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We observe chimeralike states in networks of dynamical systems using a type of global coupling
consisting of two components: attractive and repulsive mean-field feedback. We identify existence
of two types of chimeralike states in a bistable Lienard system; in one type, both the coherent
and the noncoherent populations are in chaotic states and, in the other type, the noncoherent
population is in a periodic state while the coherent population is in periodic or chaotic and even
be quasiperiodic. We locate the coupling parameter regimes of the two types of chimerlike states
in a phase diagram. We study other bistable systems, a forced van der Pol-Duffing system and
the Josephson junction model to investigate generality of the coupling configuration in creating
chimeralike states. We find chaos-chaos chimeralike states in the network of bistable van der Pol-
Duffing system, period-period chimeralike states in the network of Josephson junction model in the
bistable regime. Furthermore, we apply the coupling to a network of chaotic Rössler system where
we find the chaos-chaos chimeralike states.

PACS numbers: 05.45.Xt, 05.45.Gg

I. Introduction

Chimera states emerge [1–10] as sequentially organized
subpopulations of coherent and noncoherent dynamical
units due to nonlocal coupling in a network. From the
first observation of this unexpected phenomenon in a
network of phase oscillators [1, 2] in the weak coupling
regime, till date it has been reported in limit cycle sys-
tems [7, 8] and chaotic systems [10] too. In addition to
phase incoherence, amplitude incoherence of a subpopu-
lation has also been found in the chimera states in the
stronger coupling limit. Evidence of chimers states, by
this time, has been supported by chemical [11], opto-
electronic [12] and electronic circuit experiments [13, 14],
and lately in a physical experiment [15].

Three different categories of chimera states have so
far been identified [16] for nonlocal coupling. The basic
chimera structure composed of a noncoherent subpopu-
lation in a chaotic state while the coherent subpopula-
tion could be periodic [1, 2, 4, 8, 10] or remain close to a
steady state [16]. In another type of chimera states [6, 7],
the noncoherent population remain in a state of spatial
chaos [17] while the coherent population may be in a
steady state or periodic state. A third kind of chimera
states is classified as to where both the structures coex-
ist. All three types of chimera states were reported [16]
in a bistable system only for nonlocal coupling.

Chimera states are intriguing since it emerges in an en-
semble of identical oscillators under symmetric coupling
although nonlocal. It is more nontrivial in a popula-
tion of identical oscillators under all-to-all global cou-
pling since no spatial identity of oscillators exists. How-
ever, a population of globally coupled oscillators were re-
ported to split [18–20] into synchronized and unsynchro-

nized subpopulations which has been preferably called
as chimerlike states [19] since it is reminiscent of the
chimera states although missing the spatial sequence or
ordering of the oscillators. Such chimeralike states were
noticed in the past [24, 26, 27], although not clearly iden-
tified, but defined very clearly, in recent time, by Sen et
al [18]. Furthermore, it was observed [19] in globally cou-
pled phase oscillators with delayed feedback, bistable sys-
tems under environmentally forced attractive and repus-
live global coupling and, in limit cycle systems for a non-
linear global coupling [20]. The mechansims of the emer-
gence of chimeralike states differ for different coupling
configurations, it is either amplitude mediated [18, 20] or
amplitude modulated chimera [20] in limit cycle systems.
The common feature of the chimeralike states has so far
been identified as the noncoherent population belonging
to chaotic states and the coherent population to periodic
states. Whereas, in another type, the coherent and non-
coherent populations both belong to periodic oscillations
as reported [19] recently in a network of bistable sys-
tems under mixed attractive and repulsive coupling both
forced into the network by an external environment.

We report here one example of bistable system,
namely, a Lineard system [21] to form a globally coupled
network where both the above characteristic features of
coherent and incoherent populations are present in dif-
ferent parameter regimes of the system. We use a par-
ticular type of global coupling consisting of two compo-
nents, an attractive as well as a repulsive coupling, how-
ever, like the previous example, we do not apply them as
an externally forcing dynamics. The attractive coupling
is a self-feedback type while the repulsive coupling may
be used as a self-feedback or a cross-feedback involving
other variable different from the variable where the cou-
pling is added. Using the same coupling configuration,
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we present another example of a bistable van der Pol sys-
tem where we reproduce the chimeralike states, however,
find only chaotic states in both the conherent and the
incoherent populations. However, in a network of the
suprconduction Josephson junction, in a bistable regime,
we observe the chimerastates where both the conherent
and noncoherent populations remain in periodic states.
We, particularly, provide an example of a network of
chaotic Rössler system, and find evidence of the chimera-
like states even when we separate the attractive and the
repulsive coupling and apply them as self-feedback to two
different variables.

II. Netork model and Coupling configurtion

The dynamics of the ith coupled unit is expressed by,
Ẋi = F (Xi, µ) + KAB where i = 1, ..., N ; µ is the set
of system parameters, K is the strength of coupling. All
the dynamcial units in the network are identical, F :
R2 → R2; Xi = [xi, yi]

T where i = 1, ..., N , F(Xi, µ) =
[f(xi, yi, µ1, ..), g(xi, yi, µ

′
1, ...)]

T . A is a 2×2 matrix with
real values and B is a 2× 1 matrix defining two types of
mean-field diffusions,

A =

(
a11 a12
a21 a22

)
, B =

(
x̄− xi
ȳ − yi

)

where x̄−xi= 1
N

N∑
j=1

(xj −xi) and ȳ− yi= 1
N

N∑
j=1

(yj − yi).

Now we explain different options of our proposed
coupling configuration, Case I: a12 = a21 = a22 = 0
and a11 = 1 describes a typical global coupling, a
type of self-feedback acting on the x-variable. Case II:
a21 = ε and a22 = 1, all others are a11 = a12 = 0. The
global coupling now consists of two componenets, one
self-feedback involving the x-variable and another cross-
feedback involving the y-variable; they are both added
only to the same x-variable of the network. Controlling ε
from +ve to −ve value, the coupling interaction changes
from attractive to repulsive nature. A combined effect
of K and ε on the collective and macroscopic behavior
of the whole network is to be investigated. Case III:
a11 = 1 and a22 = ε, other two elements are zero. Case
IV: A complex coupling when all the elements in matrix
A are nonzero. We focus on the Cases I-III and show
they are robust to create different types of chimeralike
states.

III. Chimeralike states in Lineard system

We start our numerical example with a Lienard sys-
tem [21] that shows bistablity in isolation: a steady state
coexists with periodic orbits. A pecularity of this system
is its sensitivity to initial conditions, where multiple pe-
riodic orbits appear for different set of intial conditions,

however, the periodic orbits have different frequencies, a
kind of non-isochronicity [22–25]. We form a network of
identical units of the Lienard system using the Case II
coupling format,

A =

(
0 0
ε 1

)
;B =

(
x̄− xi
ȳ − yi

)
when the equation for the i-th oscillator in the coupled
network is expressed by

ẋi = yi, (1)

ẏi = −αxiyi − βx3i − γxi +K[ȳ − yi + ε(x̄− xi)].(2)

we take α = 0.45, A global mean-field coupling term
is added to the second equation as an attractive self-
feedback but, in addition, a repuslive mean-field coupling
is applied as a cross-feedback from the other variable.
In a phase diagram of coupling parameters K-ε shown
in FIG.1, we locate regions of two types of chimeralike
states. In a broad parameter space (magneta/light gray
region), we find the chimeralike states with both the co-
herent and non-coherent populations in chaotic states.
However, in a very small parameter space (green/gray
region), the chimeralike states show up as the coherent
population remaining in a periodic state while the non-
coherent population stays in a state of small chaotic or
periodic and even quasiperiodic state around the steady
state.
To construct this phase diagram we adopt the measures
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FIG. 1: K − ε phase space. Different colors for different
states as- green: one cluster, black: two cluster, red: three

cluster, yellow: four cluster, blue: chimera, magenta:
multichimera, cyan: coherent state.

described in [32]. We numerically evaluate two statistical
measures, namely, strength of incoherence (S) and dis-
continuity measure (η).The whole population is divided
into M number of bins of equal length n = N/M and a
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FIG. 2: Snapshots and temporal evolution for K = 1.5. (a) and (b) show chimera state for ε = −1.3. (c) and (d) show three
cluster for ε = −0.5. (e) and (f) correspond to ε = −0.1 and show two cluster state.

local standard deviation σl(m) is defined as follows

σl(m) =

〈√√√√ 1

n

mn∑
j=n(m−1)+1

[zl,j − 〈z2l 〉]

〉
t

(3)

where m = 1, 2, ...,M and zi = xi − xi+1 Using
this local standard deviation we measure strength of
incoherence(S) as

S = 1−
∑M

m=1 sm
M

, sm = Θ(δ − σl(m)) (4)

where Θ(.) is the Heaviside step function, and δ is small
predefined threshold.
We also calculate discontinuity measure(η), to distin-
guish between chimera and multichimera states, defined
as

η =

∑M
i=1|si − si+1|

2
, (sM+1 = s1) (5)

We separate chimera, multichimera and coherent states
according to (S, η) values. For chimera state : 0 < S < 1
and η = 1. For multichimera state : 0 < S < 1 and
2 ≤ η ≤ M

2 . S and η are both zero for coherent state.
We also detect different cluster states by investigating
spatio-temporal evolution of the state variables of the
system.
In K − ε phase space(FIG 1), the step sizes for K and ε
are taken as 0.01 and we use fourth order Runge-Kutta
method to integrate the system with a time step size of
0.01.

The initial states for yi are chosen as yi0 = 2(1− 4i
N ) for

i = 1 to N
2 and yi0 = 2( 4i

N − 3) for i = N
2 + 1 to N with

an added small random fluctuation. All initial states for
x-variables are set as zero.
There are multiple regions in the phase space. For cluster
states, the region in green indicates one-cluster, whereas
the black, red and yellow regions show two, three and
four cluster states respectively. For chimera states, blue
patches correspond to single chimera and in magenta-
coloured region we find multichimera states.
In FIG.2 snapshots and temporal evolution of the x -
variables are shown for chimera, two cluster and three
cluster states for K = 1.5 and different ε -values.
FIG.2(a) and 2(b) show chimera state for ε = −1.3. In
this chimera state both coherent and incoherent popu-
lations are chaotic in nature. FIG.2(c) and 2(d) show
three cluster sate for ε = −0.5. The last row in FIG.2
corresponds to ε = −0.1 and shows two cluster state.
FIG.3 shows another type of chimera state for K = 0.15
and ε = −1.6 where oscillators from incoherent region are
in periodic state and oscillators from coherent region have
small chaotic oscillations around (1, 0) which is the stable
focus for uncoupled system. FIG.3(a) and (b) show snap-
shot and temporal evolution of the x-variables. FIG.3(c)
is phase space diagram of an oscillator from incoherent
region and 3(d) corresponds to the phase space of an os-
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FIG. 3: Chimera state for K = 0.15 and ε = −1.6. In this chimera state incoherent oscillators are periodic and coherent
oscillators have small chaotic oscillations. (a) and (b) show snapshot and temporal evolution of x - variables. (c) and (d)

show attractor from incoherent and coherent regions respectively.

cillator from coherent region.

IV. Chimeralike states in coupled Josephson
Junction

After analyzing Lienard and forced ven-der Pol-Duffing
oscillators, we deploy the same coupling scheme in cou-
pled Josephson Junction. The coupled equation for the
i-th oscillator is defined as

φ̇i = yi (6)

ẏi = I − sin(φi)− αyi +K[(ȳ − yi) + ε(x̄− xi)]. (7)

We take parameters values as I = 0.5 and α = 0.2 .
In this parameter space uncoupled oscillator is bistable,
having one stable fixed point and a stable limit cycle.
The initial states for yi are chosen as yi0 = (2 − 4i

N ) for

i = 1 to N
2 and yi0 = 4i

N + 0.5 for i = N
2 + 1 to N with

an added small random fluctuation. All initial states for
x-variables are set as zero.
For coupling values K = −0.17 and ε = −0.4 , we get
chimera state where both coherent and incoherent pop-
ulations are in periodic state. FIG.4(a) shows snapshot
of phases φi of all oscillators at a particular time and in
FIG.4(b) temporal evolution of phases φi is shown.
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FIG. 4: Chimera state in coupled Josephson Junctions for
K = −0.17 and ε = −0.4. (a) shows snapshot of phases of
all oscillators. (b) corresponds to temporal dynamics of

phase variables.

V. Chimeralike states in forced van-der Pol-Duffing
network

We construct a network of a forced van der Pol-Duffing
system [16] applying the attractive self-feedback and re-
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FIG. 5: Chimera and two cluster states for forced van-der Pol-Duffing oscillators for ε = −4. (a)-(c) show chimera state at
K = 0.2. (d)-(f) show two cluster state at K = 1

pulsive cross-feedback global coupling,

ẋi = yi, (8)

ẏi = α(1− x2i )yi − x3i + Fsinωt+K[(ȳ − yi) + ε(x̄− xi)].(9)

We take parameter values as α = 0.2, F = 1 and
ω = 0.94. In this parameter space the oscillators are
bistable, having one periodic and one chaotic attractor.
The initial states for yi are chosen as yi0 = 3(1− 4i

N ) for

i = 1 to N
2 and yi0 = 3( 4i

N − 3) for i = N
2 + 1 to N and

the initial states for xi are chosen as xi0 = 2(1− 4i
N ) for

i = 1 to N
2 and xi0 = 2( 4i

N − 3) for i = N
2 + 1 to N with

an added small random fluctuation.
In FIG.5 we show chimera and two cluster state in forced

van-der Pol-Duffing oscillator. Left column in FIG.5 cor-
responds to parameter values K = 0.2 and ε = −4 and
shows chimera state. In this chimera state coherent os-
cillators are quasiperiodic and incoherent oscillators are
in chaotic state. FIG.5(a) and 5(b) show snapshot of x-
variables and their temporal evolution respectively. In
FIG.5(c) we show the time series of x-variables of an os-
cillator from synchronized region (blue line) and another
from desynchronized region (red line).
Right column of FIG.5 shows two cluster state for K = 1
and ε = −4. FIG.5(d)-(f) show snapshot, temporal evo-
lution and time series of x- variables. In this two cluster
state oscillators from both clusters are periodic and they
are completely separated in phase space.
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ehard Schöll Phys. Rev. Lett. 110, 224101 (2013).

[8] G. C. Sethia, A. Sen and G. L. Johnston Phys. Rev. E
88, 042917 (2013).

[9] A.Zakharova, M.Kapeller, and E. Schöll, Phys. Rev. Letts
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