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Abstract— A singular linear-quadratic optimization problem
for a linear system of differential equations with aftereffect is
considered. The characteristic of the problem is that the optimal
control contains impulsive components concentrated on the
boundaries of the control time interval. In contrast to [1], more
general form of the system that includes terms with distributed
delay and more complicated functional is considered here.
Regular linear-quadratic problems for systems with aftereffect
were investigated in [2]. Singular linear-quadratic problem
without aftereffect was considered in [3], [4].

I. I NTRODUCTION

Singular linear-quadratic optimization problems are of
great practical importance [5]. Models of such structure de-
scribe physical problems in space flight dynamics, robotics,
electrophysics etc. That concerns systems with aftereffect as
well. It is shown in [3], [4] that in case without aftereffect
such problems have no solutions in a class of ordinary
controls and it is necessary to extend the set of admissible
controls allowing impulsive controls for providing the exis-
tence of solution. It should be mentioned that for practical
problems, the singularity of a functional is often met [5] and,
therefore, the investigation of such problems is actual.

II. STATEMENT OF THE PROBLEM AND ITS REDUCTION

A. Statement of the problem

Consider the problem of minimizing the functional

J [v(·)] = xT (T )Sx(T ) +

T∫

t0

[
xT (t)Φ0(t)x(t)

+xT (t)

0∫

−τ

Φ1(t, θ)x(t+θ)dθ+

0∫

−τ

xT (t+θ)ΦT
1 (t, θ)dθ x(t)

+

0∫

−τ

xT (t + s)Φ2(t, s)x(t + s)ds+

+

0∫

−τ

0∫

−τ

xT (t + θ)Φ3(t, θ, ρ)x(t + ρ)dθdρ

+xT (t− τ)Φ4(t)x(t− τ)
]
dt, (1)
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whereΦ0(·), Φ1(·, ·), Φ2(·, ·), Φ3(·, ·, ·), Φ4(·) are symmet-
ric (excluding Φ3 and Φ1) continuousn × n-dimensional
matrix functions,S is a symmetric nonnegative definiten×n
matrix with constant elements along the trajectories of the
system of differential equations

ẋ(t) = A(t)x(t) + Aτ (t)x(t− τ)

+

0∫

−τ

G(t, θ)x(t + θ)dθ + B(t)v̇(t) (2)

with initial condition

x(t) = ϕ(t), t0 − τ ≤ t ≤ t0,

which will be called the problem1. Here,x(t), ϕ(t) aren-
dimensional vector functions ,v(t) is am-dimensional vector
function,Aτ (t), A(t), G(t, θ) are continuousn× n matrix
functions,B(t) is a continuously differentiablen×m matrix
function.

Since the problem1 have no solution in a class of
absolutely continuous functions, it is necessary to extend
the problem by introducing impulsive controls. Letv(t)
and, therefore,x(t) are functions of bounded variation with
derivatives regarded as distributional derivatives [6]. It is
reasonable to suppose thatϕ(t) is also a function of bounded
variation. Further, for distinctness we assume that the func-
tions x(t) and v(t) are continuous from the left on the
interval (t0, T ) andv(t0) = 0.

In this case under a solution of the equation (2) we imply
a solution of the corresponding integral equation

x(t) = ϕ(t0) +

t∫

t0

A(s)x(s)ds +

t∫

t0

Aτ (s)x(s− τ)ds

+

t∫

t0

0∫

−τ

G(s, θ)x(s + θ)dθds +

t∫

t0

B(s)dv(s)

with Riemann-Stieltjes integrals.

B. Reduction of the problem to a regular one

Transforming the problem1 by a change of variables

y(t) = x(t)−B(t)v(t), (3)

we find thaty(t) satisfies the system of differential equations

ẏ(t) = A(t)y(t) + Aτ (t)y(t− τ) +

0∫

−τ

G(t, θ)y(t + θ)dθ



+
(
A(t)B(t)− Ḃ(t)

)
v(t) + Aτ (t)B(t− τ)v(t− τ)

+

0∫

−τ

G(t, θ1)B(t + θ1)v(t + θ1)dθ1 (4)

with initial conditions

y(t) = ϕ(t), v(t) = 0, t0 − τ ≤ t ≤ t0, (5)

and the functional (1) takes the form

J∗[v(·)] =
(
y(T ) + B(T )v(T )

)T

S
(
y(T ) + B(T )v(T )

)

+

T∫

t0

[(
y(t) + B(t)v(t)

)T

Φ0(t)
(
y(t) + B(t)v(t)

)

+
(
y(t) + B(t)v(t)

)T

×
0∫

−τ

Φ1(t, θ)
(
y(t + θ) + B(t + θ)v(t + θ)

)
dθ

+

0∫

−τ

(
y(t + θ) + B(t + θ)v(t + θ)

)T

ΦT
1 (t, θ)dθ

×
(
y(t) + B(t)v(t)

)
+

0∫

−τ

(
y(t + s) + B(t + s)v(t + s)

)T

×Φ2(t, s)
(
y(t + s) + B(t + s)v(t + s)

)
ds

+

0∫

−τ

0∫

−τ

(
y(t + θ) + B(t + θ)v(t + θ)

)T

×Φ3(t, θ, ρ)
(
y(t + ρ) + B(t + ρ)v(t + ρ)

)
dθdρ

+
(
y(t− τ) + B(t− τ)v(t− τ)

)T

×Φ4(t)
(
y(t− τ) + B(t− τ)v(t− τ)

)]
dt. (6)

If the terminal part in the functional (6) depends onv(T )
(i.e. whenSB(T ) 6= 0), it is possible to minimize it with
respect tov(T ). Since the matrixS is nonnegative definite,
the terminal part reaches it’s minimal value at points of a
manifold described by the system of equations

BT (T )S
[
B(T )v(T ) + y(T )

]
= 0.

For the case det
(
BT (T )SB(T )

)
6= 0 the last system has

the solution of the form

v(T ) = −
(
BT (T )SB(T )

)−1

BT (T )Sy(T ).

If det
(
BT (T )SB(T )

)
= 0, to solve the system one can use

the technique of semiinverse matrices [7] and obtain

v(T ) = −
(
BT (T )SB(T )

)−
BT (T )Sy(T )

+
(
E −

(
BT (T )SB(T )

)−
BT (T )SB(T )

)
p, (7)

where U− is the semiinverse matrix for a matrixU, p is
an arbitrarym-dimensional vector. Note ifU is a quadratic
matrix with detU 6= 0, thenU− = U−1.

Substituting (7) into the functional (6) and taking into
account that by definition of semiinverse matrix

(
BT (T )SB(T )

)

×
(
E −

(
BT (T )SB(T )

)−
BT (T )SB(T )

)
= 0,

we obtain the following functional to be minimized

J∗∗[v(·)] = y(T )T Ny(T )+

+

T∫

t0

[(
y(t) + B(t)v(t)

)T

Φ0(t)
(
y(t) + B(t)v(t)

)

+
(
y(t) + B(t)v(t)

)T

×
0∫

−τ

Φ1(t, θ)
(
y(t + θ) + B(t + θ)v(t + θ)

)
dθ

+

0∫

−τ

(
y(t + θ) + B(t + θ)v(t + θ)

)T

ΦT
1 (t, θ)dθ

×
(
y(t) + B(t)v(t)

)
+

0∫

−τ

(
y(t + s) + B(t + s)v(t + s)

)T

×Φ2(t, s)
(
y(t + s) + B(t + s)v(t + s)

)
ds

+

0∫

−τ

0∫

−τ

(
y(t + θ) + B(t + θ)v(t + θ)

)T

×Φ3(t, θ, ρ)
(
y(t + ρ) + B(t + ρ)v(t + ρ)

)
dθdρ

+
(
y(t− τ) + B(t− τ)v(t− τ)

)T

×Φ4(t)
(
y(t− τ) + B(t− τ)v(t− τ)

)]
dt, (8)

where

N =
(
E −B(T )

(
BT (T )SB(T )

)−
BT (T )S

)T

S

×
(
E −B(T )

(
BT (T )SB(T )

)−
BT (T )S

)
.

Further, the optimization problem of minimizing the func-
tional (8) along the trajectories of system (4), (5) is called the
problem2 . The distinguishing feature of the problem2 is
that the controlv(t) is a function of bounded variation here
and, therefore, the trajectoryy(t) is an absolutely continuous
function. Thus, we have obtained the auxiliary problem
which is the regular problem that can be solved using well
known methods of optimal control theory.



III. SOLUTION OF THE AUXILIARY PROBLEM

Theorem 1:Let for t ∈ [t0, T ] the following conditions
hold

1) det
(
BT (t)Φ0(t)B(t) + P6(t, 0)

)
6= 0,

2) the matrix
(

1
τ Φ0(t) Φ1(t, θ)

ΦT
1 (t, θ) Φ2(t, θ)

)

is nonnegative definite forθ ∈ [−τ, 0],
3) the matrixΦ3(t, θ, ρ) has of the structure

Φ3(t, θ, ρ) = Φ̃3(t, θ) Φ̃3(t, ρ),

4) the matrixΦ4(t) is nonnegative definite.
Then the optimal control for the problem2 has the form

v(t) = W0(t)y(t) +

0∫

−τ

W1(t, θ)y(t + θ) dθ

+

0∫

−τ

W2(t, θ1)v(t + θ1) dθ1. (9)

Here
W0(t) = −H−1(t) F0(t)

W1(t, θ) = −H−1(t)F1(t, θ),

W2(t, θ1) = −H−1(t)F2(t, θ1),

where

F0(t) = PT
1 (t, 0) + BT

1 (t)P (t) + PT
5 (t, 0) + BT (t)Φ0(t),

F1(t, θ) = BT
1 (t)Q(t, θ) + PT

2 (t, θ, 0) + BT (t)Φ1(t, θ),

F2(t, θ1) = BT
1 (t)P1(t, θ1) + PT

3 (t, θ1, 0)

+BT (t)Φ1(t, θ1)B(t + θ1),

H(t) = BT (t)Φ0(t)B(t) + P6(t, 0),

B1(t) = A(t)B(t)− Ḃ(t)

and the matrices

P (t), P4(t, s) = PT
4 (t, s), P6(t, r), P1(t, θ1), R(t, θ, ρ)

= RT (t, ρ, θ), P2(t, θ, θ1), P5(t, p), Q(t, θ), P3(t, θ1, θ2)

= PT
3 (t, θ2, θ1)

satisfy the equations

dP (t)
dt

+ Q(t, 0) + QT (t, 0) + PT (t)A(t) + AT (t)P (t)

+P4(t, 0) + Φ0(t) = FT
0 (t)H−1(t)F0(t),

( ∂

∂t
− ∂

∂θ

)
Q(t, θ)+R(t, 0, θ)+P (t)G(t, θ)+AT (t)Q(t, θ)

+Φ1(t, θ) = FT
0 (t)H−1(t)F1(t, θ),

( ∂

∂t
− ∂

∂θ
− ∂

∂ρ

)
R(t, θ, ρ)+GT (t, θ)Q(t, ρ)+QT (t, θ)G(t, ρ)

+Φ3(t, θ, ρ) = FT
1 (t, θ)H(t)−1F1(t, ρ),

( ∂

∂t
− ∂

∂θ1

)
P1(t, θ1) + P2(t, 0, θ1) + AT (t)P1(t, θ1)

+P (t)G(t, θ1)B(t + θ1) + Φ1(t, θ1)B(t + θ1)

= FT
0 (t)H−1(t)F2(t, θ1),

( ∂

∂t
− ∂

∂θ
− ∂

∂θ1

)
P2(t, θ, θ1) + QT (t, θ)G(t, θ1)B(t + θ1)

+GT (t, θ)P1(t, θ1) + Φ3(t, θ, θ1)B(t + θ1)

= FT
1 (t, θ)H−1(t)F2(t, θ1),

( ∂

∂t
− ∂

∂θ1
− ∂

∂θ2

)
P3(t, θ1, θ2)

+BT (t+θ1)GT (t, θ1)P1(t, θ2)+PT
1 (t, θ1)G(t, θ2)B(t+θ2)

+BT (t + θ1)Φ3(t, θ1, θ2)B(t + θ2)

= FT
2 (t, θ1)H−1(t)F2(t, θ2),

( ∂

∂t
− ∂

∂s

)
P4(t, s) + Φ2(t, s) = 0,

( ∂

∂t
− ∂

∂p

)
P5(t, p) + Φ2(t, p)B(t + p) = 0,

( ∂

∂t
− ∂

∂r

)
P6(t, r) + BT (t + r)Φ2(t, r)B(t + r) = 0 (10)

with the boundary conditions

P (T ) = N, Q(T, θ) = R(T, θ, ρ) = P1(T, θ1) =

= P2(T, θ, θ1) = P3(T, θ1, θ2) = P4(T, s)

= P5(T, p) = P6(T, r) = 0,

P (t)Aτ (t)B(t− τ) = P1(t,−τ),

BT (t− τ)AT
τ (t)Q(t, θ) = PT

2 (t, θ,−τ),

AT
τ (t)P (t) = QT (t,−τ),

AT
τ (t)Q(t, θ)+QT (t, θ)Aτ (t) = RT (t, θ,−τ)+R(t,−τ, θ),

AT
τ (t)P1(t, θ1) = P2(t,−τ, θ1),

BT (t− τ)AT
τ (t)P1(t, θ1) + PT

1 (t, θ1)Aτ (t)B(t− τ)

= PT
3 (t, θ1,−τ) + P3(t,−τ, θ1),

Φ4(t) = P4(t,−τ),

Φ4(t)B(t− τ) = P5(t,−τ),

BT (t− τ)Φ4(t)B(t− τ) = P6(t,−τ),

for t < T , −τ ≤ θ, θ1, θ2, ρ, p, r, s ≤ 0.
Proof: The conditions (2)–(4) guarantee nonnegative

definiteness of the functional (8). The validity of the theorem
is easy to establish using the technique from [2].



IV. OPTIMAL CONTROL FOR THE INITIAL PROBLEM

The optimal program control for the initial problem is
determined by differentiating the control (9) in distribution
sense [8].

Since the value of the functionv(t) equal to zero fort ≤ t0
and defined by formula (7) fort ≥ T, the distributional
derivative of this function has the form

v̇(t) = ∆v(t0, ϕ(·)) δ(t− t0) + v̇r(t)

+∆v(T, x(T − 0)) δ(t− T ). (11)

Here, v̇r(t) is the regular part of the generalized optimal
control v̇(t). I.e. the optimal prograṁv(t) for the problem1
generates impulses only at the initial and the terminal points
of the control time interval and is a summable function in
the interior of this interval.

Taking into account (3), we have

v(t) = W0(t)
(
x(t)−B(t)v(t)

)
+

0∫

−τ

W1(t, θ)x(t + θ) dθ

+

0∫

−τ

[
W2(t, θ1)−W1(t, θ1)B(t + θ1)

]
v(t + θ1) dθ1. (12)

From (5) follows that the equation (12) fort = t0 will take
the form

W0(t0)x(t0) +

0∫

−τ

W1(t0, θ)x(t0 + θ) dθ = 0.

According to the principle of optimality the latter equality
remains valid for anyt ∈ (t0, T ) and becomes

W0(t)x(t) +

0∫

−τ

W1(t, θ)x(t + θ) dθ = 0. (13)

The equation (13) describes the functional manifold in a
space of functions of bounded variationx(t) defined on
[t − τ, t], which contain the optimal trajectory fort ∈
(t0, T ). Taking into account (12), (13) and the independence
of trajectories of the system (2) on control prehistory, we
conclude that

W0(t)B(t) = −E,

W2(t, θ1)−W1(t, θ1)B(t + θ1) = 0, (14)

for t ∈ [t0 − τ, T ], θ1 ∈ [−τ, 0].
Differentiating the equation (13) in view of system (2), we
obtain

dW0(t)
dt

x(t) + W0(t)
[
A(t)x(t) + Aτ (t)x(t− τ)

+

0∫

−τ

G(t, θ)x(t + θ) dθ + B(t)v̇r(t)
]

+

0∫

−τ

[∂W1(t, θ)
∂t

x(t + θ) + W1(t, θ)ẋ(t + θ)
]
dθ = 0.

From this by (14) we can derive the following formula for
v̇r(t) which is defined on(t0, T )

v̇r(t) = Z1(t)x(t) + Z2(t)x(t− τ)

+

0∫

−τ

Z3(t, ξ)x(t + ξ) dξ. (15)

Here

Z1(t) =
dW0(t)

dt
+ W0(t)A(t) + W1(t, 0),

Z2(t) = W0(t)Aτ (t)−W1(t,−τ),

Z3(t, θ) = G(t, θ) +
( ∂

∂t
− ∂

∂θ

)
W1(t, θ).

Hence, for[t0, T ], the optimal control according to (11)
and (15) takes the form

v̇(t) = ∆v(t0, ϕ(·)) δ(t− t0) + Z1(t)x(t) + Z2(t)x(t− τ)

+

0∫

−τ

Z3(t, θ)x(t + θ) dθ + ∆v(T, x(T − 0)) δ(t− T ).

By (12), (7) and (3) the first and the last terms in the
righthand side of the latter are determined by the formulas

∆v(t0, ϕ(·)) = W0(t0)ϕ(t0) +

0∫

−τ

W1(t0, θ)ϕ(t0 + θ) dθ,

∆v(T, x(T − 0)) = −
(
BT (T )SB(T )

)−
BT (T )Sx(T − 0)

+
(
E −

(
BT (T )SB(T )

)−
BT (T )SB(T )

)
p.

Remark.If the structure of the matricesP1(t, θ1),
P2(t, θ, θ1), P3(t, θ1, θ2), P5(t, p), P6(t, r) is put in a spe-
cific form, it is possible to simplify the system (10).
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