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Abstract
This article deals with online adaptation of control

strategy for nonlinear tracking of a walking like mo-
tion of bipedal robot. Adaptation of the control rule is
done according to results of online parameter estima-
tion. Parameter estimation was realized by an extended
Kalman filter due to recursive nature of the estimation
problem and abundant a priori information. Proposed
estimation strategy yields at least three advantages. By
utilization of extensive knowledge about the system in
consideration a multi-variable estimation problem was
reduced to estimation problem involving one parame-
ter only. A heavy computation burden required for re-
computation of reference trajectory and feed-forward
controller is removed. This approach can also be used
to eliminate the modeling mismatch. A practical situ-
ation when a robot has to carry a load of an unknown
weight is demonstrated.
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1 Introduction
The problem of bipedal robotic walking has been

extensively studied in last decades [Isidori, 1996],
[Spong, 1998] [Grizzle et. al., 2005]. It comprises nu-
merous problems which bring together various fields of
science, e.g. nonlinear control design, state estimation
and state trajectory planing. From the studies regard-
ing the problem of the nonlinear tracking one can con-
clude that the performance of the control algorithm de-
pends heavily on its ability to utilize as much informa-
tion about the controlled system as possible [Anderle
et. al., 2010], [Anderle and Čelikovský, 2009], [An-
derle et. al., 2009].
However when corrupted information is used the per-

formance degrades considerably. In the light of the re-
search results that were obtained in the field of the state
estimation [Simon, 2006], one can conclude that uti-

lization of filtering algorithms is necessary when some
measurements are corrupted with noise.
One of the most frequently used filtering algorithm

for nonlinear systems is the Extended Kalman Filter
(EKF) originating from the work of [Kalman, 1960] or
it’s continuous counterpart the Extended Kalman-Bucy
Filter (EKBF). This approach uses Taylor series to lin-
earize the nonlinear system around the Kalman filter
estimate. This idea was originally proposed S. Schmidt
for nonlinear spacecraft navigational problems [Bellan-
toni and Dodge, 1967]. Although many successful ap-
plications were reported the general experience is that
the performance of the EKBF is not guaranteed and that
it is not easy to to tune [Fitzgerald, 1971].
Indeed for the classical parametrization of the sys-

tem the filter fails to estimate the parameters that are
affected by an unknown load that the robot should
carry. To overcome mentioned deficiencies a well
suited parametrization of the system in consideration
is introduced resulting in utilization of as much infor-
mation about the system as possible. The use of such a
parametrization results in problem of standard state es-
timation and recursive identification of one unknown
model parameter. Also the tunning of the filter lies
only in finding a suitable value of one parameter, the
variance of the noise used to model a random change
of this unknown model parameter as a reasonable esti-
mate of variance of the measurement noise is known a
priori and the dynamical system is not significantly in-
fluenced by any other disturbances that would require
any further modeling either in deterministic or stochas-
tic framework.
The walking like motion of the robot is defined by a

suitable state trajectory that depends on the model’s pa-
rameters. The recursive parameter estimation implies
the need of online adaptation of the reference trajec-
tory. However the computation of the reference trajec-
tory is a computationally very expensive task. To re-
duce the heavy computational burden the trajectory can
be precomputed off-line and approximated by a table
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or using regression techniques [Dennis and Schnabel,
1983], [Dennis and Gay, 1981].
The paper is organized as follows, section one de-

scribes the mathematical model used for robot model-
ing. The second section deals with the state estimation
and recursive parameter identification. The key ideas
of the nonlinear tracking algorithm and the adaptation
scheme of the reference trajectory is summarized in the
third section. Simulations that support and demonstrate
proposed approach are given in the fifth section while
the sixth section summarizes the advantages and dis-
advantages of chosen approach, points out the future
works and concludes this article.

2 Model of the Acrobot
In this article we consider following model of Ac-

robot, depicted on Fig. 1.

Figure 1. The Acrobot.

Physical quantities that describe model of Acrobot are
summed up in Tab. 1.

Table 1. Parameters of the Acrobot

l1, l2 length of 1st, 2nd link [m]

lc1 , lc2 center of gravity of 1st, 2nd link [m]

m1, m2 masses of 1st, 2nd link [kg]

mload mass of applied load [kg]

τ applied torque [N.m]

g gravitational acceleration [m.s−2]

I1, I2 inertia moments of 1st, 2nd link [kg.m2]

Two rigid links are joined by a joint. This joint is actu-
ated by a DC motor. Position of the system is uniquely
defined by two angles q1 and q2, thus the system has
two degrees of freedom, yet there is only one control
input, torque τ generated by DC motor. Therefore Ac-
robot represents an underactuated system, with degree

of underactuation equal to one and underactuated an-
gle q1. The state vector x of Acrobot is composed from
generalised co-ordinates - angles q1, q2 and generalised
velocities q̇1, q̇2. Measured state variables of our labo-
ratory model are q1, q̇1, q2 measured by a leaser beam
sensor, digital gyroscope and an incremental sensor re-
spectively thus

x = (q1, q̇1, q2, q̇2)
T ,

q = (q1, q2)
T , q̇ = (q̇1, q̇2)

T ,

u = (0 , τ)T , y = (q1, q̇1, q2)
T .

 (1)

The unmeasured state q̇2 has to be estimated. Directly
measurable model parameters of Acrobot are l1, l2, m1,
m2, g and parameters lc1 , lc2 , I1, I2 can be computed
using physical laws or identified off-line as well as any
other additional parameters, e.g. friction coefficients.

2.1 Equations of motion
To obtain equations of motion (EoM) for Acrobot we

use classical Lagrangian approach [Landau and Lif-
shitz, 1976]. If we introduce following substitution

θ1 = m1l
2
c1 + I1 +m2l

2
1,

θ2 = m2l
2
c2 + I2,

θ3 = m2l1lc2 ,

θ4 = m1lc1 +m2l1,

θ5 = m2lc2 ,


(2)

where parameters m1, m2, lc1 , lc2 , I1, I2 depend on the
value of mload and some constants m

′

1, m
′

2, l
′

c1 , l
′

c2 , I
′

1,
I

′

2 that are known a priori. The resulting Equations of
Motion (EoM) of Acrobot in Lagrange formalism are

D(q)q̈ +C(q, q̇)q̇ +G(q) = u (3)

where matrices

D =

[
θ1 + θ2 + 2θ3 cos (q2); θ2 + θ3 cos (q2)

θ2 + θ3 cos (q2); θ2

]
,

C =

[
−2θ3 sin (q2)q̇2; −θ3 sin (q2)q̇2
θ3 sin (q2)q̇1; 0

]
, (4)

G =

[
−θ4g sin (q1)− θ5g sin (q1 + q2)

−θ5g sin (q1 + q2)

]
.

Matrix D contains inertia terms, matrix C contains
centripetal and Coriolis force terms and matrix G con-
tains gravity terms.

3 Extended Kalman-Bucy filter
The well known EKBF is a estimation tool of choice

for many practical applications. Although due to im-
plementation difficulties its discrete or hybrid counter-
part is preferred, we will use the continuous version as
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it easier to present together with continuous control law
that will be introduced in next section. With the suffi-
ciently small sampling period other versions provide
similar performance.
Acrobot’s equations of motion can be represented in

following form

ẋ(t) = f(x,u) +w

y(t) = Hx+ v

w(t) ∼ (0,Q)

v(t) ∼ (0,R)

 (5)

where t stands for time, x ∈ Rn is the state and
y ∈ Rm is the output vector as defined in (1). Vectors
w ∈ Rn, v ∈ Rm denote the process and measurement
noise respectively and it is assumed that they can be
represented as normally distributed random processes
with zero mean and covariance matrices Q ∈ Rn×n

and R ∈ Rm×m respectively. Dynamics of the system
is described by a vector field f : Rn → Rn defined by
(3) and matrix H is given as

H =

1 0 0 0
0 1 0 0
0 0 1 0

 . (6)

The equations of the EKBF collapses the prediction
and the measurement update steps into one resulting in
following equations

˙̂x(t) = f(x̂,u) +K(y −Hx̂)

K(t) = PHTR−1

Ṗ(t) = AP+PAT + LQLT −KRKT

 (7)

where

A =
∂f

∂x

∣∣∣∣
x̂(t)

, L =
∂f

∂w

∣∣∣∣
x̂(t)

. (8)

Initial values for the integration are

x̂(0) = E{x(0)},
P(0) = E{(x(0)− x̂(0))(x(0)− x̂(0))T } .

}
(9)

For detailed derivation of the EKBF one can confront
[Simon, 2006].

3.1 Parameter estimation
By considering some unknown model’s parameter as

a state of the system a recursive identification of this
parameter is possible. In the particular case of Acrobot
dynamics we can consider various options. Regarding
the number of unknown parameters the use of the sub-
stitution (2) is useful as the number will decrease from

six (m1,m2, lc1 , lc2 , I1, I2) to five. Also use of the sub-
stitution will decrease the complexity of computations
involved in evaluating the Jacobians (8) greatly. Un-
fortunately this approach does not work very well. The
estimation is slow and often results in divergence of the
estimates from the true model’s parameters.
A solution to this problem is to use the analytical for-

mulas for the computation of the model’s parameters
(m1, m2, lc1 , lc2 , I1, I2), the general rules for the com-
putation of the center of mass and inertia tensors, see
[Landau and Lifshitz, 1976], and treating the param-
eters as a functions of one unknown parameter mload

and some a priori known constants m
′

1, m
′

2, l
′

c1 , l
′

c2 ,
I

′

1, I
′

2 that can be either measured directly or computed
using off-line identification thus

m1 = m1(m
′

1,mload)

m2 = m2(m
′

2,mload)

lc1 = lc1(m
′

1, l
′

c1 ,mload)

lc2 = lc2(m
′

2, l
′

c2 ,mload)

I1 = I1(I
′

1, l1, l
′

c1 ,mload)

I2 = I2(I
′

2, l2, l
′

c2 ,mload) .


(10)

The filter will use additional information and the num-
ber of unknown parameters will decrease to one. The
use of the substitution (2) is still to filter’s advantage
as the analytical formulas for Jacobians (8) are much
more complicated without the substitution.
The filter’s equations can then be written as follows

˙̂x(t) = f(x̂,u) +K(y −Hx̂)

K(t) = PH
T
R−1

Ṗ(t) = AP+PA
T
+ LQL

T −KRK
T

 (11)

where

x̂ = [x̂, m̂load]
T w = [w, w5]

f = [f , 0]T H = [H,0]

}
(12)

and

A =

[
A A∗

0 0

]
,L =

[
L L∗

0 0

]
,Q =

[
Q 0
0 Q∗

]
(13)

with

A∗ =
∑i=5

i=1

∂f

∂θi

∂θi
∂mload

∣∣∣∣
x̂(t)

,

L∗ =
∑i=5

i=1

∂f

∂θi

∂θi
∂w5

∣∣∣∣
x̂(t)

.

 (14)

Initial values for the integration are

x̂(0) = E{x(0)},
P(0) = E{(x(0)− x̂(0))(x(0)− x̂(0))T } .

}
(15)
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As the system is not significantly influenced by any
other forces that would require stochastic modeling the
covariance matrix Q can be chosen as diagonal matrix
with very small values of the diagonal elements. The
only remaining parameter that should be specified is
the variance Q∗ of the random variable w5. Therefore
tunning of the filter is very simple.

4 Adaptation of the control law
The control law used to track the walking like mo-

tion consists from a feed-forward and feedback con-
troller. Both are based on feedback linearization of the
Acrobot.

4.1 Partial feedback linearization for Acrobot
The partial exact feedback linearization method is

based on a system transformation into a new system
of co-ordinates that display linear dependence between
some auxiliary output and new input [Isidori, 1996].
In [Čelikovský et. al., 2008] was showed that using

functions

σ =
∂L
∂q̇1

= (θ1 + θ2 + 2θ3 cos (q2))q̇1+

+(θ2 + θ3 cos (q2))q̇2

p = q1 +
q2
2

+

(
θ2 − θ1√

(θ1 + θ2)2 − 4θ23

arctan

(√
θ1 + θ2 − 2θ3
θ1 + θ2 + 2θ3

tan q2
2

))
.


(16)

which both have relative degree r = 3 one can trans-
form the system (3) into new nearly linear system by
following transformation

T : ξ1 = p, ξ2 = σ, ξ3 = σ̇, ξ4 = σ̈ (17)

and the resulting dynamic system will have following
form

ξ̇1 = d−1
11 ξ2, ξ̇2 = ξ3, ξ̇3 = ξ4

ξ̇4 = α(q, q̇)τ + β(q, q̇) = z

}
(18)

where d11 is corresponding entry in inertia matrix D
and z the new linearizing input which is well defined
whenever α(q, q̇)−1 ̸= 0. Also

α =
detΦ2

detD(q)
,

β =
detΦ2

detD(q)
(−C2(q, q̇)q̇ −G2(q))−

(θ2θ4g cos (q1)− θ3θ5g cos (q2) cos (q1 + q2))

detD(q)
×

×(C1(q, q̇)q̇ +G1(q))− θ4gq̇1
2 sin (q1)−

+θ5g(q̇1 + q̇2)
2 sin (q1 + q2),

where

Φ2 =


θ1 + θ2 + 2θ3 cos (q2) θ2 + θ3 cos (q2)

θ4g cos (q1)
+θ5g cos (q1 + q2)

θ5g cos (q1 + q2)

 .

Moreover the co-ordinate transformation is locally in-
vertible at each point where

detΦ2

d11(q)
̸= 0. (19)

4.2 Adaptation of the reference and the feed-
forward control

The role of the feed-forward controller is particularly
important when the tracking of a specified state space
trajectory is desired. Its main purpose is to transfer the
system along the desired trajectory usually from one
equilibrium to another and if there would be no dis-
turbances acting on the controlled system and the sys-
tem would be perfectly known the feed-forward control
would suffice to track any feasible trajectory of the sys-
tem. Main advantage of the feed-forward control struc-
ture is that this controller can be designed to meet such
performance standards so that the feedback controller
can be tunned more aggressively.
Parameters of some feed-forward controller with well

chosen structure together with a suitable reference tra-
jectory can be obtained by a solution of a boundary
value problem for the Acrobot’s EoM with following
boundary conditions

q1(0) = q10
q1(T ) = −q1(0)
q2(0) = π + 2|q1(0)|
q2(T ) = π − 2|q1(T )|
q̇1(0) = q̇1(T

+)
q̇2(0) = q̇2(T

+).


(20)

The first four conditions from (20) secure that the con-
figuration of the Acrobot at the beginning and at the end
of the step (at time T ) will be symmetric with respect
to the y-axis, see Fig. 1.
Time T is the time when the swing leg will hit the

ground we will call this time the time of the impact.
The times T− and T+ are the times just before and just
after the impact respectively. It is supposed that the
impact will not change the angular configuration of the
Acrobot, but will affect only its angular velocities q̇.
The impact can be modeled as follows

[
q̇1(T )

+

q̇2(T )
+

]
= Φimp(q(T ))

[
q̇1(T )

−

q̇2(T )
−

]
(21)

where Φimp represents the matrix of impact. The de-
tails regarding the computation of the impact matrix
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can be found in [Grizzle et. al., 2001] or more general
treatment can be found in [Brogliato, 1996].
The solution of (20) is not unique and can be obtained

by numerical techniques for boundary value problems
[Shampine et. al., 2003]. Another way of computing
the boundary value problem is to use algorithm de-
veloped in [Anderle and Čelikovský, 2010b]. In both
cases solution provides both the reference trajectories
and the feed-forward control. Using the transformation
(17) a following reference system is obtained

ξ̇ref1 = d−1
11 ξ

ref
2 , ξ̇ref2 = ξref3 , ξ̇ref3 = ξref4 ,

ξ̇ref4 = zref

}
(22)

with known initial conditions ξref (0) = ξref0 and
known feed-forward control zref . In the case when
strategy developed in [Anderle et. al., 2009] is cho-
sen the feed-forward control law will be computed as
zref = a+ bt with known constants a, b.
The particular reference trajectory and feed-forward

control are however dependent on the parameters of the
robot. These are in turn dependent on the load that the
robot has to carry. However if this mass is unknown,
then both trajectories and the control are unknown as
well. Nevertheless thanks to recursive estimation some
estimate of the mass of the load is always available.
Also off-line computation of a set of reference trajec-
tories for some well chosen range of the values that
the mass of the load can attain is possible. Thus a fast
selection of a reference trajectory is possible provided
some estimate is available. Example of the set of tra-
jectories that were computed for mload ∈ [0, 0.5] [kg]
is demonstrated on Fig. 2 and Fig. 3. Moreover param-
eters a, b can be accurately approximated by polynomi-
als

a(mload) = a0 + a1mload + . . .+ anam
na

load

b(mload) = b0 + b1mload + . . .+ bnb
mnb

load

(23)

where coefficients of polynomials (23) can be esti-
mated off-line using the least-squares method.

4.3 Feedback control design
Denoting the regulation error as e = ξ − ξref and

subtracting (22) from (18) one obtains

ė1 = d−1
11 (ϕ2(ξ1, ξ3))ξ2−

−d−1
11 (ϕ2(ξ

ref
1 , ξref3 ))ξref2 ,

ė2 = e3, ė3 = e4, ė4 = z − zref ,

 (24)

where ϕ2(ξ1, ξ3) = q2. Using Taylor expansion we can
rewrite (24) as follows

ė1 = µ1(t)e1 + µ2(t)e2 + µ3(t)e3 + o(e)
ė2 = e3, ė3 = e4, ė4 = z − zref ,

}
(25)
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Figure 2. The Acrobot’s reference configuration angles.
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Figure 3. The Acrobot’s reference angular velocities.

where µ1(t), µ2(t), µ3(t) are known smooth time
functions [Anderle and Čelikovský, 2009]. Using The-
orem 3.1 from [Anderle and Čelikovský, 2009] the one
can stabilize (24) and solve the tracking problem by us-
ing following state feedback

z = zref +Θ3K̃1e1 +Θ3(K̃2−
K̃1µ3(t))e2 +Θ2K̃3e3 +ΘK̃4e4,

(26)

where constants K̃1, K̃2, K̃3, K̃4,Θ are chosen based
on conditions in [Anderle and Čelikovský, 2009].

We can therefore design a feedback control law for the
worst case scenario where the load that the robot has to
carry attains it’s maximal allowed value. Then we can
use such feedback to stabilize the system for a set of
values of the parameter mload.
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Figure 4. Tracking of the adapting reference trajectory and estima-
tion of the angle q1.
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Figure 5. Tracking of the adapting reference trajectory and estima-
tion of the angle q2.

5 Simulation results
We have carried out simulations with following pa-

rameters of the system

m1 = m2 = 1[kg]
l1 = l2 = 1[m]
lc1 = lc2 = 0.5455[kg]
I1 = I2 = 0.0606[kg.m2]
g = 9.81[ms−2]
mload = 0.2[kg]
R = 10−6I,
Q = 10−10I,
Q∗ = 10−2


(27)

Tracking of the reference configuration angles is de-
pictured on figures Fig. 4 and Fig. 5. Tracking of the
reference angular velocities is demonstrated on figures
Fig. 6 and Fig. 7. Estimation of the mass of the load
is demonstrated on Fig. 8. After the first two steps
wich occur during less than 1.2 [s] the unknown load
is estimated with an error less than 8%. The estimate
is continually improving in increasing time as well as
the tracking performance. Animation of the walking is
demonstrated on the Fig. 9.
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Figure 6. Tracking of the adapting reference trajectory and estima-
tion of the angular velocity q̇1.
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Figure 7. Tracking of the adapting reference trajectory and estima-
tion of the angular velocity q̇2.
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Figure 8. Estimation of the mass of the carried load.

6 Conclusion
An adaptation scheme for nonlinear tracking of a

walking like motion for bipedal robot was presented.
The task of transportation of an object of unknown but
bounded mass was considered. Due to abundant a pri-
ori information about the system dynamics and also due
to the fact that not all states of the system are measured
estimation of the unknown mass of the load was real-
ized using the EKBF. The complicated multi variable
estimation problem was reduced to the much simpler
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1. step

2. step

Figure 9. Animation of the walking of Acrobot with sampling pe-
riod 0.11 [s].

problem consisting of determination of one parameter
of the model only. It was also shown that adaptation
of the reference trajectory and the feed-forward con-
trol law is can be done in a manner that doesn’t require
much computational power thanks to polynomial ap-
proximation of the feed-forward control rule and off-
line computation of the reference trajectory. There-
fore such adaptation scheme can be applied to real-time
control.
Exact linearization was used for the feedback control

rule design as it yields a controller that can be designed
to stabilize the system for some range of values of the
mass of the load that the robot has to carry. The per-
formance of proposed control strategy yields high per-
formance as it benefits from precise knowledge of the
states and parameters of the system. A precise estima-
tion of the unknown state of the system is more compli-
cated when the parameters of the system are not known
precisely. Therefore utilization of the recursive identi-
fication increases both the quality of the state estimate
and the performance of the controller.
The responsiveness of the filter or the speed of conver-

gence could be further improved by some suitable regu-
larization of the covariance matrix of the estimation er-
ror. Also different filtering schemes can be applied, e.g.
Unscented filtering or Particle filtering [Julier, 1995],
[Gordon et. al., 1993].
The estimation of the time of impact is another very

important problem. Although the bipedal robot was
modeled as the Acrobot in the reality the robot can also
perform a movement in knees. However this movement
is only used to shorten or stretch the legs so that the feet
would not hit the ground prematurely. The exact tim-
ing of the impact and the stretching of the leg is vital
for the tracking performance.
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Anderle, M., Čelikovský, S. (2010b) Sustainable Ac-

robot walking based on the swing phase exponen-
tially stable tracking. To appear in The 3rd Annual
Dynamic Systems and Control conference, Boston,
USA.
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