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Abstract
Estimation problems for so-called statistically uncer-

tain systems are considered where along with stochas-
tic disturbances there exist ones with no statistical de-
scription. In this paper, a controller uses uncertain dis-
turbances in the system as control actions to produce
worst signals for an observer, or, along with this task,
to achieve his own aims unknown for the observer. On
the other hand, the observer applies a minimax state es-
timation algorithm and does not know the aims of the
controller. Such problems arise, for example, in avia-
tion, when the plane must do some work to go unno-
ticed. Besides, there are other examples in economics,
financial mathematics, and biology.
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1 Introduction
In many estimation problems from mechanics, eco-

nomics, biology, and financial mathematics, there are
both stochastic disturbances in the system and the
observation’s channel and uncertain ones with un-
known statistics. In particular, the stochastic part may
be absent in special case of set-membership descrip-
tion of uncertainty, [Schweppe(1973); Bertsecas and
Rhodes(1971); Kurzhanski and Vályi(1996)]. Some
problems of observations’ control for determinate sys-
tems were considered in [Ananyev(2011)]. Estima-
tion problems, where uncertain and stochastic distur-
bances act simultaneously, were examined in [Katz and
Kurzhanski(1975); Ananiev(2010); Ananiev(2007)].
Here we consider the observations’ control problems
for statistically uncertain systems in which the con-
troller can choose the disturbances and other parame-
ters in order to counteract the observer. First, the lin-
ear multistage systems with unknown additive distur-
bances are examined. In these systems, the variances
of random noises may be also used by the controller

for his own purposes unknown to the observer. Next,
the observations’ control for some nonlinear multistage
systems and estimation algorithms is studied. After that
we consider problems for time-continuous systems. In
last section some examples are given.

2 Problems for multistage systems
In this section, we consider observations’ control

problem for multistage systems. Cases of linear and
nonlinear systems are examined separately.

2.1 Linear case
Consider ann-dimensional multistage linear system

with m-dimensional observation:

xi = Aixi−1 + vi +Biξi, i ∈ 1 : N,

yi = Gixi−1 + wi + Ciηi,
(1)

whereξi andηi are independent sequences of mutually
independent standard Gaussian vectors;vi ∈ V and
wi ∈ W are disturbances that are contained in convex
compact sets. Suppose that disturbancesvi, wi may
depend on observationsy1:i−1, the sets are symmetric
with respect to zero, andBi andCi are known matrices.
We assume that the observer knows the coefficients of

equations (1), the setsV, W, the parameters̄x0 =
Ex0, P0 = var(x0) of initial Gaussian vectorx0,
whereE is the expectation, but does not know the re-
alizations ofvi andwi. To estimate the state vectorxi
the observer uses algorithm from [Katz and Kurzhan-
ski(1975)], where at any instantt he solves the prob-
lem:

sup
v1:t,w1:t

E{‖xt − ψt(y1:t)‖
2 | y1:t} → inf

ψt(·)
. (2)

Hereafter, the symbol‖ · ‖ means Euclidean norm. The
conditional expectation in (2) is equal totrPt + ‖x̂t −



ψt(y1:t)‖
2, where (see [Liptser and Shiryayev(2000)])

Pi = AiPi−1A
′
i +BiB

′
i, i ∈ 1 : t,

x̂i = Aix̂i−1 + vi + Bi(yi − wi), x̂0 = x̄0,

Ai = Ai − BiGi, Bi = AiPi−1G
′
i(CiC

′
i

+GiPi−1G
′
i)

+.

(3)

Here the pseudoinverse matrix is denoted byA+, the
symbol ′ means the transposition, and trA is the trace
of the matrixA. In view of symmetry of the setsV, W
the optimal solutionψt = x̂0t of problem (2) is defined
by the equation

x̂0i = Aix̂
0
i−1 + Biyi, x̂

0
0 = x̄0.

The point estimationx̂0i is used by the observer, but
actually the estimation obeys equation (3). Therefore,
we come to the following problem for the controller.

Problem 1. Choose the disturbancesv1:N , w1:N in
(3) such that they maximize the value‖x̂0N − x̂N‖2 at
the end of process.

Let ei = x̂i − x̂0i . The value ofei is known to the
controller, but not to the observer. We have

ei = Aiei−1 + vi − Biwi, e0 = 0. (4)

Using the dynamic programming method we come to
the following sufficient condition of optimality.

Theorem 1. Let the sequences v1:N , w1:N

give the maximum in relationsVi−1(ei−1) =
maxvi,wi

Vi(ei), i ∈ 1 : N, VN (eN ) = ‖eN‖
2. Then

they are optimal in Problem1, where the optimal cost
value is equal toV0(0).

Remark 1. It follows from Theorem1 that the optimal
disturbancesvi, wi for the controller are positionally
defined and may depend onei−1. Thus, they may de-
pend ony1:i−1. This fact does not contradict the gen-
eralized Kalman filter equation(3).

On the other hand, the necessary and sufficient con-
dition is formulated as follows. Denote byAN,k the
productAN · · ·Ak.

Theorem 2. The sequencesvi(y1:i−1),wi(y1:i−1), i ∈
1 : N , are optimal in Problem1 iff there exists a vector
l0 6= 0 such that

l0
′

N
∑

i=1

AN,i+1(vi − Biwi)

= max
‖l‖=1

N
∑

i=1

{

ρ(l′AN,i+1 | V)

+ρ(l′AN,i+1Bi | W)
}

=
√

V0(0), AN,N+1 = I.

Here the valuemaxv∈V l′v is denoted byρ(l′ | V).

Now suppose that matricesBi, Ci in (1) are also unde-
fined, and we have inclusionsBi ∈ B, Ci ∈ C, where
B, C are compact sets in corresponding matrix spaces.
In this case, the minimax problem of type (2) for the
observer becomes more complicated. Assume that the
observer uses some unknown for the controller estima-
tion algorithm. We will not solve the problem for the
observer, but consider a step-by-step control procedure
constructing the disturbances recursively.

Problem 2. Let sequencesv1:t−1, w1:t−1,B1:t−1, and
C1:t−1 satisfying the inclusions be already selected at
the instantt. Choose elementsvt, wt, Bt, Ct such
that trPt + ‖et‖

2 → maxvt,wt,Bt,Ct
, where matrixPt

and vectoret are defined from equations(3) and (4).

Similarly to Problem 1 the controller can maximize the
final valuetrPN + ‖eN‖

2. Let us call this situation as
Problem 3. In this case, we obtain the generalization
of Theorem 1:

Theorem 3. Let the sequencesv1:N , w1:N , B1:N , and
C1:N give the maximum in relations

Vi−1(Pi−1, ei−1) = max
vi,wi,Bi,Ci

Vi(Pi, ei),

i ∈ 1 : N, VN (PN , eN ) = trPN + ‖eN‖
2.

Then they are optimal in Problem3, where the optimal
cost value is equal toV0(P0, 0).

2.2 Nonlinear case
First, we consider the nonlinear case in set-member-

ship formulation. At the end of the section we explain
how to extend the results for stochastic systems. Given
is the multistage system

xi = fi(xi−1, vi), yi = gi(xi−1) + wi, (5)

wherei ∈ 1 : T , xi ∈ Rn is the state vector,yi ∈ Rm

is the observed vector,vi andwi are disturbances. In
addition, we believe that the first equation in (5) may
be written in the equivalent inverse form

xi−1 = Fi(xi, vi), i ∈ 1 : T,

and all the functions in these equations are continuous.
Suppose that the observer knows equations (5) and a
priori constraints

h0(x0) +

N
∑

i=1

hi(vi, wi) ≤ 1, (6)

where functionshi ≥ 0 are lower semicontinuous
(l.s.c.) and such that the level sets{v, w : hi(v, w) ≤
α} are bounded and nonempty forα = 0.



The observer tries to know the state vector of system
(5) using a set-membership estimation algorithm.

Definition. The setXt(y) is said to beinformational
one if it consists of all state vectors{xt}, for which
there exist sequencesv1:t, w1:t and initial statex0 such
that system (5) realizes the observed signaly1:t and in-
equality (6) is fulfilled.

LetHt(x, v, y) = ht(v, y − gt(x)), t ≥ 1.

Theorem 4. The inclusionx ∈ Xt(y) is equivalent to
the inequality

Wt(x, y) = min
v1:t

{

t
∑

i=1

h0(x0)

+Hi(Fi(xi, vi), vi, yi)
}

≤ 1, xt = x.

The functionsWt(x, y), t ∈ 1 : T , are l.s.c. and satisfy
the recurrent relations

Wt(x, y) = min
vt

{

Wt−1(Ft(x, vt), y)

+Ht(Ft(x, vt), vt, yt)
}

, W0(x, y) = h0(x),
(7)

for all t ∈ 1 : N .

According to Theorem 4 the observer calculates func-
tions (7) and constructs the informational setsXt(y) =
{x : Wt(x, y) ≤ 1}. These sets are compact and con-
tain the real state vectorxt.
The problem for the controller is to maximize the esti-

mation error. The disturbances may be constrained also
by additional relations not known to the observer. Let
the estimation error be given by the functional

I =

N
∑

i=0

f i0(xi,Wi(·, y)). (8)

The controller maximizes functional over all the pa-
rametersx0, v1:N , w1:N constrained by (6).
The functionsf i0 in (8) may be, for example, defined

as

f i0(xi,Wi(·, y)) = max
z∈Xi(y)

‖xi − z‖, (9)

or as

f i0(x,W (·)) = ‖x− x0‖,

x0 = argmin
x∈Rn

max
{z:W (z)≤1}

‖x− z‖,
(10)

wherex0 is the Chebyshev center of the informational

set. Other choices for functionsf i0(x,W (·)) are

diam{z :W (z) ≤ 1},

min
x∈Rn

max
{z:W (z)≤1}

‖x− z‖,

meas{z :W (z) ≤ 1}, max
{z:W (z)≤1}

‖z‖,

(11)

wheremeas means the Lebesgue measure of the set in
Rn. In any case from (11), the functionalI depends
only on the size of the informational set. In some cases
the functionalI may be absent, and the controller does
not counteract the observer, but tries to achieve his own
purpose not known to the observer.
We can see from (7) that the functionWt(·, y) is built

from signalyt and previousWt−1(·, y). Therefore, we
can consider the generalized dynamic system

Wi(·, y) = Γi(xi−1,Wi−1(·, y), wi), W0(·, y)

= h0(·), xi = fi(xi−1, vi),
(12)

where the operatorΓi(xi−1,Wi−1(·, y), wi) is defined
by (7). A pair{xi,Wi(·, y)} is called astateof sys-
tem (12). By definition of informational sets, we have
the inequalityWi(xi, y) ≤ 1 for all i ∈ 0 : N .
Note that the pair{xi,Wi(·, y)} depends on parame-
tersx0, v1:i, w1:i.
Now we are able to define recursively the Bellman

functions

Λi−1(x,W (·)) = max
v,w

{

Λi(fi(x, v),Γi(x,

W (·), w)) : hi(v, w) ≤ 1−W (x)
}

+f i−1
0 (x,W (·)), i ∈ 1 : N,

(13)

whereΛN(x,W (·)) = fN0 (x,W (·)).
There are some modifications of functions (13). For

example, the sequencev1:N is used by the controller
for his own purposes. Then the maximization in (13)
should be carried out over parametersw1:N . At last,
the maximization may be absent.
By induction, we obtain the theorem.

Theorem 5. Let f i0(x,W (·)) be one of the functions
from (9) – (11). Then functional(8) is upper semicon-
tinuous with respect to variablesx0, v1:N , w1:N , and
the maximum in(13) is reached. The optimal value of
functional (8) is equal toI∗ = max{Λ0(x, h0(·)) :
h0(x) ≤ 1}. The optimal parametersx∗0, v

∗
1:N , w

∗
1:N

are defined recursively (multiple valued) and are max-
imizers in relations(13).

In one particular case, the detailed proof of the Theo-
rem 5 is given in [Ananyev(2011)].
The optimal parameters defined in the Theorem 5 gen-

erate explicitly the trajectoryx∗1:N and the signaly∗1:N
of system (5). This signal may be calledthe worstfor
observation in sense of functional (8).



We may suggest a simpler step-by-step procedure. To
this end for stagei ∈ 1 : N we choose the elements

{vi, wi} ∈ Argmax
v,w

f i0(fi(x̄i−1, v),

Γi(x̄i−1,Wi−1(·, ȳ), w)),
(14)

where x̄0 ∈ Argmax{x:h0(x)≤1} f
0
0 (x, h0(·)). Ele-

ments{vi, wi} exist here.
Now, let us explain how to extend some results for

nonlinear stochastic systems. Consider the system

xi(ω) = fi(ω, xi−1(ω), zi) + zi(ω),

i ∈ 1 : N, xN (ω) = ξ(ω),

yi(ω) = gi(ω, xi−1(ω)) + ηi(ω).

(15)

The solution of system (15) is looked for as a se-
quence of pairs[xi−1; zi] ∈ R2n, i ∈ 1 : N , of ran-
dom values, which are given on filtered random space
(Ω,F , {Fi}, P ) with F = FN , where σ-algebras
Fi−1 ⊂ Fi, i ∈ 1 : N . Besides,xi, zi ∈ Ln2 (Fi),
whereLn2 (Fi) is a space of square integrable vector-
functions that are measurable w.r.t.σ-algebraFi.
The stochastic sequenceηi(ω) in (15) is supposed to

comply with constraints

h0(x0) + E

N
∑

i=1

hi(ηi, zi) ≤ 1. (16)

Note that for anyξ ∈ Ln2 (F) backward stochastic dif-
ference equation in (15) has a unique solution (see [Co-
hen and Elliott(2010)]) under following

Assumption.

1. The functionsfi(·, xi−1(·), zi) ∈ Ln2 (Fi−1) for all
zi ∈ Mn

i , i ∈ 1 : N andxi−1(·) ∈ Ln2 (Fi−1).
2. The mappingfi(ω, ·, zi) : Rn → Rn is a bijection

with inverse mappingf−1
i (ω, ·; zi), which also sat-

isfies the condition1.

Here byMn
i we denote the space{z ∈ Ln2 (Fi) |

E(z|Fi−1) = 0}, i ∈ 1 : N , of martingale-differences.
The problem for the observer may be formulated as fol-
lows. Let the observed process in (15) be realized under
ξ∗ ∈ Ln2 (F) andη∗i ∈ Lm2 (Fi−1). One needs to deter-
mine the random informational set (RIS)XN (y) con-
sisting of all vectorsξ ∈ Ln2 (F), for which there exist
disturbancesηi ∈ Lm2 (Fi−1) such that inequality (16)
and equations (15) are holdP -a.s. for anyi ∈ 1 : N .
Of course, the RISXt(y) may be constructed at any
momentt ∈ 1 : N .
The problem for the controller is to maximize the esti-

mation error as above. For example, consider the step-
by-step procedure, where

f i0(xi,Xi(y)) = max
z∈Xi(y)

E‖xi − z‖2.

Then for stagei ∈ 1 : N the controller chooses the el-
ement{ηi} ∈ Argmaxηi f

i
0(xi,Xi(y)), provided that

the elements̄η1:i−1 already selected. For the initial
stage, we havēx0 ∈ Argmaxx∈X0

maxz∈X0
‖x− z‖2.

3 Problems for time-continuous systems
We restrict ourselves by the set-membership formula-

tion. Let the nonlinear system

ẋ = f(t, x, v), t ∈ [0, T ], (17)

be given, wherex ∈ Rn is an unobserved state vector,
v ∈ Rp is an uncertain disturbance. The equation of
observation is of the form

y = g(t, x) + w, y ∈ Rm. (18)

The unknown functions and initial data satisfy the con-
straints

h0(x0) +

∫ T

0

h(t, v(t), w(t))dt ≤ 1. (19)

Let the standard conditions

‖f(t, x1, v)− f(t, x2, v)‖ ≤ λ‖x1 − x2‖,

‖f(t, x, v)‖ ≤ κ(1 + ‖x‖+ ‖v‖), x ∈ Rn, v ∈ Rp,

be fulfilled. The informational setX (t, y) for con-
tinuous case is defined in the same manner as
above. Introduce the Bellman functionV (t, x) =
minv(·) J(t, x, v), where the functionalJ is of the form

J(t, x, v) = h0(x0) +

∫ t

0

h(τ, v, y(τ) − g(τ, x))dτ,

x(t) = x.

The Bellman equation forV (t, x) can be written as:

Vt = min
v

{

− f ′(t, x, v)Vx + h(t, v, y(t)

−g(t, x))
}

, V (0, x) = h0(x),
(20)

If the solution of (20) is found, we haveX (t, y) = {x :
V (t, x) ≤ 1}. To solve (20) the observer can use any
known methods. In the special case, whenf(t, x, v) =
f(t, x) + B(t)v, h(t, v, w) = h(t, w) + v′Q(t)v, he
obtains

Vt = −f ′(t, x)Vx + h(t, y(t)− g(t, x))

−V ′
xBQ

−1B′Vx/4,

V (0, x) = h0(x), v0(t, x) = Q−1B′Vx/2.

(21)



In this equation the minimization is absent, but there
is a nonlinear summand. Instead of inequality (19) we
consider the following one:

h0(x0) +

∫ T

0

{f0(t, w) + v′(t)Q(t)v(t)

+v′0(t)Q(t)v0(t)}dt ≤ 1,

(22)

and the linear Lyapunov eouation

Vt = −f ′(t, x)Vx + h(t, y(t)− g(t, x)),

V(0, x) = h0(x), v0(t, x) = Q−1B′Vx/2.
(23)

In connection with equations (22), (23), consider the
setV(t, y) = {x : V(t, x) ≤ 1}, and suppose that
the observer uses it as some approximation ofX (t, y)
in case (21). On the other hand, the controller can use
the method of characteristics to compute the function
V(t, x) and the setV(t, y) for various disturbances.
Note that the method of characteristics is a powerful
one that allows to reduce any first-order linear PDE to
an ODE, which can be subsequently solved using ODE
techniques.
So, the problem for controller may consist in max-

imization of the function like (9)–(11) withW (·) =
V(T, ·) and with the final statex = x(T ) of equation
(17).

4 Examples
In this section, we consider some examples.

Example 1. Given the one-stage stochastic system
with measurements and constraints of type (15):

x = x0 + Ezz′b+ z, x = ξ, y = x0 + η,

b ∈ Rn, p0‖x0‖
2 + q1‖η‖

2 + q2E‖z‖
2 ≤ 1,

the controller seeks for the determinate valuesη and
x0 to maximizef1

0 (x,X1(y)) = maxξ∈X1(y) E‖ξ‖
2.

Here constantsp0, q1, q2 > 0 are known. Asz is a
martingale-difference, thenz = ξ−Eξ andx0 = Eξ−
Kξξb, whereKξξ = var(ξ, ξ) is the covariance matrix
of vectorξ. From constraints we obtain the inequality

p0‖Eξ−Kξξb‖
2+q1‖y−Eξ+Kξξb‖

2+q2trKξξ ≤ 1.

This inequality defines the setX1(y). Let ν2 = 1 −
q2trKξξ. Then the optimal cost value is equal to

max
y

{

∥

∥

∥

∥

Kξξb+
q1y

p0 + q1

∥

∥

∥

∥

2

+

√

ν2(p0 + q1)− p0q1‖y‖2

p0 + q1

∥

∥

∥

∥

Kξξb+
q1y

p0 + q1

∥

∥

∥

∥

}

.

Here nor the observer, nor the controller can influence
the matrixKξξ.

Example 2. Consider equations of Euler approxima-
tion for perturbed linear oscillator with observation of
velocity:

xi =

[

1 ∆
−∆ 1

]

xi−1 + vi +

[

0
b

]

ξi,

yi =
[

0 1
]

xi−1 + wi + cηi,

where constraints for uncertain parameters are of the
form v1i = 0, |v2i | ≤ 1, |wi| ≤ 1, b ∈ {0, 1}, c ∈
{0, 1}. Let the controller solve step-by-step Problem 2.
Let the initial state be equal zero. At first stage we have
b1 = 1, v21 = ±1. At the subsequent stages we have
bi = 1, ci = 1, vi = 1, wi = −1. If ∆ = 0.1, then the
maximal value oftrPi + ‖ei‖

2 tends to 2.6351.

Example 3. Two companies are engaged in wild an-
imals monitoring. Certain quantity of the animal units
belonging to these companies from different popula-
tions is placed in one area, and further they develop and
compete among themselves according to the equations

ẋ1 = x1(a− bx1 − cx2), ẋ2 = x2(v − dx1 − ex2),
(24)

wherexi is a quantity of animal units ini-th popula-
tion, i = 1, 2; a, b, c, d, e are known positive constants.
Representatives of 1-st company aspire to specify num-
ber of animals agree to the data arriving from sensors

yi1 = x1(ti−1) + wi1, y
i
2 = x2(ti−1) + wi2, (25)

in discrete instants0 = t0 < t1 <, . . . , wherewi =
[wi1;w

i
2] is a vector of measurement disturbances. They

consider the parameterv in (24) uncertain keeping a
constant value on a half-interval[ti−1, ti). Uncertain
parameters of system (24), (25) are restricted by ge-
ometrical constraintsα ≤ v ≤ β, |wij | ≤ γ. 1-st
company uses a minimax algorithm of an estimation
which is reduced to the following. LetDi(X) be the at-
tainability domain of system (24) at the instantti from
the setX at the instantti−1. Information setsXi are
formed by the following rule

Xi = D̂i(Xi−1 ∩ Yi), Yi = {x : |x1 − yi1|

∨|x2 − yi2| ≤ γ}, X0 = X0.

Representatives of the second company know about in-
tentions of the first and do not hinder with it. But un-
like the first company they have continuous access to
the sensory2(t) and form parameterv = v(y2) by a
principle of feedback for the purpose of maintenance of
number of the animals at certain level. Functionv(y) is

defined by the formulav(y) =

{

β, if y <= x2

α, if y > x2
, where
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Figure 1. Real trajectories.
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Figure 3. Information set, t=57.

x2 is a threshold value. The time in equation (24) is
measured in months, coordinates are in tens pieces.
Numerical parameters are: a=3; b=0.8; c=0.1; d=1.1;

e=0.2;α = 4.92; β = 5.08; γ = 1; x2 = 12.5. Ini-
tial set is: X0 = {x : 1.5 <= x1 <= 2.3; 4 <=
x2 <= 5}. Modeling was done for the initial datax01 =

2, x02 = 5 and disturbancesw1 = sin(tπ/10); w2 =
− cos(tπ/10) on the segment [0,60]. Real trajectories
are of the form depicted on fig. 1. The state trajectory
is represented on fig. 2. Information set for 57 is shown
on fig. 3. The asterisk indicates a position of the real
path.
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