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Abstract
In the article a method of exact penalty functions for

minimizing a quasidifferentiable function under qua-
sidifferentiable constraints is discusses. A regularity
condition for the function which defines a constraint is
introduced and prove that when it is running, there is an
exact penalty parameter. The case when the constraint
is convex is studied in detail.
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1 Introduction
In nonlinear programming methods of penalty func-

tions both external and internal have widespread in the
development of algorithms for the constrained opti-
mization. The basic idea of these techniques is to re-
place the conditional optimization problem to sequence
of auxiliary unconstrained optimization problems. An
auxiliary function in the methods of penalty functions
is chosen so that it is coincided with the objective func-
tion for a given set and is increased outside this set.
The methods of exact penalty functions are received

much attention at the present time. Penalty functions
have always taken an important role in solving many
constrained optimization problems in the fields such as
industry design and management science.
In this regard, we note an interesting class of problems

arising in the solution of various optimization prob-
lems of dynamics of charged particle beams and plasma
[Zavadsky, Ovsyannikov, and Chung, 2009; Ovsyan-
nikov et al., 2009; Ovsyannikov, 1990; Ovsyannikov,
2009]. Investigated here problems of parametric op-
timization and minimax estimation often leads to the
optimization of function of many variables subject to
various constraints.

The existence of an exact penalty parameter for
problems of the convex programming was seen
by I.I.Ereminym [Eremin, 1967], a little later -
U.I.Zangvilom [Zangwill, 1967]. Subsequently, this
problem was the subject of many works [ Demyanov,
Giannessi, and Karelin, 1998; Demyanov et al.,
1996; Fletcher, 1973; Han and Mangasarian, 1979;
Polyakova, 2001a].

2 Method of Penalty Function
Formulate some statements that hold for the penalty

function method. Consider the problem of the con-
strained optimization

inf
x∈X

f(x), (1)

where a function f : Rn → R is continuous,

X = { x ∈ Rn
∣∣ φ(x) = 0}, (2)

a function φ : Rn → R is also continuous and

φ(x) > 0 ∀x ̸∈ X.

Then the set X is the closed set of the points of global
minimizers of φ on Rn. For solving the problem (1) by
this method we introduce penalty functions

F (c, x) = f(x) + cφ(x),

where c is a nonnegative number, called a penalty pa-
rameter. Then consider the unconstrained minimiza-
tion problem

inf
x∈Rn

F (c, x). (3)
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Let infimum in (3) be attained for each nonnegative
number c. Denote by

f∗ = min
x∈X

f(x), F ∗(c) = min
x∈Rn

F (c, x),

x(c) = arg min
x∈Rn

F (x, c). x∗∗ = arg min
x∈Rn

f(x),

f∗∗ = f(x∗∗).

Let f∗∗ > −∞. Notice that f∗ ≥ F ∗(c) for each
positive c.
Choose a monotonically increasing sequence
{ck}(k = 1, 2, . . . ), ck > 0, ck → +∞.
Theorem 1. If {x(ck)} is a sequence of solutions of

the auxiliary problem (3) then

1) F ∗(ck) = F (ck, x(ck)) ≤

≤ F (ck+1, x(ck+1)) = F ∗(ck+1);

2) f(x(ck)) ≤ f(x(ck+1));

3) f(x(ck)) ≤ F (ck, x(ck)) ≤ f∗.

Lemma 1. Under the above assumptions the inequal-
ity

φ(x(ck+1)) ≤ φ(x(ck)) ∀k > 0, (4)

is true.
Denote by

L(φ, x∗∗) = {x ∈ Rn
∣∣ φ(x) ≤ φ(x∗∗)}.

From the inequality (4) it follows that all points of the
sequence {x(ck)} are in the set L(x∗∗).
Lemma 2. For any sequence of positive numbers
{ck}, ck → +∞, the formula

φ(x(ck)) −→
k→+∞

0.

is correct.
Thus, the sequence of the points {x(ck)} is a mini-

mizing sequence for the function φ.

3 Quasidifferential Functions
Let a function f be defined on Rn and be direction-

ally differentiable at a point x ∈ Rn and its directional
derivative f ′(x, g) can be represented in the form [De-
myanov and Rubinov, 1995]

f ′(x, g) = lim
λ↓0

f(x+ λg)− f(x)

λ
=

= max
v∈∂f(x)

⟨v, g⟩+ min
w∈∂f(x)

⟨w, g⟩,

where ∂f(x) ⊂ Rn, ∂f(x) ⊂ Rn are convex com-
pact sets in Rn. The function f is called a quasidif-
ferential at a point x ∈ Rn. A pair of sets Df(x) =
[∂f(x), ∂f(x)] is called a quasidifferentiable of qua-
sidifferentiable function f at x. The set ∂f(x) ⊂ Rn is
called a subdifferential of f at x, the set ∂f(x) ⊂ Rn

is called a superdifferential of f at x. Differentiable,
convex, concave functions, the maximum functions are
quasidifferentiable functions.

4 Exact Penalty Functions
Exact penalty functions are the penalty functions for

which there exists a parameter c∗ > 0 that for any
c ≥ c∗ the set of minimum points of F (c, x) on Rn

coincides with the set of solutions of (1). A parameter
c∗ is called an exact penalty parameter for the family of
functions F (c, x). Therefore, any number greater then
an exact penalty parameter is also an exact penalty pa-
rameter. Obviously, the implementation of the method
of exact penalty functions is primarily dependent from
the properties of the function φ.
In practice it would be useful to find conditions which

guarantee that there exists the exact penalty parameter
c∗ ≥ 0 such that the set

{x ∈ Rn
∣∣ x = arg min

x∈Rn
F (c, x)}

coincides with the set

{x ∈ Rn
∣∣ x = arg min

x∈X
f(x)}

The implementation of exact penalty functions meth-
ods first of all depends on the properties of the function
φ. Therefore various conditions are imposed on φ to
make it possible to solve our problem.
Let φ : Rn → R be a locally Lipschitz quasidifferen-

tiable function given the set X of the form (2).
Regularity condition. [Polyakova, 2001b]
We say, that a regularity condition is satisfied for the

function φ if for each boundary point x∗ ∈ bd X there
exist positive real numbers ε(x∗) and β(x∗), such that

o(α, x̄, g)

α
> −φ′(x̄, g) + β(x∗), (5)
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∀α ∈ (0, ε(x)], ∀x̄ ∈ A(X) ∩ Sε(x)(x),

∀g ∈ N(X, x̄), ||g|| = 1.

where

A(X) = {x ∈ bd(X)
∣∣ ∃z ̸∈ X,x = pr(z,X)},

and N(X,x) is the normal cone to the set X at the
point x ∈ X , an expression x = pr(z,X) means that
the point x ∈ X is the orthogonal projection of the
point z ̸∈ X on the set X .
The regularity condition is the condition about the be-

havior of the function φ only at the boundary points of
the set X .
We can prove that in order to satisfy the regularity

condition it is necessary that the function φ is nondif-
ferentiable at boundary points of the set X .

Theorem 2. If the set X is compact and the regular-
ity condition is satisfied for F (ck, x) then there exists
an exact penalty parameter c∗, and

x(ck) ∈ X ∀ck ≥ c∗.

Theorem 3. If for the function φ at each boundary
point x∗ ∈ X the regularity condition is hold, then

Γ(X,x∗) = γ0(X,x∗) (6)

where

Γ(X,x∗) = cl
{
g ∈ Rn

∣∣ xk ∈ X, xk ̸= x∗,

xk → x∗,
xk − x∗

||xk − x∗||
→ g

||g||

}
.

γ0(X,x∗) = {g ∈ Rn
∣∣ ⟨φ′(x∗, g), g⟩ = 0}.

The cone Γ(X,x∗) is called the cone of feasible direc-
tions at a point x∗ to the set X .
Lemma 3. If for the function φ defining the set X

of the form (2) at x∗ ∈ A(X) the regularity condition
1 is hold, then

φ′(x∗, g) ≥ β(x∗) ∀g ∈ N(X,x∗), ||g|| = 1.

Theorem 4. If there is a positive number β(X), that
the inequality

inf
x∈bd (X)

min
∥g∥ = 1,

g ∈ N(X,x)

φ′(x, g) ≥ β(X), (7)

holds, then for the family of penalty functions
{F (ck, x)} there exist the exact penalty parameter.
Note that the condition (7) is more constructive than

the regularity condition (5), and it can also be used as a
condition of regularity in the problem of the existence
of the exact penalty parameter.
Example. Let

φ(x) = max{0, f1(x), f2(x)}, x = (x1, x2) ∈ R2,

where

f1(x) = x2
1+x2

2−1, f2(x) = −(x1−1)2−x2
2+1.

The set X = {x ∈ R2
∣∣ φ(x) = 0} is not convex.

Consider boundary points of X . Let at the point x1 ∈
X

f1(x
1) = 0, f2(x

1) < 0,

x1 ∈ A(X) and the regularity condition 1 be hold for
the set X then the condition (6) is hold and

∂φ(x1) = co {(0, 0), f ′
1(x

1)}, ∂φ(x1) = (0, 0),

N(X,x1) = {g ∈ R2
∣∣ g = λf ′

1(x
1), λ ≥ 0}.

Then

min
∥g∥ = 1,

g ∈ N(X,x1)

φ′(x1, g) = 2.

If x1 ∈ R2 and

f1(x
1) < 0, f2(x

1) = 0,

then x1 ∈ A(X) and the condition (6) is hold and

∂φ(x1) = co {(0, 0), f ′
2(x

1)}, ∂φ(x1) = (0, 0),

N(X,x1) = {g ∈ R2
∣∣ g = λf ′

2(x
1), λ ≥ 0}.

Then

min
∥g∥ = 1,

g ∈ N(X,x1)

φ′(x1, g) = 2.
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Let

x1 =

(
1

2
,

√
3

2

)
, x2 =

(
1

2
,−

√
3

2

)
.

Then

f1(x
1) = 0, f2(x

1) = 0, f1(x
2) = 0, f2(x

2) = 0,

x1, x2 ∈ A(X) and the condition (6) is hold. Then

∂φ(x1) = co {(0, 0), f ′
1(x

1), f ′
2(x

1)} =

= co {(0, 0), (1,
√
3), (1,−

√
3)}, ∂φ(x1) = (0, 0),

∂φ(x2) = co {(0, 0), f ′
1(x

2), f ′
2(x

2)} =

= co {(0, 0), (1,−
√
3), (1,

√
3)}, ∂φ(x1) = (0, 0),

and

min
∥g∥ = 1,

g ∈ N(X,x1)

φ′(x1, g) = 1,

min
∥g∥ = 1,

g ∈ N(X,x2)

φ′(x2, g) = 1.

Hence, β(X) can be equal 1.

5 Convex Constraints
Let φ : Rn → R be a convex function. In this case at

a point x ∈ X the equality

γ0(X,x) = − (cone (∂φ(x)))
∗
,

holds, where through cone (A) denotes the conical hull
of a set A, ∂φ(x) is the subdifferential of φ at x ∈
bd X in the sense of convex analysis.
Using this formula write the analytic representation of

the normal cone N(X,x) to the set X at x ∈ bd (X)

N(X,x) = cl cone (∂φ(x)).

Then at x ∈ bd (X) the formula

min
∥g∥ = 1,

g ∈ N(X,x)

φ′(x, g) = β(x) > 0.

holds. Thus, if

inf
x∈ bd (X)

β(x) = β(X) > 0,

then the function φ can be used for constructing of the
family of exact penalty functions.
Remark. From the condition (7) is followed that the

existence of the exact penalty parameter depends on the
behavior of the function φ at the boundary points of the
set X , belonging to the set A(X).
Consider the optimization problem: find

inf
x∈X

f(x),

where

X = {x ∈ Rn
∣∣ f1(x) ≤ 0} =

= {x ∈ Rn
∣∣ max{0, f1(x)} ≤ 0}, (8)

the function f : Rn → R is locally Lipschitz, and f1 :
Rn → R is convex. Obviously, X is convex.
Assume that the set X is not an isolated point and the

Slater’s condition holds, i.e., there is a point x̂ ∈ X
for which f1(x̂) < 0. Consider the case where the
minimizer of f does not belong to the set X . By virtue
of the Slater’s condition the set X is a convex body (set
with non-empty interior). Let

φ(x) = max{f1(x), 0}.

If x ∈ bd(X) then

∂φ(x) = co {∂f1(x), 0},

If for any boundary point x ∈ bd(X) a supporting hy-
perplane is unique, then the set X is called a body with
smooth boundary or smooth body. For a smooth convex
body the normal cone N(X,x) at each boundary point
x ∈ bd (X) consists of a ray, spanned by the normal of
the supporting hyperplane. Therefore, if the function
f1 is continuously differentiable, then the surface

X1 = {x ∈ Rn
∣∣ f1(x) = 0}

is a smooth manifold with X1 = bd (X) and

N(X,x) = {g ∈ Rn
∣∣ g = λf ′

1(x), λ ≥ 0}.
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5.1 Calculating of the Exact Penalty Parameter
When the Function f1 is Strongly Convex

Show that if the set X is given by using a strongly
convex function f1, then there exists the exact penalty
parameter. Let f1 be a strongly convex function on Rn

and m > 0 is its a constant strong convexity. From
convex analysis [Rockafellar, 1970] it is known that

⟨v(x)− v(y), x− y⟩ ≥ 2m∥x− y∥2

∀v(x) ∈ ∂f1(x), ∀v(y) ∈ ∂f1(y), ∀x, y ∈ Rn.

Let x∗
1 be a minimizer of f1 on Rn. Then x∗

1 ∈ int X
and

||v(x)|| ≥ 2m||x− x∗
1|| ∀x ∈ Rn. (9)

In addition, for each x0 ∈ Rn, f(x0) > f(x∗
1) and

L(f1, x0) = {x ∈ Rn
∣∣ f1(x) ≤ f1(x0)}

is compact.

Let S(x∗
1, r) be a ball of the maximum radius centered

at x∗
1, contained in the set X . Then from (9) we have

||v(x)|| ≥ 2mr ∀v(x) ∈ ∂f1(x), ∀x ̸∈ S(x∗
1, r).

Thus, for every boundary point of the set X

||v(x)|| ≥ 2mr ∀x ∈ bdX.

Theorem 5. If the function f1 is strongly convex, the
set X is given in the form (8), then for the function
φ, defining a set at any boundary point of the set the
regularity condition (5) holds and

β(X) = min
x∈bd X

min
∥g∥ = 1,

g ∈ N(X,x)

φ′(x, g) ≥ 2md > 0.

In this case the exact penalty parameter c∗ is equal to

c∗ =
L

2md
, where L is a constant Lipschitz of the func-

tion f on the set L(φ, x∗∗).
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