PHYSCON 2015, Istanbul, Turkey, 19-22 August, 2015

OBSERVATIONS’' CONTROL FOR STATISTICALLY
UNCERTAIN SYSTEMS

Boris Ananyev
Department of Optimal Control
Institute of Mathematics and Mechanics UB of RAS
Russia
abi@imm.uran.ru

Abstract for his own purposes unknown to the observer. Next,
Estimation problems for so-called statistically uncer- the observations’ control for some nonlinear multistage

tain systems are considered where along with stochas-systems and estimation algorithms is studied. After that

tic disturbances there exist ones with no statistical de- we consider problems for time-continuous systems. In

scription. In this paper, a controller uses uncertain dis- last section some examples are given.

turbances in the system as control actions to produce

worst signals for an observer, or, along with this task,

to achieve his own aims unknown for the observer. On 2 Problems for multistage systems

the other hand, the observer applies a minimax state es- In this section, we consider observations’ control

timation algorithm and does not know the aims of the Problem for multistage systems. Cases of linear and

controller. Such problems arise, for example, in avia- Nonlinear systems are examined separately.

tion, when the plane must do some work to go unno-

ticed. Besides, there are other examples in economicsp 1 Linear case

financial mathematics, and biology. Consider am-dimensional multistage linear system
with m-dimensional observation:

Key words

statistically uncertain systems, information sets, ob- x; = Aixi v+ Bi&, i€1: N, )
servations’ control yi = Gyt + w; + Cimi,

1 Introduction where¢; andy; are independent sequences of mutually

In many estimation problems from mechanics, eco- independent standard Gaussian vectefsg V and
nomics, biology, and financial mathematics, there are ,,,. « w are disturbances that are contained in convex
both stochastic disturbances in the system and thecompact sets. Suppose that disturbangesw; may
observation’s channel and uncertain ones with un- depend on observations.;_1, the sets are symmetric
known stati.stics. In particular, the stochastic_part may \ith respect to zero, anbl; andC; are known matrices.
be absent in special case of set-membership descrip-\ye assume that the observer knows the coefficients of
tion of uncertainty, [Schweppe(1973); Bertsecas and equations (1), the sef¥, W, the parameters, —
Rhodes(1971); Kurzhanski and Valyi(1996)]. Some Exo, Py = var(zo) of initial Gaussian vector,
problems of observations’ control for determinate sys- \\hereE is the expectation, but does not know the re-
tems were considered in [Ananyev(2011)]. Estima- gjizations ofy; andw;. To estimate the state vectey
tion problems, where uncertain and stochastic distur- {ho opserver uses algorithm from [Katz and Kurzhan-

bances act simultaneously, were examined in [Katz a”dski(1975)] where at any instanthe solves the prob-
Kurzhanski(1975); Ananiev(2010); Ananiev(2007)]. |am- ’

Here we consider the observations’ control problems

for statistically uncertain systems in which the con-

troller can choose the disturbances and other parame-  sup  E{[lz¢ — ¢¢(y1:¢)[|* | y1:¢} — inf . (2)
ters in order to counteract the observer. First, the lin- %" e

ear multistage systems with unknown additive distur-

bances are examined. In these systems, the varianceklereafter, the symbdjl- || means Euclidean norm. The
of random noises may be also used by the controller conditional expectation in (2) is equaltoP; + ||; —



¥e(y1:4) ||, where (see [Liptser and Shiryayev(2000)]) Now suppose that matricé?;, C; in (1) are also unde-
fined, and we have inclusiod$ € B, C; € C, where

Pi=AP 1A, + BB}, icl:t, B, C are compact sets in corresponding matrix spaces.
B = Aidio1 + v + Bi(yi — ws), o = o In this case, the minimax probl_em of type (2) for the
L G observer becomes more complicated. Assume that the
Ai=A; =BGy, B, = AP Gi(GiC observer uses some unknown for the controller estima-
+GiP,_1G))T. tion algorithm. We will not solve the problem for the

observer, but consider a step-by-step control procedure

Here the pseudoinverse matrix is denotedA, the constructing the disturbances recursively.

symbol’ means the transposition, anditis the trace  prgplem 2. Let sequences;.;_1, wi.;_1, Bi.r_1, and
of the matrixA. In view of symmetry of the sef¥, W ' ' '
the optimal solution); = 2? of problem (2) is defined
by the equation

C1..—1 satisfying the inclusions be already selected at

the instantt. Choose elements, w;, By, C; such

thattr P, + ||e||> — maxy, w,.5,.c,, where matrixP,

and vectore; are defined from equatior{8) and (4).

~0 _ A .40 . ~0 _ =

T, = A2y + By, £ = To. o o
Similarly to Problem 1 the controller can maximize the

final valuetr Py + ||en]|?. Let us call this situation as

Problem 3. In this case, we obtain the generalization

of Theorem 1.:

The point estimationz? is used by the observer, but
actually the estimation obeys equation (3). Therefore,
we come to the following problem for the controller.
Theorem 3. Let the sequences.y, wi.n, Bi.n, and

Problem 1. Choose the disturbances .y, . in . ) . :
O8N, WiN C1.n give the maximum in relations

(3) such that they maximize the vallel, — 2y ||* at
the end of process.
Vici(Pic1,ei-1) =  max V(P e),

vi,wi,B;,Ci

1€1:N, VN(PN,QN) =trPy + ||€NH2.

Lete; = #; — 29. The value ofe; is known to the
controller, but not to the observer. We have

e; = Ajei—1 +v; — Bjw;, eg=0. 4) o ,
Then they are optimal in Problef) where the optimal

Using the dynamic programming method we come to cost value is equal & (Fo, 0).

the following sufficient condition of optimality.
2.2 Nonlinear case

First, we consider the nonlinear case in set-member-
ship formulation. At the end of the section we explain
how to extend the results for stochastic systems. Given
is the multistage system

Theorem 1. Let the sequences vi.y, wi.n
give the maximum in relationsV;_q(e;—1) =
max,, », Vi(ei), i € 1: N, Vn(en) = |lex|* Then
they are optimal in Probler, where the optimal cost
value is equal td/5 (0).

Remark 1. It follows from Theorem that the optimal
disturbancesy;, w; for the controller are positionally
defined and may depend epn_;. Thus, they may de-
pend ony;.;—1. This fact does not contradict the gen- wherei € 1: T, z; € R" is the state vectoy; € R™
eralized Kalman filter equatio(B). is the observed vector; andw; are disturbances. In
addition, we believe that the first equation in (5) may
be written in the equivalent inverse form

zi = fi(xi—1,v:), yi = gi(xric1) +wi,  (5)

On the other hand, the necessary and sufficient con-
dition is formulated as follows. Denote yy ; the
productAy - - - Ag.

Theorem 2. The sequences(yi.i_1), w;(y1.i—1),1 € i1 = Fy(zi,v), i€1:T,

1: N, are optimal in Problent iff there exists a vector
1° # 0 such that and all the functions in these equations are continuous.
Suppose that the observer knows equations (5) and a

v N priori constraints
1) " An i (v — Biwy)
i=1

N
N
= max {pWAN 41 1 V) holo) + Z;hi(”i’wi) =h &
= =1 1=
I . . _— J—
+o(UAN, 1B | W)} =vV(0), Avni1=L where functionsh; > 0 are lower semicontinuous

(I.s.c.) and such that the level sdts w : h;(v,w) <
Here the valuenax,cv l'v is denoted by (I’ | V). a} are bounded and nonempty for= 0.



The observer tries to know the state vector of system set. Other choices for functiorf§(z, W (-)) are
(5) using a set-membership estimation algorithm.

Definition. The setX;(y) is said to benformational diam{z : W(z) < 1},
oneif it consists of all state vector§z,}, for which min  max |z — z||
there exist sequences,, w:.; and initial stater, such TER™ {z:W(2)<1} ’ (11)
that system (5) realizes the observed sigaaland in- meas{z : W(z) < 1}, max |z|,
equality (6) is fulfilled. {=W(2)<1}

Let Hy(z,v,y) = hy(v,y — gi(x)), t > 1. )
ol ) ol (@) wheremeas means the Lebesgue measure of the set in

Theorem 4. The inclusion: € X;(y) is equivalentto ~ R™. In any case from (11), the functionaldepends
the inequality only on the size of the informational set. In some cases
the functionall may be absent, and the controller does
not counteract the observer, but tries to achieve his own
ho (o) purpose not known to the observer._ _ _
We can see from (7) that the functidi, (-, v) is built
from signaly, and previous¥?;_,(-,y). Therefore, we
can consider the generalized dynamic system

-

Wy(z, y):min{

Vi1:t

H,_/ <
Il
\')—l
8
o~
|
8

+H (F (‘rlﬁ vl) /Ula yz

The functionsV,(x,y),t € 1 : T, are |.s.c. and satisfy Wi, y) = Li(wi—1, Wima (- y), wi), Wol-,y)

the recurrent relations =ho(+), mi = fi(wi_1,v;), (12)
Wi(z,y) = min {Wt—1(Ft(£C, vt),Y) where the operatdr; (z;—1, W;—1(-, y), w;) is defined
vt 7 by (7). A pair{z;, W;(-,y)} is called astateof sys-

+H(Fy(x,v¢), vy, yt)}7 Wo(x,y) = ho(x), tem (12). By definition of informational sets, we have

the inequalityW;(z;,y) < 1foralli € 0 : N.
Note that the paifz;, W;(-,v)} depends on parame-

forallte1:N. tersxg, vi., Wis.
According to Theorem 4 the observer calculates func- fLIJ\In(z:Vt\:ovr\:: are able to define recursively the Bellman
tions (7) and constructs the informational s&éi$y) =
{z : Wi(x,y) < 1}. These sets are compact and con-
tain the real state vectay;. Aiy(z, W () = I}}E}ﬂ { (fi(z,v),Li(x,
The problem for the controller is to maximize the esti- . _ 13
; : : ()sw)) : hi(v,w) <1 ()} (13)
mation error. The disturbances may be constrained also
by additional relations not known to the observer. Let +fo W (), i€1:N,

the estimation error be given by the functional
whereAy (z, W (")) = fo' (z, W ("))

N There are some modifications of functions (13). For
I = Zfé(xi, Wil-,y)). (8) example, the sequeneg.y is used by the controller
i=0 for his own purposes. Then the maximization in (13)

should be carried out over parametargy. At last,
the maximization may be absent.

The controller maximizes functional over all the pa- . ) :
By induction, we obtain the theorem.

rametersc, v1. v, w1y constrained by (6).
The functionsf¢ in (8) may be, for example, defined Theorem 5. Let fi(x, W (-)) be one of the functions
as from (9) — (11). Then functiona(8) is upper semicon-
tinuous with respect to variables,, vi.x, wi.n, and
i the maximum if{13)is reached. The optimal value of
folzs, Wil y)) = o) i = 2, ©) functional (8) is equal tol* = max{Ao(z, ho(-)) :
ho(xz) < 1}. The optimal parameters;, v],y, Wi,y
are defined recursively (multiple valued) and are max-

oras imizers in relationg13).
i N {0 In one particular case, the detailed proof of the Theo-
. fol@, W()) = [z — 27| (10) rem 5 is given in [Ananyev(2011)].
z” =argmin  max |z - 2|, The optimal parameters defined in the Theorem 5 gen-

rzeRr {z:W(2)<1 .. . .
err {=WES erate explicitly the trajectory;, ,, and the signad;.

of system (5). This signal may be calldte worstfor
wherez? is the Chebyshev center of the informational observation in sense of functional (8).



We may suggest a simpler step-by-step procedure
this end for stageé € 1 : N we choose the elements

{vi,w;} € Argmaxfé(fl-(:fi,l , V),

VW

Li(Tio1, Wiia (4, 9), w)),

(14)

where zo € Argmax, ., .)<1y fo(x, ho(-)). Ele-
ments{v;, w; } exist here.
Now, let us explain how to extend some results for

nonlinear stochastic systems. Consider the system

(W) = fi(w, zi—1(w), z;) + zi(w),
i€1l:N, zy(w) = E&(w),
Yi(w) = gi(w, xi—1(w)) +mi(w).

(15)

The solution of system (15) is looked for as a se-
quence of pairgz; _1;2;] € R*", i € 1 : N, of ran-
dom values, which are given on filtered random space
(Q,F, {F:},P) with F = Fy, whereo-algebras
Fi-1 C Fi, i € 1 : N. Besidesg;, z; € Ly(F;),
where L3 (F;) is a space of square integrable vector-
functions that are measurable w.atalgebraF;.

The stochastic sequenggw) in (15) is supposed to
comply with constraints

N

ho(l’o) + EZ hi(T]i, Zi) <1.
i=1

(16)

Note that for anyt € L3 (F) backward stochastic dif-

ference equation in (15) has a unique solution (see [Co-

hen and Elliott(2010)]) under following
Assumption.

1. The functions;(-,z;_1(-), z;) € L3 (F;_1) forall
Z; € M?,Z €l:N and:vi_l(-) S Lg(]:i—l)-

2. The mapping;(w, -, z;) : R™ — R™is a bijection
with inverse mapping; ' (w, -; z;), which also sat-
isfies the condition.

Here by M we denote the spacfe: € L%(F;) |
E(z|Fi—1) = 0},¢ € 1 : N, of martingale-differences.
The problem for the observer may be formulated as fol-

lows. Letthe observed processin (15) be realized under

& € LY (F) andn} € LY (F;—1). One needs to deter-
mine the random informational set (RIS)y(y) con-
sisting of all vectorg € L3 (F), for which there exist
disturbances; € L5'(F;—1) such that inequality (16)
and equations (15) are holta.s. foranyi € 1 : N.

Of course, the RISY;(y) may be constructed at any
momentt € 1 : N.

The problem for the controller is to maximize the esti-

. ToThen for stage € 1 : N the controller chooses the el-

ement{n;} € Argmax, fj(z;, Xi(y)), provided that
the elementsj;.;_; already selected. For the initial
stage, we havey € Argmax, ., max.cyx, ||z — z|°.

3 Problems for time-continuous systems
We restrict ourselves by the set-membership formula-
tion. Let the nonlinear system

&= f(t,xz,v), te][0,T], a7

be given, where: € R™ is an unobserved state vector,
v € RP is an uncertain disturbance. The equation of
observation is of the form

y=g(t,z)+w, yeR™ (18)

The unknown functions and initial data satisfy the con-
straints

T
ho(zo) +/ h(t,v(t), w(t))dt < 1. (19)
0
Let the standard conditions

Hf(ta‘rlvv) - f(t,l‘g,U)” < /\”‘Tl - ‘TQH’
1f(t 2, 0)[| < k(1 +[lz]| + ||lvl), =€ R", veR?,

be fulfilled. The informational se&'(¢,y) for con-
tinuous case is defined in the same manner as
above. Introduce the Bellman functidi(t,z) =
min, .y J(t, z,v), where the functional is of the form

J(t, z,v) = ho(xo) —|—/O h(r,v,y(r) — g(7,x))dr,

x(t) = x.
The Bellman equation fdv' (¢, =) can be written as:

V, = mjn{ — [t 2, v)Ve + h(t, v, y(t)

(20)
~g(t.) . V(0.2) = ho(a),

If the solution of (20) is found, we hav&(¢,y) = {« :
V(t,z) < 1}. To solve (20) the observer can use any
known methods. In the special case, whféh =, v) =

mation error as above. For example, consider the step-

by-step procedure, where

fol@i, Xi(y)) = max Ellz; — 2],
ZEX;(y)

f(t,z) + B(t)v, h(t,v,w) = h(t,w) + v'Q(t)v, he
obtains
Vi = _f/(tv I)Vm + h(tv y(t) - g(tv I))
~V!BQ 'B'V, /4, (21)

V(0,2) = ho(z), vo(t,z) =Q 'B'V,/2.



In this equation the minimization is absent, but there
is a nonlinear summand. Instead of inequality (19) we
consider the following one:

T
o (o) + / {folt, w) + 0/ (BQBu(®)

(22)
+0p(t)Q(t)vo(t) pt < 1,
and the linear Lyapunov eouation
Vt = _f/(taI)VE +h(t7y(t) _g(tv'r))v (23)

V(0,2) = ho(z), volt,z) =Q *B'V,/2.

Here nor the observer, nor the controller can influence
the matrixKe,.

Example 2. Consider equations of Euler approxima-
tion for perturbed linear oscillator with observation of

velocity:
Ny E e U] 3
Ty = _A 1 Ti—1 Ui b 79

yi = [0 1] i1 + w; + cn,

where constraints for uncertain parameters are of the
formv} = 0, [v?] < 1, |w;| < 1,b € {0,1}, ¢ €

{0, 1}. Let the controller solve step-by-step Problem 2.
Let the initial state be equal zero. At first stage we have

In connection with equations (22), (23), consider the b; = 1, v? = 41. At the subsequent stages we have
setV(t,y) = {z : V(t,x) < 1}, and suppose that b; =1,¢; = 1,v; = 1, w; = —1. If A = 0.1, then the
the observer uses it as some approximatioft'¢f, y) maximal value ofrP; + ||e;||? tends to 2.6351.

in case (21). On the other hand, the controller can use gyample 3. Two companies are engaged in wild an-
the method of characteristics to compute the function jmals monitoring. Certain quantity of the animal units
V(t,x) and the setv(t, y) for various disturbances. pejonging to these companies from different popula-
Note that the method of characteristics is a powerful {ions is placed in one area, and further they develop and

one that allows to reduce any first-order linear PDE t0 ¢ompete among themselves according to the equations
an ODE, which can be subsequently solved using ODE

techniques.

So, the problem for controller may consist in max-
imization of the function like (9)—(11) withV () =
V(T,-) and with the final state = z(T") of equation
(17).

4 Examples
In this section, we consider some examples.

Example 1. Given the one-stage stochastic system
with measurements and constraints of type (15):

r=x0+Ez2b+z, x =€ y=um20+n,
be R, pollzoll® + al|nl* + aEl1z[* < 1,

the controller seeks for the determinate valyeand
zo to maximize fg (z, X1(y)) = maxecx, y) Bll€]>
Here constantpy, ¢1, g2 > 0 are known. Asz is a
martingale-difference, then= ¢ — E€ andxy = E£ —
Keeb, whereKe = var(€, €) is the covariance matrix
of vector{. From constraints we obtain the inequality

Pol|EE— Keeb||* +q1|ly —EE+ Keeb||* + qotrKee < 1.

This inequality defines the séf; (y). Letv? = 1 —
g2trK¢e. Then the optimal cost value is equal to

max HKggb—‘r ny
y Po+q1
V2 + _ 2
+\/ (Po +q1) POQ1||y|| Keeb + qQy .
Po+q1 Po + q1

1 = z1(a — bx1 — cxa), o = x2(v—dxy — exa),

(24)
wherex; is a quantity of animal units iith popula-
tion,i = 1,2; a, b, ¢, d, e are known positive constants.
Representatives of 1-st company aspire to specify num-
ber of animals agree to the data arriving from sensors

yi = w1(tio1) +wi, v =@2(tima) +wh,  (25)

in discrete instant§ = ¢ty < t; <,..., wherew’ =

[w}; wh] is a vector of measurement disturbances. They
consider the parameterin (24) uncertain keeping a
constant value on a half-intervlll_;,¢;). Uncertain
parameters of system (24), (25) are restricted by ge-
ometrical constraintes < v < 3, |w;'-| < 7. 1-st
company uses a minimax algorithm of an estimation
which is reduced to the following. L&;(X) be the at-
tainability domain of system (24) at the instapfrom

the setX at the instant,_;. Information setsY; are
formed by the following rule

Di(Xi—1NY;),
Vize — yh| < v}, Xy = Xo.

X; Vi ={x:|v1 — i

Representatives of the second company know about in-
tentions of the first and do not hinder with it. But un-
like the first company they have continuous access to
the sensow:(t) and form parameter = v(y2) by a
principle of feedback for the purpose of maintenance of
number of the animals at certain level. Functidp) is

{Bﬁy<=@

defined by the formula(y) , Where

o, if y > To
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Figure 1. Real trajectories.
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Figure 2. State trajectory.
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Figure 3. Information set, t=57.

To is a threshold value. The time in equation (24) is
measured in months, coordinates are in tens pieces.
Numerical parameters are: a=3; b=0.8; ¢c=0.1; d=1.1;

e=0.2;a = 4.92; 8 = 5.08; v = 1; To = 12.5. Ini-

tial set is: X {z : 15 <= a1 <= 23; 4 <=

Ty <= 5}. Modeling was done for the initial dat =

2, 29 = 5 and disturbances; = sin(tr/10); wy =

— cos(tw/10) on the segment [0,60]. Real trajectories
are of the form depicted on fig. 1. The state trajectory
is represented on fig. 2. Information set for 57 is shown
on fig. 3. The asterisk indicates a position of the real
path.
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