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Abstract 

The results of a numerical investigation of dynami-
cal states and bifurcation transitions of a frequency-
phase-feedback oscillator’s model are presented in the 
paper. The behavior of the examined model is described 
by nonlinear six-dimensional set of differential equa-
tions with periodical nonlinearities. It is shown that the 
model demonstrates complex behavior including peri-
odic and chaotic self-modulation oscillations, and vari-
ous transitions to chaotic modes. Results are presented 
using one-parameter bifurcation diagrams, phase por-
traits of attractors, time realizations of oscillations, and 
Poincare maps. 
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1  Introduction 

The systems with phase and frequency control are 
widely utilized in many electronic systems for solving 
the problems of stabilization, synchronization, and 
tracking. In these problems such systems provide for 
and automatically maintain the synchronous state, when 
the phase difference of reference and controlled signals 
becomes constant or, equivalently, the frequency differ-
ence of these signals is equal to zero [Shakhgil'dyan and 
Lyakhovkin, 1972]. The synchronous mode corresponds 
to a stable equilibrium state in the phase space of the 
corresponding system’s dynamical model. The systems 
may also operate in nonsynchronous modes (modes 
with variable phase and frequency mismatches) corre-
sponding to regimes of controlled oscillator with regular 
and chaotic frequency modulation. Feedback loops, 
when out-of-lock, provide broad possibilities for excita-
tion of various nonsynchronous modes. By varying the 
parameters of control circuits, one can effectively gov-
ern the properties of generated oscillations and the do-

mains where these oscillations exist. Thus, the system 
with phase and frequency control may be promising for 
devices where information is transmitted via chaotic 
signals. Therefore, knowledge of the specific features of 
the nonlinear dynamics for various systems versions is 
of significant importance. 

The purpose of this paper is to present new results 
concerning the nonlinear dynamics of system with fre-
quency-phase control combining phase-lock (PL) and 
frequency-lock (FL) partial subsystems. The system 
incorporates the controlled oscillator with two feedback 
loops including nonlinear discriminators of phase and 
frequency errors, low-frequency filters (LFFs) with 
transfer functions K1(p) and K2(p), and a frequency 
modulator [Kapranov, 1958]. We investigate nonsyn-
chronous modes and its bifurcations of the frequency-
phase lock (FPL) system in the case when each separate 
partial subsystem exhibits both regular and chaotic be-
havior.  

 
2  Dynamical model of FPL system 

The dynamic equation for phase difference ϕ be-
tween the controlled and reference signals in the FPL 
system is generally written in the form [Kapranov, 
1958]: 

                pϕ+ΩK1(p)F(ϕ)+Ω1K2(p)Φ(pϕ)=δω,          (1) 

Here p≡d/dt, F(ϕ) and Φ(pϕ) are the characteristics of 
phase and frequency discriminators normalized to unity; 
Ω and Ω1 are the control circuit gains; and δω is the 
initial frequency mistuning. Assume that the functions 
F(ϕ)=sinϕ and Φ(pϕ)=2β1pϕ/(1+β1

2(pϕ)2) (β1
–1 is the 

frequency mistuning providing for the maximum value 
of Φ(pϕ)) approximate the phase and frequency dis-
criminator characteristics respectively. 

We will consider, according to problem formulation, 
FPL system with the second-order filter in PL subsys-
tem and third-order filter in FL subsystem with transfer 
functions K1(p)=1/(1+(T1+T2)p+T1T2p2)), K2(p)=1/(1+  



+(T3+T4+T5)p+(T3T4+T3T5+T4T5)p2+T3T4T5p3), where T1, 
T2,T3,T4, and T5 are the inertia parameters. This case is 
of a special interest because the isolated partial FL sub-
system with the third-order filter can possess a mode of 
two-spiral type chaotic attractor in its phase space, and 
the partial PL subsystem with the second-order filter 
individually exhibits chaotic modes of oscillatory (with-
out of rotation of ϕ), rotatory, and oscillatory-rotatory 
types. 

For considered LFFs equation (1) can be written in 
the form 

dϕ/dτ=u, du/dτ=z, dz/dτ=v, dv/dτ=w, dw/dτ=η, 
µ1µ2dη/dτ=γ−sinϕ−bΦ(y)−(1+ε2cosϕ)u− 

          −(ε1+ε2+µcosϕ+bβε1Φ′(y))z−(µ1+µ+ε1ε2+         (2) 
+µ2cosϕ+bβµ1Φ′(y))v−(µ1ε2+ε1µ+µ2)w−(µ1µ+ε1µ2)η+ 

+µu2sinϕ +µ2u3cosϕ +3µ2uzsinϕ−bβ2µ1Φ″(y)z2, 

In equations (2) τ=Ωt is the dimensionless time, 
γ=δω/Ω,, b=Ω1/Ω, β=β1Ω, µ=(T3T4+T3T5+T4T5)Ω2, 
ε1=(T1+T2)Ω, ε2=(T3+T4+T5)Ω, µ1=T1T2Ω2, 
µ2=T3T4T5Ω3, Φ(y)=2y/(1+y2), Φ′(y)=2(1−y2)/(1+y2)2, 
Φ′′(y)=−4y(3−y2)/(1+y2)3, y=βu. Note that the system of 
equations (2) is phase dynamic system, it has the six-
dimensional cylindrical phase space U={ϕ(mod 
2π),u,z,v,w,η}. Because of the system (2) nonlinearity 
its investigations are performed using qualitative-
numerical methods of analysis of nonlinear dynamical 
systems [Belyustina, Kiveleva and Fraiman, 1982; An-
ishchenko, 1990] and employing the software developed 
in [Ponomarenko and Matrosov, 1997]. In the course of 
analysis, we examined time realizations, projections 
attractor’s phase portraits, Poincare maps, and one-
parameter bifurcation diagrams. 

 
3  Stability of the synchronous mode 

First, let us establish stability conditions for the syn-
chronous mode. At 0≤γ<1, system (2) has two equilib-
rium states: A1(arcsinγ, 0,0,0,0,0) and A2(π−arcsinγ, 0, 
0,0,0,0). The equilibrium state A1 may be both stable 
and unstable, and A2 is an unstable saddle type equilib-
rium state. We find stability conditions for equilibrium 
state A1 by analyzing the roots of the characteristic 
equation for the eigenvalues of the linearized system 
near A1  

               λ6+a1λ5+a2λ4+a3λ3+a4λ2+a5λ+a6=0.            (3) 

In equation (3) 

        a1=(µµ1+µ2ε1)/µ1µ2,  a2=(µ1ε2+µ2+ε1µ)/µ1µ2, 
        a3=(ε1ε2+µ+µ1+µ2(1−γ2)1/2+2bβµ1)/µ1µ2, 
        a4=(ε1+ε2+µ(1−γ2)1/2+2bβε1)/µ1µ2,  
        a5=(1+ε2(1−γ2)1/2+2bβ)/µ1µ2,  a6=(1−γ2)1/2/µ1µ2. 

The stability conditions can be written in the form 

a1,a2, … ,a6 >0,  a3(a1a2−a3)−a1(a1a4−a5)>0, 
(a1a2−a3)[a5(a4a3−a2a5)+a6(2a1a5−a3

2)]+ 
         +(a1a4−a5)[a1a3a6−a5(a1a4−a5)]−a1

3a6
2>0.        (4) 

If conditions (4) are satisfied, the studied FPL sys-
tem has a synchronous mode corresponding to equilib-
rium state A1. The domain of parameters Cs where con-
ditions (4) are fulfilled corresponds to the domain where 
synchronous mode persists. When as a result of parame-
ters varying, conditions (4) are violated limit cycle of 
oscillatory type during which the ϕ coordinate is not 
exceed 2π arises in the phase space U. This limit cycle 
corresponds to a quasi-synchronous mode in the FPL 
system where periodic oscillations of phase variables 
are observed around equilibrium state A1 that has be-
come unstable. 
 
4  Dynamical modes and bifurcations of model (2) 

Now let us consider nonsynchronous modes of the 
FPL system that develops for the parameter values out 
of domain Cs. For this purpose, we use the results of 
numerical simulation of model (2).  

Fig.1 displays one-parameter bifurcation diagram 
{µ1,ϕ} for the point Poincare mapping produced by the 
trajectories of model (2). The diagram is calculated at 
the parameter values γ=0.55, b=1, β=20.5, ε1=1.25, 
ε2=15, µ=2, µ2=3.2. Fig.2 shows (ϕ,u) projections of the 
phase portraits, (ϕ,v) and (z,v) projections of the Poin-
care map, and time realization u(τ) corresponding to the 
attractors of model (2). The {µ1,ϕ} diagram depicts evo-
lution of quasi-synchronous modes of limit cycles S1 
(Fig.2a) and S2 (Fig.2d) as parameter µ1 varies from 1.8 
to 8.11. Note, that in the interval 1.8<µ1<3.0 the bistable 
behavior of the system is observed; i.e., the attractors 
based on limit cycles S1 and S2 exist in the phase space 
simultaneously. One can see that the mode of cycle S2 
becomes chaotic (Fig.2h) via period-doubling bifurca-
tions; then, the mode of chaotic attractor P2 is de-
stroyed, and the system passes to the mode of complex 
limit cycle S* (Fig.2i). 

 
Fig. 1. Bifurcation diagram {µ1,ϕ} 



 

Fig. 2. Phase portraits (a,b,d-f,h-j,l), Poincare map (c,g,k,n), 
and time realization u(τ) corresponding to attractors 

of model (2) 

The evolution of the mode of cycle S1, as µ1 is in-
creased, starts when a stable limit cycle S1 becomes un-
stable and gives rise to a stable 2D torus T1 (Fig.2b). In 
Fig.2c close invariant curve Γ1 of the Poincare map cor-
responding to the torus T1 is given. With increasing µ1 
the mode of torus T1 collapses, and the system passes to 
the mode of oscillatory limit cycle S0 (Fig.2e). With a 
further increase of µ1 the mode of torus T0 from the 
limit cycle S0 appears (Figs.2f, 2g) which than, is rigidly 
replaced by the mode of complex oscillatory limit cycle 
S* (fig.2i). Then, the cycle S* breaks down and the sys-
tem rigidly enters a mode of oscillatory type chaotic 
attractor P* (Figs.2j, 2k). As µ1 is increased attractor P* 
is softly transformed to the torus T0, which further is 
transformed to limit cycle S0, and the system again re-
turns to the periodic quasi-synchronous mode. When 
µ1>3.54 the mode of cycle S0 is rigidly replaced by the 
mode of oscillatory type chaotic attractor P3 (Figs.2l-
2n). In interval 4.69<µ1<8.3 irregular alternation of cha-
otic, periodic, and quasi-synchronous modes is ob-
served. When µ1 passes through the value µ1=8.33, the 
system passes to the asynchronous (with rotation of ϕ) 
mode of oscillatory-rotatory type chaotic attractor via 
intermittency.  

Fig.3 represents bifurcation diagram {γ,ϕ} corre-
sponding to the parameter values b=1, β=20.5, ε1=1.25, 
ε2=15, µ=2, µ1=6.25, µ2=3.2. It characterizes evolution 
of quasi-synchronous modes that develop in the system 
on the base of the mode of limit cycle S1 when γ de-
creases. It is seen from the diagram that alternating 
modes of torus T1, limit cycle S3, torus T3, chaotic at-
tractor P4, limit cycle S4, torus T4, chaotic attractor P5, 
and limit cycle S5 are observed in the model (2). Fig.4 
displays (ϕ,u) projections of the phase portraits, time 
realizations ϕ(τ) and u(τ), and (ϕ,v) and (z,u) projec-
tions of the Poincare map corresponding to these modes. 

 
Fig. 3. Bifurcation diagram {γ,ϕ} 

 
Fig. 4. Phase portraits (a,c,d,g,h,k), Poincare map (f,j), 
and time realizations ϕ(τ) and u(τ) corresponding to 

attractors of model (2) 

 
Fig. 5. Evolution of quasi-synchronous mode 

with increasing of µ1 

The bifurcation diagram {µ1,u} represented in 
Fig.5a shows transformation of quasi-synchronous 
mode of the limit cycle S2 into asynchronous mode of 
oscillatory-rotatory type chaotic attractor W0. The dia-
gram calculated at the parameter values γ=0.5, b=0.5, 
β=1, ε1=0.9, ε2=80, µ=2, µ2=2. Figs.5b-5i display (ϕ,u) 
projections of the phase portraits, and time realizations 
ϕ(τ) corresponding to oscillatory and oscillatory-
rotatory attractors of the system. With increasing of µ1 
limit cycle S2 is softly transformed into chaotic attractor 



P2 through period doubling bifurcations (Figs.5b-5f). 
With further increasing of µ1 attractor P2 is transformed 
into chaotic attractor W0 (Figs.5g, 5h). Then there is a 
“window” of values of µ1 at {µ1,u} diagram correspond-
ing to the mode of oscillatory-rotatory type limit cycle 
L0 (Fig.5i).  

 
Fig. 6. Transition to the chaotic quasi-synchronous 

mode via torus distortion 

Formation of chaotic quasi-synchronous mode may 
be realized in the system considered via distortion of the 
oscillatory torus mode. This effect is illustrated by (ϕ,u) 
projections of the phase portraits, time realizations ϕ(τ) 
and u(τ), and (z,v) projections of the Poincare map rep-
resented at Fig.6 for the parameter values γ=0, b=1, 
β=20.5, ε2=15, µ=2, µ1=3.7, µ2=3.2. Fig.6 shows evolu-
tion of quasi-synchronous mode of limit cycle S3 
(Fig.6a) when parameter ε1 decreases from 1.2 to 0.72. 
When ε1 decreases the mode of oscillatory torus T2 
(Figs.6b-6d) appears from limit cycle S3. After torus T2 
is formed, the phase portrait of the Poincare map 
(Fig.6d) is characterized by the presence of stable 
closed invariant curve Γ. With decreasing of ε1 the dis-
tortion of the curve Γ and gradual transformation of the 
mode of torus-chaos type chaotic attractor (Figs.6e-6j) 
takes place. 

 
Fig. 7. Formation of oscillatory type chaotic attractor 

via torus-doubling bifurcation 
 

The model (2) exhibits such interesting phenomena as 
formation of oscillatory type chaotic attractor via torus-
doubling bifurcation, and rise of 3D torus in the phase 

space U. Fig.7 illustrates the first of these phenomena. It 
shows (ϕ,u) projections of the phase portraits, (ϕ,v) and  

 
Fig. 8. Rise the mode of 3D torus and transition to 

a chaotic mode 

(u,v) projections of the Poincare map corresponding to 
the attractors of model (2) for the parameter values γ=0, 
b=1, β=20.5, ε2=15, µ=2, µ1=3.7, µ2=3.2. Parameter ε1 
decreases from 1.65 to 1.45. For ε1=1.65 the mode of 
oscillatory limit cycle S4 (Fig.7a) is the initial state of 
the system. We see that, as ε1 decrease, cycle S4 losses 
its stability, and torus T3 (Fig.7b) corresponding to 
closed invariant curve Γ3 (Fig.7c) appears in the phase 
space. Then period doubling bifurcations of curve Γ3 
adequate to torus-doubling bifurcations occurs with 
formation of closed invariant curves Γ3

2 and Γ3
4 

(Figs.7d, 7e). If ε1 continues to decrease, the mode of 
chaotic attractor V1 rises.  

Fig.8 exhibit the second of above-mentioned phe-
nomena. It displays the results of numerical simulation 
of model (2) for the parameter values γ=0.01, b=5, β=1, 
ε1=1, ε2=35, µ=2.5, µ2=3.2, when parameter µ1 varies 
from 1.34 to 1.537. These results are presented in the 
form of (ϕ,u) projections of the phase portraits, (ϕ,v) 
projections of the Poincare map, time realizations ϕ(τ) 
and u(τ), and dependences v(n), where n is the number 
of the Poincare cross-section point. Let us consider the 
quasi-synchronous mode of torus T4 (Fig.8a correspond-
ing to closed invariant curve Γ2 (Fig.8b) as the system’s 
initial state. When µ1 grows the mode of 3D torus T3 
appears (Figs.8c, 8d). Then, transition to the mode of 
chaotic attractor V2 is observed (Fig.8e). 

The model (2) also exhibits interesting phenomenon 
of formation of oscillatory type chaotic attractor that is 



 
Fig. 9. Formation of oscillatory type chaotic attractor 

with irregular switches of a phase variable ϕ. 

characterized by irregular switches of a phase variable 
ϕ. Fig.9a represents bifurcation diagram {µ1,ϕ} corre-
sponding to γ=0.15, b=5, β=1, ε1=1, ε2=35, µ=2.5, 
µ2=13.5. Figs.9b-9n shows (ϕ,u) projections of the 
phase portraits, time realizations ϕ(τ), and (ϕ,v) and 
(z,v) projections of the Poincare map corresponding to 
the system’s attractors, when parameter µ1 varies from 
2.75 to 4.98. The modes of limit cycles S1 and S2 
(Fig.9b) are the system’s starting state for µ1=2.75. The 
{µ1,ϕ} diagram shows how the modes of cycles S1 and 
S2 become chaotic via period doubling bifurcations 
corresponding to attractors P1 and P2 (Figs.9c-9e). 
When µ1 increases the system passes to the mode of 
chaotic attractor V0, characterized by irregular 
alternating oscillations at the attractors P1 and P2 
(Figs.9f-9h). The dynamic ϕ range of attractor V0 
exceeds 2π. Formation of attractor V0 indicates that, in 
the phase space, there are two domains where the 
system chaotically oscillates and irregularly passes from 
one domain into the other. As µ1 increases the duration 
of oscillations in these domains decrease, while the 
frequency of switches from one domain to another 
grows (Figs.9i-9k). Then, the system undergoes a hard 
transition to the asynchronous mode of oscillatory-
rotatory type chaotic attractor W0 (Figs.9l-9n). 

 
5  Conclusion 

In this paper we have investigated the dynamical 
modes and transitions to the chaotic behavior in a fre-
quency-phase locked system with the second-order filter 
in a phase-locked loop and the third-order filter in a 
frequency-locked loop. Using the dynamical model of 
considered FPL system we found that the system ex-
hibit’s a rich variety of nonsynchronous modes: periodic 
modes caused by the loss of the synchronous mode sta-
bility and by saddle-node bifurcations of oscillatory 
limit cycles; quasi-periodic quasi-synchronous modes 

corresponding to oscillatory 2D and 3D tori in the phase 
space; chaotic modes that formed via period-doubling 
bifurcations, as well as rigidly formed through saddle-
node bifurcations of limit cycles, via destruction of tori, 
via the torus-doubling bifurcations, via the creation of 
united chaotic attractor in the phase space with irregular 
switches of phase variable ϕ. 

These phenomena, in our opinion, are of importance 
for both basic and applied research of nonlinear dynam-
ics of the system with frequency and phase control. It 
further to understanding the behavior of the systems 
when the synchronous state is cut off as a result of the 
system parameters perturbation. The discovered effects 
of nonlinear dynamics and the obtained data on restruc-
turing FPL system’s dynamical states under variation of 
the system’s parameters are of interest for suppression 
or enhancement of mode instabilities, control of behav-
ior modes, and generation of chaotic oscillations. 

The wide variety of chaotic modes offers consider-
able possibilities of forming various frequency-
modulated signals at the output of the FPL system. Con-
trol the characteristics of generated signals can be easily 
realized by means of subsystems parameters. 
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