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Abstract
It is commonly stated that a system is parametrically

excited if the excitation appears as time-varying coeffi-
cients of the equations of motion. It is shown that this
statement is contradicted in those structural problems
with unconstrained motions whose excitation terms, ei-
ther boundary forces or displacements, appear as inho-
mogeneities in the boundary conditions. Yet, these ex-
citations, under pertinent conditions, may cause para-
metric Hill-type instabilities. It is only when suitable
coordinate transformations are introduced or a con-
strained version of the motions is sought (e.g., via a
Bubnov-Galerkin approach) that the parametric nature
of the excitation is brought out explicitly and unam-
biguously.
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1 Introduction
The phenomenon of parametric instability is fre-

quently encountered in mechanics as well as in various
areas of physics.
Faraday [Faraday, 1831] was one of the first to observe

the phenomenon of parametric resonance noting that
surface waves in a fluid-filled cylinder under vertical
excitation exhibited twice the period of the excitation.
Melde [Melde, 1859] was the first to observe the phe-

nomenon in structural dynamics. He tied a string be-
tween a rigid support and the extremity of the prong
of a massive tuning fork. He observed that the string
could oscillate laterally, although the driving force was
longitudinal, at one half the frequency of the fork un-
der a number of critical conditions. Two decades later,
Lord Rayleigh [Strutt, 1883] provided a theoretical ba-
sis for interpreting the parametric resonance of strings
and conducted further experiments.

The parametric resonance is not necessarily an insta-
bility since a small parametric-resonance load can also
stabilize a system which is unstable or can be exploited
for vibration suppression via autoparametric transfer of
energy. Stephenson [Stephenson, 1908] made the re-
markable observation that a column subject to an axial
periodic load was stable even though the steady value
of the load was twice that of the Euler load.
Later, Belayev [Belayev, 1924] analyzed the response

of a straight elastic hinged-hinged column subject to
an axial load of the formp(t) = p0 + P cos Ωt. He
obtained a Mathieu equation for the dynamic response
of the column and determined the principal paramet-
ric resonance frequency. He showed that the column
could be made to oscillate with the frequency1

2Ω if it
is close to one of the natural frequencies of the lateral
motion even at load magnitudes below the static buck-
ling load. Einaudi [Einaudi, 1936] was the first to study
the parametric resonance caused in plates by pulsating
pressures on the lateral surfaces. These investigations
were furthered in [Chelomei, 1939; Bolotin, 1964].
The cited references are only a small part of an ex-

tremely rich literature, including several books and
monographs. Some of them are mostly devoted to the
theory of parametrically excited linear discrete systems
[Yakubovich, 1975; Nayfeh, 1979; Cartmell, 1990].
A good deal of efforts has been directed towards meth-

ods for constructing the instability regions of para-
metrically excited systems [Nayfeh, 1979; Seyranian,
2001].
An extensively large number of works has addressed

the principal parametric resonance of rods and its
cancellation [Zavodney, 1989; Yabuno, 2003; Lacar-
bonara, 2007].
In all of the studies conducted on the phenomenon of

the parametric resonance, the fundamental question of
what a parametric excitation is and how it can be recog-
nized a priori in a structural system has often been left
in the background. It is a common belief that a system



is parametrically excited when the excitation appears as
time-varying coefficients of the governing equations of
motion. The aim of this paper is to show that in a mul-
titude of cases a parametric excitation can be masked
in a way that one would not be led to assert that it acts
as a parametric excitation. We discuss ways to disclose
the parametric nature of the excitations.

2 Parametric resonances
The parametric excitation mechanism differs physi-

cally and mathematically with respect to a direct ex-
citation mechanism. The distinguished physical differ-
ence is in that a small excitation cannot produce a large
response in directly excited systems unless the driving
frequency is close to one of the natural frequencies (pri-
mary resonance). Conversely, a small parametric exci-
tation (in principle, infinitesimal provided that the sys-
tem dissipation be negligible) can produce a large re-
sponse when the driving frequency is close to twice one
of the natural frequencies of the system (principal para-
metric resonance). Moreover, in linear parametrically
excited systems, the amplitude of the unstable solution
grows exponentially unbounded in spite of the presence
of viscous dissipation contrary to directly excited sys-
tems where the resonance can be bounded by the damp-
ing. The nonlinearities, under suitable conditions, act
to saturate the parametric instabilities. The saturation
is caused by the fact that, due to the dependence of
the eigenfrequency on the motion, the growth of the
parametrically excited oscillations causes the eigenfre-
quency to be shifted out of resonance.
In the following sections, we will discuss the para-

metric excitation of naturally discrete systems, first,
and then, of distributed-parameter systems, in partic-
ular, cables, rods, and shells. Throughout the paper,
we employ Gibbs notation for vectors and tensors. Eu-
clidean vectors and vector-valued functions are denoted
by lower-case, italic, bold-face symbols. The dot prod-
uct and cross product of (vectors)u andv are denoted
u · v andu × v, respectively. Tensors are denoted by
upper-case, italic, bold-face symbols.

2.1 The simple pendulum and the autoparametric
transfer of energy

The simplest example of a parametrically excited sys-
tem is the pendulum subject to a vertical motion of its
suspension point. We denoteθ the angle that the pen-
dulum arm makes with the downward vertical line, as-
sumed positive in the counter-clockwise direction and
y(t) the motion of the pivot. The equation of motion is

ml2θtt + ml (g + ytt) sin θ = 0 (1)

In the pendulum problem, the termytt sin θ = yttθ +
O(θ3) is the parametric excitation term that causes the
instability wheny is either harmonic or periodic with
appropriate frequencies.
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Figure 1. The autoparametric vibration absorber.

The phenomenon of parametric resonance is not nec-
essarily harmful as it can be beneficially exploited
to transfer energy from the directly excited system
to a parametrically coupled substructure, acting as an
autoparametric vibration absorber [Cartmell, 1990].
Within the context of an autoparametric transfer of en-
ergy between a primary structure and an attached pen-
dulum, the primary structure consists of a massm1,
whose motion is denotedy(t), a nonlinearly elastic
spring, whose constitutive law isN (t) = N̂ (y), and
a dashpot of viscous coefficientc. The mass is subject
to a direct forceF (t). Attached to the massm1, there is
a pendulum of massm2 and lengthl whose angle with
respect to the downward vertical line is denotedθ. The
equations of motion are (1) (withm = m2) and

(m1 + m2)ytt + m2l(θtt sin θ + θ2
t cos θ)

+ cyt + N̂ (y) = F (t) − m2g
(2)

By letting ω2
1 := k/m1 and ω2

2 := g/l be the fre-
quencies of the structure (k is the linear elastic con-
stant appearing in the linearization of the spring con-
stitutive law) and the pendulum, respectively, the au-
toparametric transfer of energy may occur whenω1 ≈
2ω2. The motion of the structure excites parametrically
the pendulum and can cause its resonance with large-
amplitude pendulations.
It is clear that, in discrete parametrically excited sys-

tems, the parametric input enters the equations of mo-
tion as periodic time-varying coefficients. Further, an-
other distinguished feature is that the parametrically
excited motion is orthogonal to the direction of the ex-
citation.
In the next sections, we discuss cables, rods and shells

subject to parametric excitations.

3 Cables subject to support motions
We consider cables resisting only tension forces and

refer them to the fixed Cartesian frame(O, e1, e2, e3)
shown in Fig. 2. The cable is considered stress-free in
the configurationB that represents any reference line
whose length isL. We let the arclength along this line,
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Figure 2. Stress-free configurationB, pre-stressed configuration

B0 and actual configuration̆B.

denotedσ, be the coordinate identifying the material
sections of the cable, withσ ∈ [0, L].
When the cable ends are fixed to two points, sayA

and B, and the cable is let free to hang under the
action of gravity, the cable occupies an equilibrium
configuration, here denotedB0, lying in the vertical
plane (e1, e2), the well-known catenary. This config-
uration is typically taken inextensible due to the neg-
ligible elastic effects in sufficiently rigid cables un-
der their own weight. The arclength along the con-
figurationB0 is denoteds and the position vector is
p0 = x(σ)e1 + y(σ)e2.
Under the prescribed motions of the supports, the ca-

ble suffers a change of configuration fromB0 to B̆
whose position vector isp(s, t) = p0(s)+u(s, t) with
u(s, t) = u(s, t)e1 +v(s, t)e2 +w(s, t)e3. The gradi-
ent of the position vector,ps = a0 + us = νa yields
the cable incremental stretch

ν =
√

(cos θ0 + us)2 + (sin θ0 + vs)2 + w2
s (3)

where the Cartesian representation of the unit tangent
vector inB0 is a0 = cos θ0e1 + sin θ0e2 (θ0 is the
angle betweena0 ande1); the unit vector in the current
tangential direction is obtained asa = ps/ν = (a0 +
us)/ν which, in componential form with respect to the
fixed basis, becomes

a =
(cos θ0 + us)e1 + (sin θ0 + vs)e2 + wse3√

(cos θ0 + us)2 + (sin θ0 + vs)2 + w2
s

(4)

Enforcing the balance of linear and angular momen-
tum leads to the following equation of motion:

[
N̆ (s, t)a(s, t)

]
s

= ρA(s)ptt(s, t) (5)

whereρA is the mass per unite reference length and
n(s, t) = N̆ (s, t)a(s, t) is the current tension. The in-
cremental form of the equation of motion is obtained
once we letN̆(s, t) = N0(s) + N (s, t) whereN0(s)
denotes the tension in the catenary configuration and
N (s, t) is the incremental dynamic tension. For a non-
linearly visco-elastic material, the constitutive law for
the incremental tension may be expressed asN (s, t) =
N̂(ν, νt, s). The equation of motion becomes

[N̂(ν, νt, s)a(s, t)]s +
[
N0(s)

(
a(s, t) − a0(s)

)]
s

= ρA(s)ptt(s, t)
(6)

For cables suspended from points at the same level and
with the right support subject to a horizontal motion
uB(t)e1, the boundary conditions are

p(0, t) = o, p(L, t) = (l + uB(t))e1

whereas, for inclined cables, they arep(0, t) = o,
p(L, t) = (l + uB(t))e1 + he2 with l andh indicating
the span between the supports A and B and the differ-
ence in levels, respectively.
Clearly, in the given unconstrained version of the

visco-elastic motions of the cable, the excitation merely
appears as inhomogeneity of the geometric boundary
conditions. However, it is theoretically and experimen-
tally known that a cable, subject to a horizontal sup-
port motion with frequency nearly twice the frequency
of one of its transverse modes, may suffer a principal
parametric instability.
The parametric nature of the excitation can be iden-

tified in different ways. One way is to introduce
a coordinate transformation such that the inhomoge-
neous boundary conditions are transformed into ho-
mogeneous boundary conditions. To this end, for the
horizontal cable, we letp(s, t) = p̄(s, t) + q(s, t)
with q(o, t) = o and q(L0, t) = o. Consequently,
p̄(0, t) = o andp̄(L0, t) = (l + uB(t))e1. One pos-
sible choice is̄p(s, t) = s/L0(l + uB(t))e1. By em-
ploying the newly introduced position vectorq(s, t) =
q1a1 + q2a2 + q3a3 as kinematic descriptor, and by
exploitingps = νa, we obtain

a(qj, uB, s) =
(

l + uB(t)
L0

e1 + qs

)
/ν (7)

ν(qj, uB, s) =

√[
l + uB(t)

L0
+ q1s

]2
+ q2

2s + q2
3s

Further, the inertia force becomesρAptt =
ρAuBtt(t)s/L0 e1 + ρAqtt. Hence, the ensuing equa-
tion of motion (6) with the new coordinates will
now exhibit seemingly parametric-type forcing terms
in [N̂(ν, νt, s)a(s, t)]s and direct excitation terms in[
N0(s)a(s, t)

]
s

and ρAuBtt(t)s/L0 e1. Clearly, to



ascertain that the seemingly parametric-type forcing
terms do not appear at higher order, a linearization of
the equation of motion would reveal that there are terms
of the formuBtt(t)qj(s, t).
Next, we shall show how, in a constrained model, as

the Irvine’s model of shallow cables, the support mo-
tions become, as a consequence of the geometric and
material constraint assumptions, time-varying coeffi-
cients of the constrained equations of motion.

3.1 Irvine’s model of shallow cables
Shallow/taut cables are such thatcos θ0 ≈ 1 and

sin θ0 ≈ θ0. Moreover, according to Irvine [Irvine,
1974], |ux| << 1 wherex is the horizontal coordi-
nate alonge1; further, the horizontal accelerationutt

may be neglected. The catenary equilibrium tends to
the parabolic equilibrium whereH0 = N0 cos θ0 de-
notes the horizontal projection of the gravity-induced
tension. We leta = a1e1+a2e2+a3e3 ≈ cos θ0(e1+
(yx + vx)e2 + wxe3). For the equilibrium in the hor-
izontal direction, under the prevailing assumption of
negligible horizontal inertia,N̆a1 = H̆ = const.
However,N̆ cos θ0(1 + ux)/ν ≈ N̆ cos θ0 = (N0 +
N̂) cos θ0 = H0 + Ĥ whereĤ = N̂ cos θ0 is the ap-
proximate horizontal projection of the incremental ten-
sion. The balance equations in the(e2, e3)−directions
become, respectively,

ρAvtt − H0vxx − Ĥ(yxx + vxx) = 0

ρAwtt − (H0 + Ĥ)wxx = 0
(8)

The horizontal projection of the incremental tension
is obtained via a linearly elastic constitutive law and
through expansion of the incremental stretchν up
to second-order terms of the displacement gradients,
namely,

Ĥ =
EA

Le

[
uB(t) +

∫ l

0

yxvxdx +
1
2

∫ l

0

(
v2

x + w2
x

)
dx

]

(9)
whereLe =

∫ l

0
(sec θ0)3dx ≈ l. Consequently, the

equations of motion become

ρAvtt − H0vxx − EA

Le
uB(t)(yxx + vxx)

− EA

Le (yxx + vxx)
∫ l

0

yxvxdx

−
1
2

EA

Le (yxx + vxx)
∫ l

0

(
v2

x + w2
x

)
dx = 0

ρAwtt − H0wxx − EA

Le
uB(t)wxx

− EA

Le wxx

∫ l

0

yxvxdx

− 1
2

EA

Le wxx

∫ l

0

(
v2

x + w2
x

)
dx = 0

(10)

In these widely used equations of motion of shallow
cables, the support motionuB(t) appears as a direct
forcing term inuB(t)yxx and as a time-varying (para-
metric) coefficient inuB(t)vxx or uB(t)wxx.

3.2 The simply supported straight rod subject to a
pulsating end thrust

The planar equations of motion of a straight rod, with
a compact closed section, subject to an end thrust (see
Fig. 3) are

ns(s, t) = ρAptt(s, t)
ms(s, t) + ps(s, t) × n(s, t) = ρJθttb3

(11)

wheren(s, t) andm(s, t) denote the contact force and
contact couple at the rod sections, respectively. The
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Figure 3. Stress-free configurationB of the rod and actual config-

urationB̆ under the end thrustP (t).

rod strains areps(s, t) = νb1+ηb2 where(b1, b2) are
the rod section-fixed directors in the normal and trans-
verse directions, respectively. Once we letn(s, t) =
N (s, t)b1(s, t) + H(s, t)b2(s, t), the equations of mo-
tion, in componential form, are

Ns − θsH = ρAptt · b1 (12)

Hs + θsN = ρAptt · b2 (13)

Ms + νH − ηN = ρJθtt (14)

The boundary conditions, for the simply supported rod
with a lumped massmB at B, are

p(0, t) = o, p(l, t) · e2 = 0,

M (0, t) = M (l, t) = 0,

(−n(l, t) − P (t)e1 + V (t)e2) · e1 = mBptt(l, t) · e1

(15)
The above given mechanical boundary condition is
rewritten as

mBptt(l, t) · e1 + N (l, t) cos θ(l, t)
− H(l, t) sin θ(l, t) + P (t) = 0

(16)



For such unconstrained extensional/flexural/shearing
motions, the governing equations of motion do not
exhibit time-varying coefficients and the time-varying
force P (t) appears as a direct excitation term in the
boundary condition.
On the other hand, were we to enforce the inexten-

sibility and unshearability by prescribing the internal
kinematic constraintsν = 1 and η = 0, the ensu-
ing equation of motion would exhibit parametric time-
varying coefficients. We express the displacementu in
the basis(e1, e2). Consequently,

ν =
√

(1 + us)2 + v2
s ,

η = −(1 + us) sin θ + vs cos θ
(17)

Solving both constraints,ν = 1 andη = 0, with re-
spect tous andθ, and calculating the flexural curvature
yields

us = −1 +
√

1 − v2
s , θ = tan−1

(
vs√

1 − v2
s

)

µ = θs =
vss√
1 − v2

s
(18)

We solve (14) with respect to the shear force and get
H = −Ms + ρJθtt. Substituting it into (12) and (13)
yields

Ns + θsMs − θsρJθtt = ρAptt · b1 (19)

(ρJθtt)s − Mss + θsN = ρAptt · b2 (20)

Next, solving (16) forN (l, t) yields

N (l, t) = ρJθtt(l, t) tan θ(l, t) − Ms(l, t) tan θ(l, t)
− mButt(l, t) sec θ(l, t) − P (t) sec θ(l, t)

(21)
Integrating (19) and using (21) delivers the tension as

N (s, t) = N (l, t)

+
∫ s

l

(θsρJθtt − θsMs + ρAptt · b1) dξ
(22)

Substituting it into (20) yields the governing equation
of motion

ρAptt · b2 − (ρJθtt)s + M̂ss

+ θs [mButt(l, t) sec θ(l, t) − ρJθtt(l, t) tan θ(l, t)]

+ θs

[
M̂s(l, t) tan θ(l, t)

]

− θs

∫ s

l

(
θsρJθtt − θsM̂s + ρAptt · b1

)
dξ

+ P (t)θs sec θ(l, t) = 0

(23)

where a nonlinear visco-elastic law has been intro-
duced in the formM (s, t) = M̂ (µ, µt, s). The hori-
zontal motionu is obtained integrating (18)1 as

u(s, t) = −s +
∫ s

0

√
1 − v2

s dξ (24)

By differentiating (24) and (18)2 twice with respect
to time, the inertia force in (23) can be expressed in
terms ofv, and, substituted into (23), yields an integro-
partial-differential equation with time-varying coeffi-
cients.
An alternative derivation may be further considered.

Equation (15), without dotting it withe1, is solved for
n(l, t) that, by exploiting the kinematic boundary con-
dition atB, delivers

n(l, t) = −[P (t) + mButt(l, t)]e1 + V (t)e2 (25)

The integration of the linear momentum equation
yields

n(s, t) = n(l, t) +
∫ s

l

ρApttdξ =

− [P (t) + mButt(l, t)]e1 + V (t)e2

+
∫ s

l

ρApttdξ

(26)

In turn, the contact force delivers the shear forceH.
The inextensibility and unshearability constraints de-
liver ps = b1 = cos θe1 + sin θe2. Hence, the balance
of angular momentum becomes

Ms + [P (t) + mButt(l, t) −
∫ s

l

ρAuttdξ] sin θ

+ [V (t) +
∫ s

l

ρAvttdξ] cos θ = ρJθtt

(27)
To determine the reaction forceV (t), we impose the
balance of angular momentum of the entire beam with
respect toO, that is,

p(l, t) × V (t)e2 =
∫ l

0

ρAp × ptt · e3ds (28)

Therefore, the final equation of motion is

M̂s(µ, µt, s) +

∫ l

0 ρA [(x + u)vtt − vutt]ds
∫ l

0

√
1 − v2

s ds
cos θ

+ [P (t) + mButt(l, t) −
∫ s

l

ρAuttdξ] sin θ

+ cos θ

∫ s

l

ρAvttdξ = ρJθtt

(29)



This equation, when the time derivatives are neglected
and a linealry elastic constitutive law is considered, re-
duces to the well-known elastica equation,
(EJθs)s + P sin θ = 0.

3.3 Mettler’s equation of motion
Mettler [Mettler, 1962] assumed a linearly elastic un-

shearable, extensible and flexible rod undergoing small
rotations and subject to a prescribed horizontal motion
of the support. Therefore, by further neglecting rota-
tory inertia and consideringθsMs of higher order in
(19), the equations of motion (19) and (20) become

Ns = 0, −Mss + θsN = ρAvtt (30)

By taking only the first-order term in the curvature and
expressingν in a Mac Laurin series gives

θs = vss, ν = 1 + us +
1
2
v2

s + O(u2
s) (31)

Linearly elastic constitutive laws are introduced

N = EA(ν − 1) = EA

(
us +

1
2
v2

s

)

M = EJµ = EJvss

(32)

Equation (30)1 entails that the tension is constant; con-
sequently, using (32)1 yields

N =
1
l

∫ l

0

EA

(
us +

1
2
v2

s

)
ds

=
EA

l
uB(t) +

EA

2l

∫ l

0

v2
sds

(33)

whereuB(t) is the prescribed support motion. The
final governing equation of motion is the following
integro-partial-differentialequation with periodic time-
varying coefficients:

ρAvtt+EJvssss−
EA

l
uB(t)vss−

EA

2l
vss

∫ l

0

v2
sds = 0

(34)
This approximate equation has been extensively em-
ployed for studies about the parametric resonance of
straight rods; a similar version exists for shallow arches
[Mettler, 1962].

4 The cantilivered rod subject to a vertical motion
We consider a cantilevered rod subject to a support

vertical motion in the formz(t)e1. The boundary con-
ditions are

p(0, t) = z(t)e1, θ(0, t) = 0,

n(l, t) = o, M (l, t) = 0
(35)

This problem is interesting in that, depending on the
basis onto which we choose to project the equations
of motion, the base motion can appear as a parametric
forcing or a direct external forcing. Were we to choose
the fixed basis(e1, e2), where e1 is taken collinear
with the rod axis,

(Ns − θsH) cos θ − (Hs + θsN ) sin θ = ρA(utt + ztt)
(Ns − θsH) sin θ + (Hs + θsN ) cos θ = ρAvtt

(36)
The balance of angular momentum is still given by
(14).
On the other hand, projecting the equations of motion

into the rod section-fixed basis,(b1, b2), yields

Ns − θsH = ρA(utt + ztt) cos θ + ρAvtt sin θ

Hs + θsN = −ρA(utt + ztt) sin θ + ρAvtt cos θ
(37)

The boundary conditions areu(0, t) = 0, v(0, t) =
0, θ(0, t) = 0, n(l, t) = o, M (l, t) = 0.

A constrained version is typically used in the literature
enforcing the inextensibility and unshearbility. The
equation of motion of the constrained rod would again
be an integro-partial-differential equation of motion
with the support motion appearing as a time-varying
coefficient in agreement with previous observations.

5 Spherical and cylindrical shells subject to pul-
sating pressures on the inner and outer surfaces

The equations governing radial motions of visco-
elastic shells suffering in-surface stretching and trans-
verse stretching were obtained in [Antman and Lacar-
bonara, 2008] within the three-dimensional elastic-
ity theory as well as within the geometrically exact
Cosserat theory.
We identify material points of the cylindrical shell

by their cylindrical coordinatesr, φ, z (local basis
a1, a2, a3 ≡ k) and we identify material points of a
spherical shell by their spherical coordinatesr, θ, φ (lo-
cal basisb1, b2, b3).
Plane-strain radial motions of cylindrical shells are

taken in the form

pC(r, φ, z, t) = f(r, t)a1(φ) + zk, (38)

and radial motions of spherical shells are of the form

pS(r, θ, φ, t) = f(r, t)b1(θ, φ). (39)

where the indices C and S, written either as subscripts
or superscripts, here and henceforth, will identify dis-
tinctive quantities for cylindrical and spherical shells.
The ensuing right Cauchy-Green deformation tensors
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are

CC = fr
2a1a1 +

f2

r2
a2a2 + kk, (40)

CS = fr
2b1b1 +

f2

r2
[b2b2 + b3b3] (41)

The second Piola-Kirchhoff stress tensorsSV have
enough isotropy to ensure that their components with
respect to the bases{ak} and{bk}, respectively, are
diagonal whenC has the diagonal forms. Thus the
first Piola-Kirchhoff stress tensorT is diagonal with
respect to these bases. Consequently, the only nonzero
components ofT for radially symmetric motions a
cylindrical shell areT11 andT22, and the only nonzero
components ofT for radially symmetric motions of a
spherical shell areT11 andT22 = T33. We denote the
constitutive equations for these stresses byT11(r, t) =
T V

11(fr(r, t), f(r, t)/r, frt(r, t), ft(r, t)/r, r), etc.
Thus the only nontrivial equations of motion are the
scalar equations

∂r(rT VC
11) − T VC

22 = ρrftt (42)

∂r(r2T VS
11) − 2rT VS

22 = ρr2ftt (43)

We assume that the inner surfacesr = r1 of the shells
are subjected to a hydrostatic pressureπ1(t) taken pos-
itive when it is acting radially outward, and that the
outer surfacesr = r2 of the shells are subjected to a hy-
drostatic pressureπ2(t) taken positive when it is acting
radially inward. For the cylindrical shell, the dimen-
sions of these pressures are those of force per actual
area of the cylindrical segments of unit length and radii

f(r1, t) andf(r2, t). For the cylinder, the mechanical
boundary conditions are

rjT
C
11(rj, t) = −πj(t)f(rj , t), j = 1, 2 (44)

We assume that the cylinder is doubly infinite, or equiv-
alently that the endsz = z1, z2 lie on fixed planes that
are lubricated, so that they offer no resistance to ra-
dial motions. For the spherical shell, the dimensions
of the pressures are those of force per actual area of the
spheres of radiif(r1, t) andf(r2, t). Thus, its mechan-
ical boundary conditions are

rj
2T S

11(rj, t) = −πj(t)f(rj , t)2, j = 1, 2 (45)

Clearly, the equations of motion for both cylindrical
and spherical shells do not exhibit time-varying coef-
ficients. The time-dependent pressures appear as direct
excitation terms in the boundary conditions.
It is within the context of the Cosserat shell theory that

the governing equations of motion exhibit parametric-
type terms. We constrainf to have the formf(r, t) =
g(t) + ζ(r)h(t), g(t) := f(r0, t), ζ(r) := r −
r0, r1 ≤ r0 ≤ r2, with g and h satisfyingh >
0, g > (r0 − r1)h, for the preservation of orienta-
tion of the reference configuration. The functionsg and
h denote the current radius of the reference circle of
undeformed radiusr0 and the ratio of cross-sectional
thickness to that in the reference configuration, respec-
tively. Thus, pC and pS are constrained to have the
forms

pC(r, φ, z, t) = [g(t) + ζ(r)h(t)]a1(φ) + zk (46)

pS(r, θ, φ, t) = [g(t) + ζ(r)h(t)]b1(θ, φ) (47)

By applying a procedure that mimics the Bubnov-
Galerkin method, we obtain the governing equations
of motion. For cylindrical shells [Antman and Lacar-
bonara, 2008],

ρAcgtt + ρIchtt + Gc(g, h, gt, ht) = α(t)g + β(t)h,

ρ Icgtt + ρJchtt + Hc(g, h, gt, ht) = β(t)g + γ(t)h
(48)

For spherical shells [Antman and Lacarbonara, 2008],

ρAsgtt + ρIshtt + Gs(g, h, gt, ht) =

α(t)g2 + 2β(t)gh + γh2

ρ Isgtt + ρJshtt + Hs(g, h, gt, ht) =

β(t)g2 + 2γ(t)gh + δ(t)h2

(49)

In Eqs. (48)-(49), Gc, Gs and Hc, Hs denote
the generalized resultant contact forces as defined in
[Antman and Lacarbonara, 2008] and the pressure



terms are expressed as

α(t) := π1(t) − π2(t),
β(t) := (r1 − r0)π1(t) − (r2 − r0)π2(t),

γ(t) := (r1 − r0)2π1(t) − (r2 − r0)2π2(t),

δ(t) := (r1 − r0)3π1(t) − (r2 − r0)3π2(t)

(50)

For shells that are constrained to be transversally inex-
tensible, the kinematic constrainth = 1 leads to the
following two nonlinear versions of Hill’s equations:

ρAcgtt + Gc(g, gt) = α(t)g + β(t)

ρAsgtt + Gs(g, gt) = α(t)g2 + 2β(t)g + γ(t)
(51)

By considering a pressure applied onto the outer sur-
face only (π1 ≡ 0) and the reference radius coinciding
with the outer radius (r0 = r2), the pressure terms are
simplified intoα(t) = −π2(t) andβ(t) = γ(t) = 0.
Moreover, lettingp(t) := π2(t), the equations of mo-
tion are further transformed into a simpler version

ρAgtt + G(g, gt) + p(t)gν = 0 (52)

whereν = 1 for cylindrical shells andν = 2 for
spherical shells, respectively. The obtained ordinary-
differential equation is a remarkable nonlinear version
of Hill’s equation. However, mention must be made
of the fact that, strictly speaking, the governing equa-
tion for spherical shells is a modified version of Hill’s
equation not only for the presence of the nonlinear
termG(g, gt) but also for the nonlinear parametric term
p(t)g2.

6 Concluding remarks
The fundamental problem of how to recognize para-

metric excitation terms has been discussed within the
context of a geometrically exact treatment of structural
problems [Antman, 2005]. In particular, the problem
is intriguing for those structural problems with uncon-
strained motions whose excitation terms, either pulsat-
ing boundary forces or displacements, appear as inho-
mogeneities in the boundary conditions. Yet, these ex-
citations, under pertinent conditions, may cause para-
metric Hill-type instabilities. We have treated several
paradigmatic problems, as cables subject to horizontal
motions of the supports or simply supported rods sub-
ject to an end pulsating thrust or cantilvered rods sub-
ject to vertical base excitations and shells, both cylin-
drical and spherical, subject to pulsating pressures.
A general circumstance is that the parametrically ex-

cited motions are orthogonal to the excitations. These
motions are excited by part of the excitation that cou-
ples with the structural motions in a way that can shift
the eigenfrequency and can create resonance forces.

It is shown that when suitable coordinate transfor-
mations are introduced (such that the inhomogeneous
boundary conditions are rendered homogeneous), the
boundary forcing terms may become time-varying co-
efficients of the governing equations of motion. At the
same time, when a constrained version of the motions
is sought (e.g., via a Bubnov-Galerkin approach), the
parametric nature of the excitation is similarly revealed
explicitly and unambiguously.
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