorithm Design Part 1: Attitude Algorithmslournal of
Guidance, Controland Dynamics21(1):19-28.

Simandl,M. and J.Duik(2006). Design of derivativeeef
smothers and predictors. IiPreprints of the 14 th IFAC
Symposium on System identificatiblewcastle.

Sukkarieh.S, ,(1999) “Aided Inertial Navigation Syms for
Autonomous Land Vehicles,” PhD thesis’, Australi@antre
for Field Robotics, The University of Sydney.

Van der Merwe.R, E. Wan, and S. J. Julier (2004gm&-
Point Kalman Filters for Nonlinear Estimation andnSor-
Fusion: Applications to Integrated Navigation. In
Proceedings of the AIAA Guidanddavigation & Control
ConferenceProvidence, RI.



