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Abstract
Investigations of the physical objects and phenomena

is an interesting and complex task. This is especially
true in regard to the cybernation of scientific research.
This paper deals with a model of a cylindrical body
displacements through border of two viscous media.
The model enables one to set up the problem of dis-
placements of a cylindrical body for optimum energy
consumption, the time and distance of the displace-
ment being given. The problem has a number of spe-
cial features. First, it is irregular [Krasovskii, 1968],
because the Euler–Lagrange equations do not contain
controls in an explicit form, and, hence, the optimal
controls cannot be determined in terms of the state and
adjoint variables. Second, as it was found out, there
are impulse components in the control forces and mo-
mentums optimum programs. Therefore, the classi-
cal variational techniques cannot be directly applied to
find these programs. The third feature follows from
the second one and consists of calculating the energy
consumption. So we consider a new problem from the
viewpoint of the theory of singular or degenerate [Gur-
man, 1985] solutions of dynamic optimization prob-
lems.
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1 Introduction
Recently, control problems of moving objects in

various media are relevant and interesting. Various
works produced in coastal shelves such as a lining of
pipelines, search of mineral deposits, service works are
at the bottom of the given researches [Beletskii, 1973].
Construction adequate 3D models considering all phys-
ical nuances is a difficult task. Therefore we will be

limited to 2D consideration in absence of forces of a su-
perficial tension. Models of this kind were considered
in the book [Zavalishchins and Zavalishchin, 2002].
We also will consider only a movement through border
of media. The created model can be used for design of
perspective new machines.

2 Mathematical Model
Here we are attempt to construct a model in plane Oxy

of the body moving through a viscous media border
(see Fig.1). The medium of smaller density is located
above axis Ox. More dense one is located below axis
Ox. Body movement only through the border of vis-
cous media is considered. In the initial state lt = l and
in final state lt = 0. Here l is the length of the body.
Thus the length of a tail lt in the first medium changes
from l to 0. Length of the body part being in the sec-
ond one is equal l− lt. The location of the body inertia
center lc depends on size of body immersing in the sec-
ond medium. It should be noted that the inertia center
doesn’t coincide with the center of mass.

2.1 Forces and Moments Acting on the Body
It is obvious that the state of the body is described by

generalized coordinates x, y and φ. Let V be the vec-
tor of centroid velocity V = (ẋ; ẏ)T , F be the force
acting along a body axis F = (F sinφ;F cosφ)T ,
U be the angular moment, E be the unit vector E =
(sinφ; cosφ)T , D and D⊥ are the drag force and lift
force respectively. It is necessary to note that because
of presence of two viscous media drag forces and lift
forces will be different. Let the body moves from the
first medium 1 to the second medium 2. Forces acting
in different media will create the moment. The drag
force and lift force acting in i-th medium are equiva-
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lent to

Di = (−Di sin(φ− α);−Di cos(φ− α))T ,

D⊥
i = (D⊥

i cos(φ− α);−D⊥
i sin(φ− α))T ,

(1)

their resultant force acts at a point defined by lc

lc =
(D1 +D2)lt +D2l

2(D1 +D2)
. (2)

2.2 Description of the Hydrodynamic Forces, Co-
efficients and Limitations

Let a body of bounded size with sufficiently smooth
boundary S moves in fluid. One of the fluid mechan-
ics axioms is the sticking condition: at the body surface
points the velocity vector of fluid particle is equal to the
velocity vector of the corresponding body point. This
condition implies that in the case of translational mo-
tion of the body the following equality is fulfilled at its
surface (see [Slezkin, 1955])

(∂v
∂x

)∗
n = 0, (3)

where n is the unit vector of the outward normal to the
surface S at the point x. The stress on an element dS of
the body surface is calculated by the formula pn=Pn,
where n is the unit vector of the outward normal to dS.
This equality and (3) yield the formula for the principal
vector of the forces acting from fluid upon the body
surface (hydrodynamic forces)

R =

∫
S

∫ (
−pE + µ

∂v

∂x

)
n dS. (4)

Here p is average normal stress at each point, µ is the
dynamic viscosity.
We need further the so-called moving coordinate sys-

tem Ocy1y2y3 with the body inertia center as the origin
and the axes rigidly connected with the body.
To find the principal vector and momentum, one has

to calculate on the body surface the pressure and the
Frechet derivative of the fluid velocity vector. To do
this, one has to solve a certain boundary-value prob-
lem for the vector-valued Navier–Stokes equation. This
equation is written out below in the moving system
Ocy1y2y3 with axes parallel to the corresponding axes
of the system Ox1x2x3 (the body is assumed to move
translationally). Let V be the velocity vector of the
body, and xc(t) be the radius vector of its inertia cen-
ter. In the moving coordinate system, denote the abso-
lute velocity vector of fluid and the pressure as follows:
v̂(t, y) = v(t, xc(t) + y), p̂(t, y) = p(t, xc(t) + y).
Then the Navier–Stokes equation is of the form

∂v̂

∂t
= −∂v̂

∂y
(v̂−V)− 1

ρ

(∂p̂
∂y

)∗
+νdiv

∂v̂

∂y
+F, (5)
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Figure 1. Forces and moments acting on a body.

where F is the strength of the gravity field, ρ is the fluid
density, ν = µ/ρ is the kinematic viscosity coefficient.

Now, the above-mentioned boundary-value problem
is reduced to finding the solution of a system of par-
tial differential equations, namely, equation (5) plus the
equation of continuity divv̂ = 0. This solution must
satisfy the sticking condition v̂(t, y)

∣∣∣
S

= V and the

natural condition lim
y→∞

v̂(t, y) = 0. A flow is called

steady-state or stationary if the field of its absolute ve-
locity vectors in the moving coordinate system does not
change in time. Obviously, if the body moves transla-
tionally, the necessary condition for the flow to be sta-
tionary is V=V0 =const. Suppose that the body has
a symmetry axis. If the body moves in such a man-
ner that this axis remains in a given plane (for example,
in the plane Oxy), then, according to the statics theo-
rems for an absolutely solid body, the totality of forces
acting from fluid upon the body can be reduced to the
resultant one called the hydrodynamic force. As usual
the point of intersection of the symmetry axis and the
line of the hydrodynamic force action is referred to as
center of pressure. The hydrodynamic force is resolved
into components parallel to the velocity vector V of the
body inertia center and perpendicular to V. It should
be noted that x and y are the coordinates of body iner-
tia center. The first component D is known as the drag
force, and the second one D⊥ is called the lift force.

Let i, j be the unit vectors in the directions Ox and
Oy respectively. We need further a mapping that puts
a vector a = a1i + a2j into correspondence to a⊥ =
−a2i + a1j. Let V be the magnitude of V, D be that
of the drag force, and D⊥ be that of the lift force. For
needs of forthcoming references, it is convenient to for-
mulate the following assertion as lemma.
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Lemma. The drag and lift forces are calculated by
the formulae

D = sign(V,D)DV −1V,

D⊥ = sign(V,D)sD⊥V −1V⊥,

s = sign((V, e)(V, e⊥)),

(6)

where e is the directing vector of the body symmetry
axis.
In the framework of the listed constraints, the coef-

ficient CD is a function of the body shape, Reynolds
number and, probably, the angle of attack between the
velocity vector of the body inertia center and the sym-
metry axis, i.e., CD = CD(shape,Re, α) [Daily and
Harleman, 1966]. To determine the angle of attack one
can use the formula

α = −s arccos |(e,V/V )|. (7)

The nonstationarity of the flow can be partially taken
into account by means of introducing the apparent ad-
ditional mass [Daily and Harleman, 1966].

2.3 Derivation of the Equations of Motion
Kinetic energy is equal to

T =
1

2
m(ẋ2 + ẏ2) +

1

2

ml2

3
φ̇2. (8)

Using the Lagrange equations

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi (9)

one can obtain body movement equations

mẍ = Qx

mÿ = Qy

1
3ml2φ̈ = Qφ

(10)

The generalized forces corresponding to the general-
ized coordinates will be the following

Qx=−Dsin(φ−α)+D⊥cos(φ−α)+F sin(φ)

Qy=−D cos(φ−α)−D⊥ sin(φ−α)+F cos(φ)−mg

Qφ = U +M
(11)

The expression for the power of the control forces and
momentums is of the form

Ẇ = (ẋ sinφ+ ẏ cosφ)F + ωU . (12)

The system of equations (10) and (11) describes body
movement.

3 Optimization Problem Statements
Now the optimization problem can be formulated.

Problem 1. It is required to find controls F 0(t)
U0(t), 0 6 t 6 tk, moving with the minimum power
expenses, W (tk) → min, a body for given time tk for
the set distance.
Such problem is nonregular. Euler–Lagrange equa-

tions do not contain controls and do not allow to define
their optimum values in terms of the phase and inter-
faced variables.
The problem reduction is proved by that body move-

ment occurs in a potential gravity field. And the
changeable part of work of control forces is used for
change of body kinetic energy. Therefore the varied
part of work will be equivalent to power expenses for
overcoming of hydrodynamic forces of resistance and
will be equal to scalar product (DT ,V)

N = −D sin(φ− α)−D⊥ cos(φ− α)−Mφ (13)

Power of hydrodynamic forces is equal to

Ṅ=D(φ̇−α̇)(−cos(φ−α)+sin(φ−α))−Mφ̇ . (14)

Now it is possible not to consider dynamics of a body,
having assigned function of control to derivatives of
the generalized coordinates. Thus the initial problem
is equivalent to following problem.

Problem 2. It is required to find functions V(t) =
(Vx(t), Vy(t))

T ω(t), minimizing terminal functional
N(tk) at dynamical relations (12) and restrictions

x(tk) = xk , y(tk) = yk , φ(tk) = φk ,

cosα = ẋ cosφ+ ẏ cosφ .
(15)

According to classical Euler–Lagrange procedure it is
necessary to write out Hamiltonian H = λ0Ẏ +λ1ẋ+
λ2ẏ + λ3φ̇ and conjugated system with boundary con-
ditions

−λ̇0 = ∂H
∂N

= 0 , λ0(tk) =
∂Φ

∂N(tk)

−λ̇1 = ∂H
∂x

, λ1(tk) =
∂Φ

∂x(tk)

−λ̇2 = ∂H
∂y

, λ2(tk) =
∂Φ

∂y(tk)

−λ̇3 = ∂H
∂φ

, λ3(tk) =
∂Φ

∂φ(tk)

(16)

Here Φ = N(tk)+ ν1(x(tk)−xk)+ ν2(y(tk)− yk)+
ν3(φ(tk)−φk) is functional describing boundary con-
ditions.
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Figure 2. The angles of orientation and attack and control forces

Euler–Lagrange equations

∂H
∂ẋ

= λ1 +
∂Ṅ
∂ẋ

= 0

∂H
∂ẏ

= λ2 +
∂Ṅ
∂ẏ

= 0

∂H
∂φ̇

= λ3 +
∂Ṅ
∂φ̇

= 0

(17)

allow to calculate Lagrange multipliers and at having
substituted them in the conjugated system (16) to write
out the equations of optimal movement

ẋ = Vx ,
d
dt

(
∂Ṅ
∂Vx

)
= ∂Ṅ

∂x

ẏ = Vy ,
d
dt

(
∂Ṅ
∂Vy

)
= ∂Ṅ

∂y

φ̇ = ω , d
dt

(
∂Ṅ
∂ω

)
= ∂Ṅ

∂φ

(18)

In Fig. 2 the basic modes of border overcoming are
presented. It should be noted that zero moment cor-
responds to the time of entering into the boundary is
difficult to control.

4 Conclusion
Thus the system of the differential equations describ-

ing a rigid body movement through the boundary of
a viscous media is obtained. It allows to model vari-
ous modes of such movement. The totality of the prob-
lems solved in the present paper can be used in both the
applied theory of singular dynamic optimization prob-
lems and design of perspective samples of new ma-
chines.

Acknowledgements
Researches was supported by the Fundamental Re-

search Program no. 12-P-1-1012/1 of Presidium of
Russian Academy of Sciences ”Mathematical models
and algorithms for control systems with nonlinear dy-
namics” and by the Russian Foundation for Basic Re-
search, projects no. 10-01-00356.

References
Avetisyan, V.V., Akulenko, L.D., and Bolotnik, N.N.

(1987) Control of regimes of manipulation robots
for optimum energy consumption. J. Izv. Akad. Nauk
SSSR. Tekhnicheskaya kibernetika, 3, pp. 100–107.

Beletskii, V.S. (1973) Submarine Manipulation Ve-
hicles Operated by Remote Control. Sudostroenie,
Leningrad.

Chernous’ko, F.L., Bolotnik, N.N., and Gradet-
skii, V.G. (1989) Manipulation Robots: Dynamics,
Control and Optimization. Nauka, Moscow.

Daily, J.W., and Harleman, D., R.F. (1966) Fluid Dy-
namics. Wesley Publishing Co, Massachusetts.

Gurman, V.I. (1985) Extension Principle for Control
Problems. Nauka, Moscow.

Krasovskii, N.N. (1968) Theory of Optimal Control
Systems, in Mechanics in the USSR for 50 years.
Nauka. Moscow.

Oseen, C.W. (1927) Neuere Methoden und Ergebnisse
in der Hydrodynamik. Leipzig.

Schwatz, L. (1950) Théorie des Distributions. Vol. I.
Hermann, Paris.

Sedov, L.I. (1973) Solid Medium Mechanics. Vol. I.
Nauka, Moscow.

Slezkin, N.A. (1955) Incompressible Fluid Dynamics.
GITTL, Moscow.

Zavalishchin, D.S., and Zavalishchin, S.T. (2002) Dy-
namic Optimizanion of Flow. Nauka, Moscow.

Zavalishchin, D.S. (2010) Control problems for a body
movement in the viscous medium. In: From Physics
to Control Through an Emergent View. World Sci-
entific Series on Nonlinear Science, Editor: Leon
O.Chua, University of California, Berkeley, Series B,
15, pp. 295–300.

Zavalishchin, D.S. (2011) Movement of a rigid body
through the boundary of a viscous media. In The
5th International IEEE Scientific Conference on
Physics and Control (PhysCon2011). Electronic Li-
brary http://lib.physcon.ru/?item=82.


