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Abstract
The paper considers a nonlinear Lur’e type system

with a sector bounded nonlinearity. The zero equilib-
rium of the system may be unstable, so it is stabilized
by a periodically sampled feedback signal. Such stabi-
lization problems were previously explored by a num-
ber of researches with the help of the zero-order hold
(ZOH) control that is kept constant between successive
sampling times. The main disadvantage of this method
is that the time delay introduced by ZOH has a destabi-
lizing impact on the closed feedback system, especially
in the case when the sampling frequency is sufficiently
low and the feedback gain is high. To reduce this ef-
fect it is proposed to modify the form of the stabiliz-
ing signal. In this paper the reverse sawtooth control
is introduced instead of ZOH. The stability criterion is
obtained in the form of a feasibility problem for some
linear matrix inequalities (LMI). A numerical example
demonstrates how the new stabilization method allows
to reduce the sampling frequency required for stabiliza-
tion.
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1 Introduction
Stability problems for a continuous-time system under

a sampled-data feedback attracted much attention in the
last decade. This study was largely motivated by appli-

cations to networked control systems (see, e. g., [Hes-
panha et al., 2007]). Sampled-data stabilization of a
sector bounded nonlinear system was treated in [Seiful-
laev and Fradkov, 2015a; Seifullaev and Fradkov, 2015b;
Seifullaev and Fradkov, 2015c; Seifullaev and Fradkov,
2016; Zhang et al., 2017; Bryntseva and Fradkov, 2018].

For networked control systems it is desired that the
sampling rate of a stabilizing feedback signal should be
sufficiently low. As for the intersample control, most of
researchers employ the zero-order hold (ZOH) scheme,
when the control function is kept constant throughout
the sampling interval. It is well known that a system
with a ZOH feedback can be rewritten as a system with
a linearly increasing time-varying delay (see, e. g., [Frid-
man, 2010]), and this delay is the greater, the greater the
length of the sampling interval. Such long delays have
a destabilizing effect on the system’s behavior. It looks
reasonable to replace ZOH for something more sophis-
ticated, which allows to reduce the negative influence
of the delay. A reverse sawtooth picewise-linear control
was introduced to this end.

This paper continues a series of works [Churilov, 2018;
Churilov, 2019a; Churilov, 2019b] devoted to an applica-
tion of the absolute stability theory to sampled-data sta-
bilization. For the stability analysis of the obtained hy-
brid system we use the Gelig’s averaging method [Gelig,
1982; Gelig and Churilov, 1993b; Gelig and Churilov,
1998] reformulated in terms of linear matrix inequali-
ties [Boyd et al., 1994]. Besides the averaging, we em-
ploy such methods as S-procedure for multiple quadratic
forms [Fradkov and Yakubovich, 1979; Yakubovich,
1992] and integral quadratic constraints (see, e. g.,
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[Yakubovich, 1968; Yakubovich, 1988; Megretski and
Rantzer, 1997; Yakubovich, 2002]).

The paper is organized as follows. First the system
equations are given. Then we present quadratic and in-
tegral quadratic constraints that will be needed to prove
the main theorem. Further, the main result of the pa-
per is formulated and proven. Finally, we provide an
illustrative numerical example. The upper bounds of the
sampling period obtained by the theorem of this paper
are compared with the similar bounds for ZOH stabiliza-
tion.

2 Problem Setting
Consider a nonlinear system under a sampled feedback

ẋ = Ax(t) +B0f0(t) +Bu(t), (1)
σ0(t) = C0x(t), σ(t) = Kx(t). (2)

Here A, B, B0, K, C0 are constant matrix coefficients
of sizes p×p, p×1, p×1, 1×p, and 1×p, respectively,
K is a vector of feedback gains.

The function f0(t) is defined as f0(t) = ϕ(σ0(t), t),
where the nonlinearity ϕ(·, ·) satisfies a sectoral con-
straint

µ1 6
ϕ(σ0, t)

σ0
6 µ2 for all σ0 6= 0, t, (3)

µ1, µ2 are some given numbers (see Figure 1(a)). We
also assume that there exists a number µ0 such that the
function ϕ(σ0, t)− µ0σ0 is bounded for all σ0, t.

Consider a system with a uniform sampling with the
period T . The feedback control function u(·) is defined
as

u(t+ nT ) = σ(nT )
(
1− t

T

)
, 0 6 t < T, (4)

n = 0, 1, . . .. The function u(t) is a reverse sawtooth
wave that linearly ramps downwards (for σ(nT ) > 0)
or upwards (for σ(nT ) < 0) until it reaches zero (see
Figure 1(b)). We are interested in obtaining effectively
verifiable conditions for asymptotic to zero of the solu-
tions of system (1)–(4).

3 The Idea of Averaging
The pulse averaging technique that we use here origi-

nates from the principle of equivalent areas (PEA) [An-
deen, 1960a; Andeen, 1960b]. For sector bounded con-
straints it was firstly obtained in [Gelig, 1982] and the re-
fined in [Gelig and Churilov, 1993a; Gelig and Churilov,
1998]. Following the style of that time, the mathemat-
ical statements in [Gelig and Churilov, 1998] were for-
mulated in terms of frequency-domain inequalities, how-
ever they can be techically reformulated as LMI by us-
ing the celebrated Kalman–Yakubovich–Popov (KYP)
lemma (see, e. g., [Popov, 1973; Boyd et al., 1994;
Yakubovich et al., 2004]).

Following [Gelig, 1982], compute the average of the
nth control pulse

vn =
1

T

∫ nT+T

nT

u(t) dt. (5)

Let the function w(t) be the integrated error of replacing
u(t) for its averages:

ẇ(t) = u(t)− vn, nT 6 t < nT + T,

w(nT ) = 0
(6)

for any n > 0. From (5) it follows that the function
w(t) is continuous and turns to zero at all the sampling
instants nT . The main mathematical technique used in
[Gelig and Churilov, 1993a; Gelig and Churilov, 1998]
was the construction of quadratic Lyapunov fuctions that
depend on x(t) and w(t). The functions x(t), w(t)
and the sequence vn were linked by quadratic and inte-
gral quadratic constraints. When the sampling frequency
tends to infinity, the Gelig’s criteria reduce to classical
criteria of absolute stability, such as circle or Popov.

The physical aspects of PEA were discussed in
[Churilov, 2019a].

Notice that some distant similarity in technique can be
found in later works [Briat and Seuret, 2012; Seuret,
2012; Briat, 2013], where loop functionals were intro-
duced and explored. These functionals also become
zero at sampling times. However, looped functionals
were not related to averaging and were usually added to
Lyapunov–Krasovskii functionals.

4 Quadratic and Integral Quadratic Constraints
For brevity, denote tn = nT , n = 0, 1, . . .. Besides the

sectoral bound (3), we will need a number of auxiliary
constraints. Following the averaging scheme described
in the previous section, from (4), (5) we get

vn = 1
2 σ(tn). (7)

Define a piecewise constant function

v(t) = vn, tn 6 t < tn+1. (8)

By a straightforward calculation, from (6) we have

w(t) =
vn
T

(tn+1 − t)(t− tn), tn 6 t 6 tn+1. (9)

Notice that |w(t)| 6 1
4T |v(t)|. Additionally, a quadratic

constraint

v(t)w(t) > 0, tn < t < tn+1, (10)

is valid. By a direct calculation we get∫ tn+1

tn

w(t) dt = 1
6 vnT

2

∫ tn+1

tn

w(t)2 dt = 1
30 v

2
nT

3.

(11)
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Figure 1. (a) An example of a bound sector for ϕ(σ0, t) ≡ ϕ(σ0). (b) The sampling scheme.

Equalities (8) and (11) imply

T

∫ tn+1

tn

v(t)w(t) dt = 5

∫ tn+1

tn

w(t)2 dt. (12)

Equation (12) can be rewritten as an integral quadratic
constraint∫ tn+1

tn

(
Tv(t)w(t)− 5w(t)2

)
dt = 0 (13)

for all n > 0.
Introduce a picewise-continuous function

ξ(t) = σ(t)− σ(tn)−KBw(t)

for tn 6 t < tn+1, n > 0. Hence

ξ(t) = Kx(t)− 2v(t)−KBw(t), t > t0. (14)

Obviously, ξ(t+n ) = 0, n > 0 and

ξ̇(t) = KAx(t) +KB0 f0(t) +KB v(t) (15)

for t 6= tn. Then Wirtinger inequality [Gelig and
Churilov, 1993b; Gelig and Churilov, 1998] implies∫ tn+1

tn

ξ(t)2 dt 6
4T 2

π2

∫ tn+1

tn

ξ̇(t)2 dt (16)

for n > 0. Additionally, we have an obvious constraint∫ tn+1

tn

ξ(t)ξ̇(t) dt > 0. (17)

If we introduce a vector column

X(t) = col{x(t), f0(t), v(t), w(t)}, (18)

then from (14), (15) we obtain

ξ(t) = DX(t), ξ̇(t) = D1X(t), (19)

where

D = [ K 0 −2 −KB ],

D1 = [ KA KB0 KB 0 ].
(20)

5 The Main Statement
Theorem 1. Assume that there exist a symmetric posi-
tive definite p × p matrix H , nonnegative numbers ε0,
ε2, ε3 and a number ε1 of any sign, such that

Π + ε2
(
∆2D>

1 D1 −D>D
)

+ ε3
(
D>D1 +D>

1 D
)
< 0,

(21)

where ∆ = 2T/π, Π is a symmetric (p + 3) × (p + 3)
matrix with the components

Π11 = HA+A>H − ε0µ1µ2C
>
0 C0,

Π12 = HB0 + 1
2 ε0(µ1 + µ2)C>

0 ,

Π13 = HB, Π14 = −A>HB,

Π22 = −ε0, Π23 = 0, Π24 = −B>HB0,

Π33 = 0, Π34 = Tε1 −B>HB,

Π44 = −10ε1

(22)

and D, D1 are defined by (20). Then any solution of
system (1)–(4) satisfies x(t) → 0 as t → +∞ and
x(t) ∈ L2[t0, +∞).
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Proof. We will apply the S-procedure with multi-
ple quadratic forms [Fradkov and Yakubovich, 1979;
Yakubovich, 1992]. Consider a (p+3)-dimensional vec-
tor column

X = col{x, f0, v, w}, (23)

and introduce a quadratic form

Φ(X) = ε0(µ2C0x− f0)(f0 − µ1C0x)

+ 2ε1
(
Tvw − 5w2

)
+ ε2

(
∆2(D1X)2 − (DX)2

)
+ 2ε3D1XDX.

(24)

(The numbers εi, 0 6 i 6 3, play the role of Lagrange
multipliers.)

Inequality (21) can be rewritten as

2(x−Bu)>H(Ax+B0f0 +Bv)

+ Φ(X) 6 −δ0‖X‖2
(25)

for all vector columns X with coordinates (23). Here δ0
is a sufficiently small positive number. Let us take a Lya-
punov function V (x,w) = (x−Bw)>H(x−Bw). Then
along the solutions of system (1)–(4) inequality (25) im-
plies

V̇ (x(t), w(t)) + Φ(X(t)) 6 −δ0‖X(t)‖2 (26)

for any sampling interval tn < t < tn+1. From
quadratic bounds (3), (10) and integral quadratic con-
straints (13), (16), (17) we obtain∫ tn+1

tn

Φ(X(t)) dt > 0 (27)

for all n > 0. Integrating (26) and taking (27) into ac-
count, we get

V (x(tn+1), 0)− V (x(tn), 0)

6 −δ0
∫ tn+1

tn

‖x(t)‖2 dt− δ0Tv2n

for all n > 0. The rest of the proof reproduces the proof
of Theorem 1 [Churilov, 2018]. �

6 Necessary Conditions for the Fulfillment of the
Main Statement

Preposition 1. Let conditions of Theorem 1 be satisfied.
Then the matrix

Aµ = A+ µB0C0 + 1
2 BK

is Hurwitz stable for any number µ, µ1 6 µ 6 µ2.

Proof. Let us put

f0 = µC0x, v = 1
2 Kx, w = 0 (28)

in (24), (25). Then DX = 0 and (25) implies

HAµ +A>
µH < 0.

Since H > 0, the Hurwitz stability of Aµ follows. �

7 Numerical Example
Consider the system (see [Seifullaev and Fradkov,

2015c])

ẋ1 = −2x1 + sinx2,

ẋ2 = x1 − x2 + 2 sinx2 − u(t).
(29)

Here σ0(t) = x2(t), ϕ0(σ0) = sinσ0, and we can take
µ1 = −0.2173, µ2 = 1. The control function u(t) is
defined by (4), where σ(t) = kx2(t) and k is a scalar
feedback gain. Thus system (29) can be written in the
form of (1)–(4) with

A =

[
−2 0
1 −1

]
, B0 =

[
1
2

]
, B =

[
0
−1

]
,

C0 = [0 1], K = [0 k].

Feasibility of inequalities (21) of Theorem 1 was ex-
plored with the help of YALMIP software package for
interface and SeDuMi solver for semidefinite program-
ming [Löfberg, 2004; Sturm, 1999].

System (29) was previously studied in [Seifullaev and
Fradkov, 2015c] with the use of ZOH control

u(t) = σ(tn), tn 6 t < tn+1.

The results of computer experiments are consolidated in
Table 1. The computer experiment was produced for the
values k = 2, 3, 4, 5, 10 (see column 1). The maxi-
mal values of T computed with the help of Theorem 1
are given in column 2. Column 3 contains the maxi-
mal values of T obtained by the Lyapunov-Krasovskii
method for the case of ZOH control in [Seifullaev and
Fradkov, 2015c] (the value k = 4 was not considered).
For k = 2, 3 Theorem 1 gives no feasible values, but for
k = 5, 10 the maximum of T obtained from Theorem 1
is greater than that was found in [Seifullaev and Fradkov,
2015c].

The comparison of the reverse sawtooth (RS) control
and the ZOH control is presented in Table 2. The maxi-
mal values of T are obtained by a direct computer simu-
lation under the T -periodic sampling (i. e., they are irrel-
evant to any stability criteria). It is seen that for the same
feedback gain k the RS control provides a sampling pe-
riod T approximately 1.9 times greater than that of ZOH
control.

Some transients for system (29) with k = 5 and the
T -periodic sampling are shown in Figures 2,3. With the
increase of T the zero equilibrium turns from a stable
node to a stable focus. With the further increase of T
this focus loses stability.
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Table 1. Maximal values ofT computed according to Theorem 1 and
their comparison with the values obtained in [Seifullaev and Fradkov,
2015c] for ZOH feedback

k T T

(Theorem 1) (Seifullaev, Fradkov, 2015)

2 − 0.68

3 − 0.53

4 0.56 ?

5 0.51 0.35

10 0.29 0.187

Table 2. Maximal values of T simulated for Reverse Sawtooth (RS)
feedback and for ZOH feedback

k Simulated T (RS) Simulated T (ZOH)

2 − 1.21

3 1.38 0.71

4 0.98 0.51

5 0.77 0.40

10 0.38 0.20
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8 Conclusion
The paper introduces a new control function based

on the reverse sawtooth signal wave, which can signif-
icantly increase the sampling period compared with the
zero-order hold. Based on the Gelig–Yakubovich mathe-
matical technique, the paper suggests an easily verifiable
stability criterion formulated in terms of linear matrix in-
equalities. Simulation shows its reasonable conservatism
and an agreement with the previously obtained results.
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Figure 2. A trajectory enters zero with the increase of time. (a) Non-oscillative behavior, k = 5, T = 0.5 (b) Oscillative behavior,
k = 5, T = 0.75
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Figure 3. Stabilization fails, the trajectory tends to infinity (oscilla-
tive behavior), k = 5, T = 0.8
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