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Abstract 
In this paper we study the classical Foucault pendu­

lum, indisputable demonstration of the Earth’s rotation 
movement, through the formalism of geometric control 
theory. The Pontryagin Maximum Principle is applied 
for deriving some geometric properties of trajectories 
in the particular case of small oscillations. A link be­
tween the geometry of trajectories and the well known 
Hopf fibration is established. 
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1 Introduction 
In this paper we approach the system that models 

the experiment of the Foucault pendulum, through the 
framework of the geometric optimal control theory. We 
restrict ourselves to small oscillations and to the sym­
metric case. We write the equations as an optimal con­
trol system on a three dimensional manifold and apply 
the Pontryagin Maximum Principle for deriving some 
geometric properties of the solutions. 
Geometric non-linear control theory merges differen­

tial geometric techniques with the analysis of different 
aspects of non-linear control systems, including equi­
libria, stabilization, and optimal control problems. The 
foundations of the theory goes back to the early seven­
ties with the pioneering papers [Lobry, 1970], [Brock-
ett, 1972], and [Jurdjevic and Sussmann, 1972], among 
others. 
The theory has been especially successful in appli­

cations to certain problems in geometric mechanics 
[Bullo and Lewis, 2004] and robotics [Murray, Zexiang 
and Sastry, 1994]. There is an extensive literature pre­
senting the general theory of geometric non-linear con­
trol systems, we refer the reader to the volume [Jurdje-

vic, 1997] and the recent book [Agrachev and Sachkov, 
2004]. 
An optimal control problem on an path-connected a 

smooth manifold is given by two ingredients: a non­
linear control system and a functional defined in the 
space of solutions of the system. In this generality the 
problem consists in finding, among the solutions of the 
control system, the one that optimizes the functional. 
Geometric optimal control for non-linear systems 

finds its origin in the Pontryagin Maximum Principle 
(PMP), originally published in the book [Pontryagin em 
et al., 1962]. This important result and its subsequent 
generalizations provide natural extensions of the nec­
essary conditions for optimality stated in the classical 
calculus of variations, see for instance [Giaquinta and 
Hildebrandt, 1996], and has recently lead to new geom­
etry that goes in the literature under the name of Sub-
Riemannian or Carnot-Caratheodory geometry. Gener­
ally speaking a sub-Riemannian structure on a mani­
fold M is determined by a completely non-integrable 
(non-holonomic), distribution of vector fields, for de­
tails see for instance the excellent survey [Vershik and 
Gershkovich, 1991], the volume [Montgomery, 2002], 
and the recent book [Calin and Chang, 2009]. 
Apart from this introduction this paper contains six 

sections, in Section 2 we describe the optimal con­
trol problem for a system defined by means of a com­
pletely non-integrable distribution of smooth vector 
fields, framework under which the system correspond­
ing to the Foucault pendulum shall be approached, in 
Section 3 we present the standard mathematical model 
of the pendulum. In Section 4, under certain consid­
erations for small oscillations, we formulate the Fou-
cault pendulum as an optimal control approach an a 
smooth manifold, for which we apply the PMP for de­
riving geometric properties of solutions. In Section 5 
we establish a natural connection of the trajectories of 
the problem to the well known Hopf fibration. Sec-
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tion 6 includes some technical details on the Foucault 
pendulum that is in the process of being installed at the 
Universidad Autonoma Metropolitana-Azcapotzalco in 
Mexico City. At the end, in Section 7 we derive some 
conclusions and discuss further research perspectives. 

2 The Optimal Control Theory Viewpoint 
Let M be a n-dimensional path-connected smooth 

manifold M, and let Д с TM be a rank к < п dis­
tribution of smooth vector fields on M. The iteration 
of the Lie bracket of the vector fields in Д yields the 
following flag of modules of vector fields: 

Д1 с Д2 с • • • с Дг • • • с ТМ, 

where Д 1 = Д and A i + 1 = Д* + [Д, Д<]. 
The distribution is said to be bracket generating, if 

for each го G M, there exist a positive integer £ for 
which Ae

m = TmM. The growth vector of Д at ro 
is defined as ( щ , . . . , щ), where щ{т) = dim(A^), 
the distribution is said to be regular if the growth vector 
is independent of the base point. 
A regular, bracket generating distribution Д gener­

ated by basis of vector fields {X1...,Xk} determines 
intrinsically a non-linear control system without drift 
as we now explain. An absolutely continuous curve 
t ^ q(t), t G [0,т,] is said to be Д-admissible is 
q(t) G A(q(t)), for almost all t G [0, rq], this admissi-
bility condition implies that for almost any t G [0, rq] 
there exists a bounded and measurable vector function 
u(t) = (u1(t),...,uk(t)), such that 

q = u1X1(q) + ---+ukXk(q). (1) 

Under these circumstances, equation (1) defines a non­
linear control system on M with the u(t) playing the 
role of the control parameter, the set of all admissible 
controls is denoted as U. 
In summary, a Д—admissible curve t \-> q(t), t G 

[0, Tq], comes together with a control parameter u{t) G 
U and the pair (q(t), u(t)) yields an admissible trajec­
tory of the control system (1) according to the ordinary 
definition of the non-linear control theory, moreover 
standard results of the theory guarantee the existence 
of solutions for any given initial condition, see for in­
stance [Young, 1969]. 
The system (1) is said to be controllable, if for any pair 

of points mumf G M one can find and admissible 
trajectory (q(t), u(t)), t G [0, rq] satisfying q(0) = га* 
and q(rq) = mf.It is known that for a regular, bracket 
generating distribution Д the system (1) is controllable. 
The space Л of all admissible trajectories of (1) has 

the structure of Sobolev space and for any, regular 
enough, function с : Л ->• R, one can consider the 
functional 

Assembling all these elements together we end up with 
an optimal control problem on M consisting in finding, 
among the solutions of (1) the one that minimizes (2). 
Necessary conditions for admissible optimal trajecto­

ries of the above optimal control problem are given by 
the well known Pontryagin Maximum Principle PMP, 
originally presented in the classical book of L.D. Pon­
tryagin and collaborators [Pontryagin em et al., 1962]. 
Several versions appear interspersed in the literature, 
we follow the one exposed in V. Jurdjevic’s book [Jur-
djevic, 1997]. 
The cotangent bundle T*M is a symplectic manifold 

with canonical symplectic form Q, that allows to as­
sociate to each smooth function U : T*M ->• R, a 
Hamiltonian vector field H, according to the expres­
sion dH^v) = n(v,H(£)), where v G T^T*M and 
£ G T*M. For then the Hamiltonian flow t ^ £(t) = 
lq(t),p(t)) obeys the so-called Hamilton equations 

dq 
dt 
dp 
dt -vqn, 

(3) 

(4) 

Tq 

c(q(t),u(t))dt, (2) 

If #Д£) = £(ХД i = l,...,k, then for system (1) 
one can define the following Hamiltonian function 

W A 0 , « ( 0 = A0c((/,M) + ^ M i ( t ) F i ( e ) , (5) 
i=1 

the multiplier A0 is customary normalized for taking 
values 1 (normal) or 0 (abnormal), we consider only the 
case A0 = 1. The PMP establishes then the following 
necessary condition for the optimal controls. 

Theorem 2.1. If(q(t),u(t)), t G [0,rq] is an optimal 
trajectory then there is an integral curve t h-> £(t), t G 
[0, rq] of the Hamiltonian vector field Hu such that 

1. ф) ^ 0 and q(t) is the projection of£{t) 
2. Wu(£) = sup„eWW„ 

Applying this theorem one can derive necessary con­
dition for optimal trajectories by analyzing the geom­
etry of the corresponding extremal curves that can be 
parameterized as £ = ( # 1 , • • •, #*)• 

3 The Standard Model for the Foucault Pendulum 
We take and inertial frame with coordinates {X, Y, Z), 

and a pendulum of length £ and point mass m, oscil­
lating taking into consideration Earth’s rotation move­
ment. The angular velocity of the rotation is denoted 
as ш, and the mass’ position is measured from a fixed 
coordinate system with origin located at latitude a and 
coordinates (ж1 x2, x3), the x1 direction on ameridian 
great circle in north-south sense, the x2 direction on a 
latitude circle in west-east sense and the x3 direction 

0 



CYBERNETICS AND PHYSICS, VOL. 1, NO. 2, 2012 
Z 
t 

/ 

X 

Figure 1. Pendulum at geographic latitude a. 
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have that the complete functional is written as follow: 

S ((^(x 1
2 + x2

2 + x3
2 - 2gx3) 

+ А0(с5ж2 + ж2 +ж2
3 - £2) 

ж2ж'3 — Х3Ж2) 

X3X1 — X1X3J 

+ A3(£3 + ) ) dt, 

where A0 Lagrange parameter and A1 
-row cos a , A2 = 0 and A3 = row sin a, (the 
last differentials do not alter the Euler-Lagrange 
equations for r). The A; can be taken as the La-
grange parameters associated with the nonholonomic 
constraints 

perpendicular to the tangent plane at the intersection of 
both circles, see Figure 1. 
A vector r in the non-inertial system on Earth’s sur­

face behaves as 

dr 
dt г + ш xr, 

where r = (ж, ж2, ж3) and ш = {-ш cos a, 0, ш sin a), 
with ш « Ю-4 sec-1. The kinetic energy is given as 
follows 

(|^| 2 + |ихг| 2 + 2 г * - ( и х г ) 

The second term leads to a centrifugal force perpendic­
ular to the rotation axis and can be disregarded, for the 
third term we observe that 

r ■ (w x r) = w ■ (rx r) 
= wXl{x2x3 — Ж3Ж2) + u)X2{x3x\ — Ж1ж'3) 

+а;Ж з(ж1ж'2 -х2х1), 

x3dx2 = 0, 
ж^ж3 = 0, 
x2dX1 = 0, 

(7) 
(8) 
(9) 

w1 = d^1 + x2dx3 

u2 = d£2 + x3dx1 

u3 = ^ 3 + X1dx2 

which is tantamount of saying that the u[s are con­
stants, since the & are cyclic variables. 

4 Optimal Control Viewpoint for the Foucault 
Pendulum 

We consider the Lagrangian 

L0 2 
(ж1 + ж2 + ж3) — mgx3 

+ А1(^1?ж2ж3 + ж 3 ж 2 ) 

+ А2(^2?ж3Ж1 +Ж1Ж 3 ) 

+ А3(С3?а;1Ж2 + ж2ж3), 

subject to constraint (6). The last three terms of the 
Lagrangian result from the fact that the pendulum is in 
a non-inertial coordinates system. Equivalently, we can 
take the Lagrangian 

L = — (ж1 + ж2 + ж3) — mgx3, 

finally we also have to take into account the following 
holonomic constraint 

5x2
1 + x2

2 + x2
3 - I2 = 0, (6) 

where 5 is a dimensionless asymmetry parameter due to 
different moments of inertia or some other asymmetries 
of the experiment, for details see [Anzaldo-Menenses 
and Monroy-Perez, 2010]. 
Taking all these constraints into consideration, we 

subject to the non-holonomic constraints (7), (8) and 
(9). For a standard Foucault pendulum only small os­
cillations are important, therefore ж3 ~ 0 and, from the 
holonomic constraint we have 

ж3 
\ I >C 

1 
I — x2

1 — 5x2
1 ~ I — ̂ {Sx2

1 + ж2), 
2t 

so that the Lagrangian reduces to 

L , 2 2, rngS 2 тд 2 

UJ 

0 

2 

2 
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together with the non-holonomic constraint 

£з = Х\Х2 — Х2Х (10) 

On the three-dimensional manifold with local coordi­
nates q = (ж1.ж2, &), the kernel of the constraint (10) 
can be encoded in the distribution generated by the vec­
tor fields Xx = dXl - x2% and X2 = дХ2 +х1дь. 
In consequence, by taking the control parameter as the 
velocities и = (м ь u2) = (жь ж2), the model for the 
Foucault pendulum can be formulated as the optimal 
control problem consisting in the minimization of the 
functional 

The maximality condition of the PMP readily implies 
that along extrema щ = Щ, therefore the system 
Hamiltonian becomes quadratic 

H 
1 

2 ^ 
To „nv mwi о тш2 о 

(Hf + Щ) H xi H 1 . 
2 2 

The differential system for the adjoint variable is writ­
ten by Poisson bracketing as follows: 

{#i,?0 
{H2,U} 

# i 

±±0 — 

H3 = {H3,H} 

H2H3 — тш\х\1 

-Я1Я3 - mw0x2, 
0, 

c(x,u)dt, from where we can perform a straightforward integra­
tion process. 

with 

c(x,u) 
2 

(«i +M2) 
mwi 2 TiW2 2 

2 2 

and wi = V ' J P . w0 = v 7 ^ , among the admissible 
solutions of the control system 

dq 
dt u1X1(q)+u2X2(q), 

The distribution Д = {XUX2} is bracket generat­
ing, regular and generates a three dimensional step-2 
nilpotent Lie algebra with the only non-zero brackets 
[Xu X2] = X3, in fact we have a Lie algebra isomor-
phic to the Heisenberg Lie algebra, and the manifold 
M is the Heisenberg group. 
We consider the corresponding Hamiltonians (mo­

menta) H[s associated to the vector fields X[s. The co­
ordinates on the cotangent bundle are {xx, x2, Щ, H2) 
and the algebra for the Щ’ is enlarged, see for example 
[Abraham and Marsden, 1987], according to 

{ж»,ж^} = 0, {xi,Hj}=Xj{xi). 

The commuting relations for the step-2 nilpotent Lie-
Poisson algebra generated by the Hamiltonians and the 
coordinates functions is summarized in the following 
table 

{•,•} 
# 1 

# 2 
X\ 

x2 

# i 

0 
-#з 

1 
0 

H2 

H3 
0 
0 
1 

X\ 

-1 
0 
0 
0 

x2 

0 
-1 
0 
0 

Table 1 

The control dependent Hamiltonian is written as fol­
lows 

Hu = -c(x,u) + u1H1+u2H2. (11) 

5 Foucault Pendulum and the Hopf Fibration 
As it is shown in our previous work [Anzaldo-

Meneses and Monroy-Perez, 2009] the solution can 
be better written by introducing the complex variable 
и = хг + ix2, from where £3 = Im(mt*) and и = 
- ^ \u, from where it follows that 

и = e-iut(A+eiuot + A-e-iuot), 
й = ie-iu\a+A+eiuot + a-A_e-iuot), 

Ь = -(a+\A+\2 + a_\A_\2)t 

-2^(A+A*_{e2iuat - 1)Y 

For the first two relations, this is a rotation given by 
the slow mode, with frequency w, of the fast mode 
motion, with frequency w0. Therefore, the trajectory 
in base space performs a precession with frequency 
ш sin(a), whereas £3 increases by the same amount af­
ter 2TT/W0 where ш0 = V

/CJ2+UJ'^ Ш0 = y/i/1 and 
ш = A3/ro. Here, w is equal to the rotation angular 
speed ш times the sinus of the geographical latitude, 
and the A± depends on the initial conditions. The con­
servation of energy reads now as follows 

2H/m \U\Z +0JQ\U\ (12) 

For instance, for the original Foucault experimental set­
ting one has, Xl(0) = Rcos/3, ж2(0) = Rsm/3, with 
/3 G (0,2тг), and ж^О) = 0 and ж2(0) = 0, the trajec­
tories are written as follows: 

X\ 

x2 

Ь 

i?cos(wt-/3)cos(w0t) 

Л—— SlYliUJt — p) sin(cDot), 
LVQ 

-i?sin(wt -/?)cos(w0t) 

+—cos(cD t - /3)s in(£ 0 t ) , 
LVQ 

R\ t sin(2£0t) 
2 ~ 4w0 

m 
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Observe that the expressions for xx and x2 are a rota­
tion by an angle a = ut -/3 of the ellipse given by the 
vector 

T>~. 

( i ?cos (u 0 i ) , s in(w 0 t ) ) . 
w0 

This vector has initial value (Д , 0) and takes the same 
value at times tk = тгк/ш0, for к integer. Since 
ш < w0, the nearest approach to the origin is at distance 
Ж>/й0. The curves in base space are hypocycloids. 
We establish now a connection of these solutions with 

the well know Hopf fibration see for instance [Naber, 
2000] and [Urbantke, 2003]. We consider only the 
symmetric pendulum. 
We start by introducing the two complex variables 

zi = u0y/m/2Hu and z2 = у/т/2Нй, the dynam­
ics develops on a unit 3-sphere S3 given by the conser­
vation of energy (12) that now is written as 

ы2 + ы2 1 . 

Figure 2. Villarceau circles and the Bloch sphere. 

They are at a distance (u%Lz - Нш)/{Нш0) 
from the origin, their normal unit vectors are 
(0, -woM, ш/ш0) = й/tt and the intersections of 
these planes with S2 are of course circles. In the case 
for which Я = mR2uj2/2 we have 

Now, by means of Hopf map тг : S3 ->• C P 1 = 
S2, there is a two unit sphere S2 described by the 
unit vector h = ( n b n 2 , n 3 ) with components nx = 
2Re(z!z2*), n2 = 2Im(Zlzl) a n d n 3 = \Zl\2 - \z2\2, 
satisfying 

. , w 0 ( - w + wcos(2w0 t)) 
wo 

£a2+ca2cos(2£a0t) 

ть — ( sm 
UJ0 

n\+n\+n\ = 1. 

This surface is known as Bloch sphere in the study of 
two level systems, of nuclear magnetic resonance, non­
linear optics and quantum computing. Observe that the 
sets of points z0z± and z0z2 for \z0\ = 1 are circles 
through Zl respectively through z2 and are mapped to 
the same point on S2. 
The fiber bundle structure is given by Sx м- S3 Л 

^2 where S3 is the total space, S2 the base space, Sx 

the fiber space and тг the projection. In our problem to 
multiply zu respectively z2, by a unit complex number 
is equivalent to rotate the plane {xux2}. 

Since the solution is a rotation by an angle йЛ of an el­
lipse parameterized by an angle w0t, we conclude that, 
all arcs of trajectories in base space, which can be ob­
tained by a rotation from a given one, are mapped to 
the same curve on S2 by the Hopf map. The resulting 
curve will be thus the same for all equivalent arcs. The 
Bloch vector h satisfies 

dn 
dt 

Q, x n , (13) 

with constant angular velocity Q = (0, -2w0, 2w). 
The canonical angular momentum conservation leads 
to the planes 

-u>on2 + Hm3 
1 

П 
LZ 

The two halves of the spheres are foliated by circles 
independent of the initial position R or the energy. The 
circles on one half are for ш/ш0 > 0 and on the other 
half for w/w0 < 0. All circles pass through the north 
pole. The isolated north pole also corresponds to the 
limit cases where the ratio of the frequencies is ± infin­
ity, associated to the Heisenberg flywheel or a charged 
particle in a perpendicular static magnetic field. When 
ш/ш0 = 0 the circles become a meridian that corre­
sponds to a two dimensional harmonic oscillator. For 
ш/ш0 = ±1 two circles connect the north pole with 
the equator. Finally, each circle corresponds to a sin­
gle curve arch in the base space {xux2} trajectory 
traversed in half a period. For the general case Я = 
тх\шЦ2 + mvl/2 and Lz = mx0v0 sin(/3) + тшх\, 
see Figure 2. 

The components of the normal vector are 

n\ 

n2 

mujo 
{2LVOVOXO cos(p) cos(2ujot) 2Нш0 

+ [VQ - UJ\X\ + 2UJV0X0 sin(/?)] sin(2w0t)) , 

2Ш2^1 
, 2 2 

"Or\Xr\ 
2LO2

0V0X0 sin(/3) 

n3 

ш cos(2w0t)[vl - UJIX\ + 2Cov0x0 sin(/3)] 

+ 2ww0wox0cos(/3)sin(2wot)) 

-u2v2 + bj2u2x\ + 2UJ2^V0X0 sin(/3) 
2ti cOn 

2 2 и2 cos(2w0t) К - ^o^o + 2uv0x0 sin(/3)] 

Я + 2wow0w0a;ocos(/3)sin(2wot)). ib — 
2 
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Figure 3. Nested tori and the Hopf fibration. Figure 4. The Foucault Pendulum at UAM-A. 

Again, the conservation of the canonical angular mo­
mentum leads to circular trajectories around the vector 
U. 
For ш = 0, uncoupled harmonic oscillator, the coor­

dinate n2 is constant and the corresponding limit cir­
cle is perpendicular to the {n1, n2} plane and separates 
the sphere in two unequal parts in general. The limit 
case w0 = 0 is the south pole for v0 + 0, since then 
n3 = -1, and the north pole for v0 = 0 and x0 + 0 
which lead to n3 = 1. 
Perform now a rotation such that the angular veloc­

ity U coincides with the n3 axis, i.e., introduce the 
coordinates n[ = n1n'2 = йт2/ш0 + ш0т/ш0 and 
n3 = -ш0 п2/ш0 + ш 3 / ц . More explicitly 

n2 
mui0 

2Нш0 
0(-[v0

2- ш2
0х2

0 + 2uw0x0 sin(/3)] cos(2w0t) 

+ 2UJ0V0X0 cos(/3) sin(2w0t)). 

{u0
2Lz The coordinate n3 is the constant 

шН)/{Нш0) and {п'1п'2) describes a circle centered 
on the n3 axis. 
Further geometrical analysis shall be carried out 

somewhere else for exploiting the richness of the Hopf 
fibration in the same spirit of the aforementioned ref­
erence of H.K. Urbantke. Figure 3 illustrates the Hopf 
fibration aroun the bloch sphere 

6 The Foucault Pendulum at UAM-Azcapotzalco 
One of the motivations for studying theoretical aspects 

of the Foucault pendulum was the involvement of the 
authors in the project of installation of a real Foucault 
pendulum at the UAM-Azcapotzalco in Me´xico City. 
The project is now at the level of a prototype design 
that we shall briefly describe it. 

6.1 Physical Characteristics 
It consist of a perfect 10 kilograms bronze (SAE 65) 

sphere with a central cilindrical axis of 1in of diam­
eter of stainless steel (SW 10), perfectly coupled to 
the sphere. This ferromagnetic composition allows 

the action of electromagnetic devices. The sphere is 
suspended by a iron cable of seven threads of type 
(1 × 7 + 0), see Figure 3. 
The pendulum is initialized as in the original experi­

ment from rest and is energized by mean of an electro­
magnetic impulse on the bottom by means of a coil that 
energizes the pendulum on a regular basis. The electro­
magnetic force was calculated by means of a COMSOL 
Multiphysics 3.5’s simulation for a permanent oscilla­
tion of 5◦, see Table 2. 

1° 
-1.1 E08 
7.4 E06 

-5.0 E04 
5.0 E04 

2° 
4.2 E07 

-6.8 E06 
-5.4 E04 
5.4 E04 

3° 
1.3 E07 

-3.9 E05 
-1.2 E05 
4.1 E05 

4° 
-9.8 E10 
-1.9 E06 
-2.8 E07 
2.0 E06 

5° 
4.2 E10 

-2.9. E07 
-5.8 E08 
2.9 E07 

Table 2. Estimation of the electromagnetic impulse. 

6.2 The Control and Vision System 
It consist of three fundamental parts, namely, a three 

rings circular configuration of eight independent mod­
ules of sensors. An interactive mechanism with a cen­
tral controller of each module and an we cam. The 
permanent communication of the modules determines 
a a closed loop scheme where feedback is generated by 
infrared presence sensors that triggers the electromag­
netic impulse within a determined threshold, see figure 
3. The web cam has a fix IP and interfaces with the 
central controller for keeping track of the movement, 
for generating data regarding position, velocity and ac­
celeration, as well as database of images that can be 
used for image reconstruction experiments. 

7 Conclusion and Research Perspectives 
We formulate the classical Foucault pendulum in the 

framework of geometric optimal control theory, the 
small oscillation considerations allows to reduce the 
state manifold to the three dimensional Heisenberg 
group. The Pontryagin Maximum Principle yields the 
optimal controls that allow to write explicitly the so­
lutions. With these expressions at hand we establish 
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an intriguing connection with the well known Hopf fi-
bration, that open an interesting line of theoretical re­
search. At the end we describe the main features of a 
prototype of a real Foucault pendulum in process of be­
ing installed at the UAM-Azcapotzalco in Me´xico City, 
the apparatus includes a closed loop feedback scheme 
as well as a monitoring vision system. 
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