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Abstract
A continuum mechanical picture to describe dynam-

ics of group robots is proposed. We introduce a density
function f1(�x, �p; t) representing a number of robots lo-
cated at around �x with momentum around �p at time t.
This scheme is applied to new transportation systems
by group robots. We control potential force that mo-
tivate the robots. The objects that do not respond to
the potential can be transported by repetitive collisions
with the robots moving aimlessly under the potential
force, a negative gradient of the potential.Each robot
of the group need not have specific sensors for mutual
information. Increasing number of the robots makes it
difficult to predict collective motion of the robots in
transportation tasks. To give a well organized strat-
egy of designing the tasks, we apply the continuum
mechanical description of robots. Our analysis tells
that the objects are motivated by a positive gradient
of the potential. The design is validated by comparing
paths of the object predicted by the continuum picture
of robots with that calculated by Newton dynamics.
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1 Introduction
In cooperatively acting robots, we expect an intel-

ligence that an individual robot will never achieve.
We have so far various studies on group robotics
as has thoroughly been investigated [Ota, 2006] in
a framework of multi-agent.In addition in [Shimizu,
Kawakatsu and Ishiguro, 2005],whether each robot can
obtain global information or not have been argued.
A centralization of control strategies has been one of
points focused in [Reynolds, 1987]. A cooperation
between agents by a simple interaction based on sen-
sors have been addressed in enhancing the performance
[Sugawara and Sano, 1997]. Sensing limitations have

also been explicitly examined regarding robots similar
to myopic ants [Gordon, 2010]. Meanwhile, a huge
number of liquid atoms can move pollen floated on liq-
uid. Some researchers [Hänggi and Marcheson, 2009]
have started to develop a new motor device in nano re-
gion that works according to Brownian motion under
temperature gradients. It is also notable that we need
not equip the atoms with sensing devices.
Let us imagine that we apply the idea of “Brownian

motors” to macroscopic systems of robots. Robots cor-
respond to liquid atoms while objects moved by the
robots to floating pollen. By a word “macroscopic” we
mean constituents of the systems obey laws of classical
mechanics. We assume 102 ∼ 104 constituent robots
with extent nm ∼ m. Our robots move aimlessly and
can only collide with each other. They can move and
have chance to collide with the object. Repetitive col-
lision of robots with the object indirectly carry the ob-
ject. Garbage with various physical properties is trans-
ported only by collision with robots. The group of
robots removes obstacles remained at disaster sites that
are not accessible by vehicles. These robots in cylin-
ders controlled to efficiently push pistons have abilities
to perform thermal cycles as desired. Now, Brownian
motion can be described by fluctuation terms in equa-
tions of motion. In contrast, we need dynamical model
for macroscopic systems as physical properties of the
systems as “liquids” are not made preparations in ad-
vance. In addition to this, temperature distribution can-
not move robots as they are far and away heavier than
liquid atoms. For full capabilities of the systems, how-
ever, it is essential that a mathematical model to pre-
dict trends of the systems be available. When a num-
ber of robots increases, difficulties in the predictions
cannot be avoided. In this paper, we propose a contin-
uum mechanical description of group of robots. A main
dynamical variable is a number density of the robots.
We handle our system with such a number density in
a framework of Hamiltonian dynamics of robots. We
also offer an idea of controlling robots by external po-
tential fields. For the systems, we need an apparatus



to receive potential signal and a wheel mechanism on
each robot. On the contrary, specific sensors for mutual
information are not necessary. A new scheme of trans-
portation system can in this way be possible, where we
manipulate potential field acting only on robots every
moment. When we work with robots that respond to
a potential field – electric field, for example, even ob-
jects without electric conductivity can be transported
by the field. This strategy differs from the conventional
potential method [Bennet and McInnes, 2008] in that
the potential does not directly force the object. We
also give comparisons of results based on continuum
mechanical description of robots with those by direct
dynamical simulation. Results obtained are valid both
for nano and for macro systems as long as the systems
behave according to classical mechanics.
We first show in 2 how we build a contiuum mechani-

cal description of robots.Section 3 presents analysis of
collision processes of robots and objects. We give a
specific formula of calculating force on the objects in
4. We apply the formula in 5 with appropriate param-
eter values to carrying out simulation studies. Results
based on continuum mechanical description of robots
are compared with those by directly applying Newton
dynamics. Summary and discussion are given in 6.

2 Continuum mechanical description of robots
In n dimensional space, both a robot and an object to

be transported by a group of robots are dealt with as a
classical mechanical mass point with freedom n. In a
potential energy that models collision between robots,
size of a robot and that of an object are considered as
their radius parameters aR and RB , respectively. An
assumed form of a disk( we restrict ourselves to n = 2
in the paper ) with its radius RB for the object is ap-
plied when we analyze a collision process. Under an
assumption that a system of robots is described as a
Hamiltonian dynamical system, a continuum mechan-
ical picture of a group of robots is developed. Mean-
while,the object is still handled in mechanics of mass
point. We can easily extend the Hamiltonian dynamics
to systems with friction force proportional to velocity.
This point will be discussed in forthcoming papers.
Let ω ≡ {�x, �p} be a set of a location �x of a robot

and a momentum �p with which the robot moves. When
we set aside a potential energy Vcol(rij), (3), that ex-
presses a collision process among robots, under exis-
tence of an object located at X(t), a motion of each
robot is determined by a Hamiltonian

H
′
0(ω; t) = H0(ω; t) + VB(|�x− �X(t)|) (1)

that consists of a free Hamiltonian

H0(ω; t) =
�p2

2m
+ V0(�x; t) (2)

and a potential energy VB(|�x − �X(t)|) that represents

external action of the object located at �X(t) at time
t on the robot located at �x. In the free Hamiltonian
H0(ω, t), (2), an operation to control a movement of
a group of robots is expressed as a potential V0(�x; t)
dependent on a location �x of a robot. In our system,
manipulating V0(�x; t) indirectly transports the object
by collision of robots on the object. In that sense, the
external field V0 depends on time t. The potential V0

also expresses action of boundary walls that encounter
a finite area of a system. With defining a distance rij ≡
|�xi − �xj | between centers of robots i and j, potential
energy

Vcol(rij) (3)

represents collision between these robots. A total
Hamiltonian of a group of robots in the transportation
system is given as

H(ω1, ω2, · · · , ωN ; t) =
N∑
i=1

H
′
0(ωi; t) +

∑
i<j

Vcol(rij) (4)

Canonical equations are given as follows

d

dt
�xi =

∂H

∂�pi
(5)

d

dt
�pi = −∂H

∂�xi
(6)

It is obvious that calculation based on these equations
(5) and (6) to be utilized for feedback action in control
systems becomes difficult, when a number N of robots
increases. It is better to calculate an average of dynam-
ical state of robots than to directly follow locations and
momenta of each robot and of the object in time. Such
average calculation will be more efficiently done than
direct dynamical simulation. Based on an idea above
stated, we introduce a function f(ω1, ω2, · · ·ωN ; t) to
describe average behavior of the system. A value

f(ω1, ω2, · · ·ωN ; t)d2nω1d
2nω2 · · ·d2nωN (7)

is a probability that the location and the momentum of a
robot No.1 lie in an interval �x1 + dn�x1 and �p1 + dn�p1,
· · · those of No.N lie in an interval �xN + dn�xN and
�pN + dn�pN .
After applying canonical equations (5) and (6),we

can calculate a time derivative of f using the Poisson
bracket as

d

dt
f(ω1, · · · , ωN) = −[f(ω1, · · · , ωN),H ]

+
∂f(ω1, · · · , ωN )

∂t
(8)



that becomes equivalent to Liouville equation when we
note df

dt = 0 that generally holds in Hamiltonian dy-
namics. If we are interested only in behavior of ωN ,
integration over ω1, · · · , ωN−1 gives the following one
body density function 1.

f1(ωN ) ≡
∫
d2nω1 · · ·

∫
d2nωN−1f(ω1, · · · , ωN)

(9)

Definitions of two body density function

f2(ωN−1, ωN) ≡∫
d2nω1 · · ·

∫
d2nωN−2f(ω1, · · · , ωN )

(10)

allows us to write down our governing equation as

∂f1(ωN )
∂t

+ [f1(ωN ),H
′
0(ωN )] =

−(N − 1) ×∫
d2nωN−1[f2(ωN , ωN−1), Vcol(rN−1,N )]

(11)

With the object, a Hamiltonian is given as

HB( �X, �P ; t) =
�P 2

2M
+ VB0( �X; t)

+
N∑
i=1

VB(Ri) (12)

where the potential VB0 simply expresses action of the
boundary walls, force inevitably acted on the object,
like gravitation. It is emphasized that we do not ma-
nipulate VB0. Robots that we move by the external
potential V0(�x; t) carry the object via an interaction po-
tential

VB(Ri) (13)

with defining Ri ≡ |�xi − �X | as a distance between the
center of robot i and an object.
In the following, we give specific formulae of V0(�x; t)

in (2), VB0( �X ; t) in (12), Vcol(r) in (3) and VB(R)
in (13). External potential V0 for robots is given by
Vcnt(�x; t) in (34) added by repulsive force by walls.
Under supposition that closed region in n-dimensional
space is given as [−S1,+S1] × · · · × [−Sn,+Sn],

1In the following, we do not indicate time dependence.

we assume for repulsive potential as inverse power of
x±i ≡ xi ± Si,

V0(�x) = Vcnt(�x; t)

+cR
n∑
i=1

{(
1
x+i

)ncR
+

(
1
x−i

)ncR}
(14)

External potential VB0 for the objects are also given by
inverse power of X±i ≡ Xi ± (Si −RB),

VB0( �X) = cB

n∑
i=1

{(
1
X+i

)ncB
+

(
1
X−i

)ncB}

(15)

For collision between robots expressed by the poten-
tial Vcol and the potential VB between robots and the
object, we adopt soft core potential given by

Vcol(r) = σv

(
aR
r

)nv

(16)

VB(R) = σs

(
RB
R

)ns
(17)

3 Collision process
Let us consider a collision process of a robot with an

object in a frame where the object is at rest.Take a con-
figuration as shown in Fig.1. A disc (robot) with radius

Figure 1. Collision of robots with a line element RBdθ on the

objectB centered atC( �X ).

aR collides with relative velocity �vr towards a surface
point P on a disc (object) with radius RB . Assume



that robot takes velocity �v
′
r and the object takes d�V

′

after collision. The process of collision is governed by
momentum conservation law

m�vr = Md�V
′
+m�v

′
r (18)

When aR is sufficiently smaller than RB , the velocity
d�V

′
is parallel to a vector �θx1 that gives a direction of−→

CP . Coefficient of restitution is calculated as

e =
�v

′
r|θx1 − dV

′

0 − �vr|θx1
(19)

Unknown variables dV
′

and �v
′
r are determined by

equations (18) and (19). If robot takes an angle φ anti-
clockwise from �θx1, component of the object velocity
d�V

′
takes

dV
′
=

(1 + e)vr cosφ
1 + M

m

(20)

Let �θx2 be a direction vector rotated by a right angle
anticlockwise from �θx1. The vector d�V

′
is in the direc-

tion as shown in Fig.1, dV ′ < 0, as only robots with
relative velocity

�vr = vr cosφ�θx1 + vr sinφ�θx2 (21)

with angle φ satisfying π
2 < φ < 3π

2 could collide to
the point P on the object. We further assume that the
collision is completely elastic to take e = 1. In the
Fig.1, Φ̃ and Φ̃0 represent directions of �V clockwise
from �θx1 andX1, respectively. We apply anticlockwise
directions Φ ≡ 2π−Φ̃ and Φ0 ≡ 2π−Φ̃0 in calculating
force on an object in 4.
Let N0 be a total number of robots in the system. A

number of robots we find in each unit area with relative
velocity between �vr and �vr + d2�vr is calculated to be

d2N = N0 · f1(ω)d2�vr (22)

The integral element is d2�vr = vrdvrdφ. In a time
interval dt, each robot in the shadowed region

dS = RBdθ · (−vr cosφ)dt (23)

can collide the line element RBdθ on the point P to
give the impulse Md�V

′
to the object. We count total

number of such robots as a product d2N ·dS, (22) mul-
tiplied by (23). Force on the object is an integration of
the impulseMd�V

′ ·d2N ·dS acted on the line element
RBdθ from θ = 0 to 2π divided by the time interval
dt.

F ( �X) =
1
dt

∫ 2π

θ=0

∫ ∞

vr=0

∫ 3π
2

φ=π
2

Md�V
′ · d2N · dS

(24)

Substituting specific formulae of potential energies to
(24) allows us to numerically integrate Newton equa-
tion of the object in time. Note that the walls give repul-
sive force on the object in a form VB0 in (12) whether
the force as shown by (24) acts or not.

4 Approximate formula
When it varies slowly in time, the density function

feq1 (ω) = C · e−βH
′
0(ω;t)

= C · e−β �p2
2m e−βV0e−βVB (25)

approximately satisfies (11) with Vcol = 0, i.e. σv = 0
in (16). The condition Vcol = 0 means that we ig-
nore collision among robots. Although this condi-
tion is unrealistic, it is only relaxation time [Prigogine,
1984] to bring f1(ω) to feq1 (ω) that mainly depends
on strength of collision Vcol. The weaker the collision
tends, the longer the relaxation time becomes. In cal-
culating force acted on the object according to (24), we
assume that our one body density function f1(ω) im-
mediately approaches to its equilibrium feq1 (ω). Two
constants C and β in (25) are determined by the two
conditions that in the system we have total number of
robots N0 and total energy E0. Substitution of an ex-
pression �p = m(�vr+�V ) in the argument of exponential
function in the right hand side of (25) into (24) leads to

�F ( �X) =
1
dt

∫ 2π

θ=0

∫ ∞

vr=0

∫ 3π
2

φ=π
2

M
2vr cosφ
1 + M

m

�θx1

·N0 · C · e−βm(�vr+�V )2

2 · e−βV0(�x;t)

·e−βVB(|�x− �X|) · vrdvrdφ
·RBdθ · (−vr cosφ)dt (26)

Squared mean value of velocity is calculated by distri-
bution function (25) as

�v2 =
∫
d2�xd2�v�v2feq1 (ω)∫
d2�xd2�vfeq1 (ω)

=
2
mβ

(27)

Relative velocity �vr and the object velocity �V are nor-

malized by
√
�v2/2 =

√
1/(mβ) to give nondimen-

sional vectors �ψ and �Θ, respectively. Integration of (26)
by variable �vr is calculated as the following nondimen-
sional integral

I(�Θ) ≡
∫ 3π

2

φ=π
2

cos2 φdφ
∫ ∞

ψ=0

ψ2e−
(�ψ+�Θ)2

2 ψdψ(28)



multiplied with (
√
�v2/2)4. Apart from a constant, (26)

is evaluated as

∫ 2π

0

dθe−βV0(�x)I(�Θ)�θx1 ≡
∞∑
n=0

�Fn( �X)
n!

(29)

Degree n on the right hand side of (29) corresponds to
a Taylor expansion of the integrand function in the ψ
integral (28) around Θ = 0,

e−
(�ψ+�Θ)2

2 = e−
�ψ2

2 ·{
1
0!

+
−�Θ · �ψ

1!
+

−Θ2 + (�Θ · �ψ)2

2!

+ · · ·
}

(30)

Inner-product formula �Θ· �ψ = Θψ cos(φ−Φ) makes us
possible to do straightforward integration of (28). The
0-th order value corresponding to the object at rest is
calculated as

�F0( �X) =
∫ 2π

0

dθ

(
e−βV0( �X)

+RB
(
cos θ

∂e−βV0( �X)

∂X1
+ sin θ

∂e−βV0( �X)

∂X2

)

+O(R2
B)

)
π�θx1

= RBπ
2 ∂e

−βV0( �X)

∂ �X
+O(R3

B) (31)

We finally obtain the 0-th approximation formula of the
force (26) acted on the object as

�F ( �X)|V=0 = −M 2
1 + M

m

RBN0C(
�v2

2
)2

·RB · π2 · cV B · ∂e
−βV0( �X)

∂ �X

= +
2M

1 + M
m

R2
Bπ

2N0C
1

βm2
cV B

·e−βV0( �X) ∂V0( �X)

∂ �X
(32)

where cV B is evaluated as e−βVB(|�x− �X|). Note that, in
the approximation that the object is at rest, the force
(32) acted on the object is proportional to the positive
gradient ∂V0

∂ �X
. That the force is in the positive direction

is originated from the robot density pressure. Robots
moves towards the area with small potential values ac-
cording to the negative gradient of the external poten-
tial. This results in high robot density that can move the

object towards a region with lower density of robots. In
actual calculation, not only (32) but also formulae with
higher degree n in (29) or (30) are applied. The for-
mula for n = 1 is given as

�F1( �X) = 2π
√

2πΘe−βV0( �X)

(
cos Φ0

sin Φ0

)
(33)

that is parallel to the object velocity �V .

5 Simulation
The negative gradient of Vcnt forces the robots to

move, whereas, as shown in (32), its positive gradient
acts on the object in an approximation that the object is
at rest. To clarify the point discussed above, we set a

Figure 2. Trends X1 and X2 in time calculated based on contin-

uum picture of robots are compared with those by dynamical simu-

lation of Newton equations.

linear function as a specific form for a potential Vcnt.

Vcnt(�x) = α1x1 + α2x2 (34)

Parameters in MKS units are:

1. walls are modeled as [−S1, S1] × [−S2, S2] =
[−1, 1] × [−1, 1],

2. a number of robots is N0 = 50,
3. mass and radius of robots are set as aR = 0.01 and
m = 0.01, respectively,

4. for the object we set its radius RB = 0.1 and mass
M = 0.5, respectively,

5. for interaction potentials given by (14) to (17), we
set cR = 3 × 10−5, ncR = 4, cB = 3 × 10−7,
ncB = 4, σv = 0, σs = 10 and ns = 4,

6. in (34) we set as α1 = α2 = 0.1 to make robots
move from upper right →lower left .

In the parameters, radii are set as RB = S1
20 , i = 1, 2

and aR = RB
10 . Regarding mass, we set m = M

50 .



We take computational burden in direct simulation into
account when setting parameters for interaction poten-
tials and α1, α2. In an initial state t = 0.0, the object
is set at the origin, while robots are randomly laid out.
Both are put at rest. In describing the process by the
continuum mechanical picture of robots, the results are
those as shown in solid lines2 in Fig.2. In the calcula-
tion we take up to n = 3 degree in the Taylor expan-
sion (29) or (30). Dashed and dotted lines correspond
to those calculated by direct simulation. Detail of the
result of direct simulation along with a few snap shots
is shown in Fig.3. We see that, in direct dynamical
simulation, at the beginning robots under the potential
Vcnt push the object in the negative gradient direction
−∂Vcnt

∂x . Such process explains dead time characteristic
seen in Fig.2. As one body density function f1(ω) was
assumed to immediately approach to its equilibrium
feq1 (ω), the dead time is not represented by the con-
tinuum mechanical calculation of robots in its present
form. Meanwhile, after dead time, we see in Fig.2 that
dashed and dotted lines of direct simulation are well fit-
ted by solid lines based on the continuum picture. This
means that slopes of dashed and dotted lines have al-
most the same values as those of the solid lines. To
examine dead times, we need information on how fast
f1(ω) approaches to its equilibrium one feq1 (ω) [Pri-
gogine,1984].

Figure 3. The object is shown as a circle with solid line and the

robots are shown asN = 50 small circles. Arrows in three figures

at t = 0.6, 1.2 and 1.8 indicate directions where the object moves

towards. Solid lines in these figures show paths of the object.

6 Summary and discussion
We proposed a continuum mechanical method to de-

scribe collective dynamics of group robots. Under

2In Fig.2, we have two solid lines, which overlap one another.

an assumption that Hamilton dynamics applies to the
group, we described behavior of the robots by one body
probability density function f1. To state a concept, we
examined how to transport objects by an ensemble of
robots. An explicit formula of force acted on the object
was obtained by analyzing collision process based on
the function f1. We found that the objects are moved
along a positive gradient of the potential that only ap-
plies to robots. The formula for force acted on the ob-
ject was applied to simulate transportation system. Re-
sults were compared with that by direct dynamical cal-
culation. Velocity of transportation was well simulated
by our continuum mechanical description of robots.
For the reason that we assumed that the function f1
immediately approches to the equilibrium one, dead
time found in dynamical collision process was not seen
in the continuum mechanical calculation. A scheme
to calculate dead time is to be developed. Although
robots were prepared without sensing devices for mu-
tual information in this paper, the proposed method of
describing group robots in the continuum mechanical
way also applies to robots that can communicate each
other. Mounting a wheel mechanism under a potential
signal on many robots requires examination by experi-
ments.
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