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Abstract

This paper deals with a spatial transient mathemat-

ical model of pushbelt Continuously Variable Trans-

missions (CVT) characterised by numerous contacts

and a large degree of freedom. The non-smooth equa-

tions of motion are derived using methods of multibody

theory and nonlinear mechanics. Thereby, the bodies

themselves are described using rigid and large deflec-

tion elastic mechanical models. In-between the bod-

ies, all possible flexible or rigid contact descriptions,

namely frictionless unilateral contacts, bilateral con-

tacts with 2D-friction and even unilateral contacts with

3D-friction occur. The resulting stiff measure differ-

ential inclusion (MDI) is integrated using robust and

efficient time-stepping schemes.
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1 Introduction

In contrast to smooth mechanical systems, accelera-

tion and even velocity jumps can occur in non-smooth

systems normally induced by impacts and rigid con-

tacts. Although these velocity jumps could be avoided

by using regularised contact models, it is numerically

better to integrate the non-smooth equations. Then,

a solution can be calculated more efficiently and sta-

ble avoiding a high numerical stiffness due to springs.

Since the 1980s, the theory and numerics of non-

smooth mechanics has been a major research area for

the Institute of Applied Mechanics of the Technische

Universität München. Especially with the mathemati-

cal formulation of PFEIFFER and GLOCKER (Pfeiffer

and Glocker, 1996; Glocker, 2001), the time-stepping

schemes of STIEGELMEYR and FUNK (Stiegelmeyr,

2001; Funk, 2004) and the further developments of

FÖRG (Förg, 2007) mainly with respect to the evalu-

ation of set-valued force laws, it is possible to integrate

even complex industrial systems, for example pushbelt

CVTs.

A pushbelt CVT is an alternative transmission system

with high expectations. Especially the optimal opera-

tion of the whole drive train including the engine ex-

plains the increasing production volume of this trans-

mission type. Per year about three million pushbelts

are installed in over 70 different vehicle models.

In an ongoing cooperation with Bosch, a mathemati-

cal model for the planar dynamics of the pushbelt CVT

was established and validated (Geier, 2007). It is com-

pared with measurement data close to normal oper-

ating conditions (Schindler et al., 2007) and shows,

how a profound understanding of the dynamics can be

achieved without mostly expensive and elaborate ex-

periments. But further, the model can be used to iden-

tify the potential of the pushbelt CVT with respect to

industrially relevant topics like fuel consumption. This

supported the improvement in the emissions’ properties

by a new ”slip control” strategy investigated by Bosch

(van der Sluis et al., 2006).

With a spatial model of the pushbelt CVT it would be

possible to consider even out-of plane effects for in-

stance pushbelt misalignment. So in time of tightening

emission legislation, further optimisations could be in-

vestigated concerning comfort, cost, fun to drive and

especially fuel consumption.



2 Non-Smooth Multibody Systems

The theory of the dynamics of systems with con-

straints, friction and frictional impacts can be expressed

in the sense of distributions or by a measure differential

equation

Mµu = µG +
∑

k

µHk (1)

together with complementarity equations. Thereby, the

measures µ represent the velocity by the superscript

u, LEBESGUE-integrable forces by G and impacts at

time tk by the Heaviside functions Hk. The symmetric

and positive definite mass matrix M depends on the

position q of the system.

It is also possible to distinguish between smooth and

impact dynamics. Then, the equations of motion can

be written like

Mu̇ = h + Wλ , (2)

Mk

(

u+
k − u−

k

)

= W kΛk ∀k (3)

using u̇ for denoting the weak time derivative of u

and u+
k as well as u−

k for describing the velocity after

and before an impact time. The vector h contains all

smooth forces not depending on additional constraints

symbolizing rigid interactions between bodies. It is a

function of q, u and explicitly of t. The directions

of generalised contact reactions are summarised in the

matrix W as well as λ and Λk refer to smooth and

non-smooth contact reaction values, respectively.

The complementarity equations result from the contact

reaction laws defining the relationship of the contact

reactions to the state
(

qT ,uT
)T

of the system at the

time t. Three main types of contact reaction laws can

be distinguished. Considering only smooth motion, on

position level they are given by a bilateral constraint

gN = 0, λN ⋚ 0 (4)

and an unilateral constraint

λN ≥ 0, gN ≥ 0, λNgN = 0 (5)

for the normal contact distance gN . COULOMB dry

friction for the tangential contact gaps gT is repre-

sented by

‖λT ‖ ≤ µλN for ġT = 0 , (6)

λT = −µλN

ġT

‖ġT ‖
for ġT 6= 0 , (7)

if the normal distance gN is zero. The constant friction

coefficient is denoted by µ.

An impact influences all contacts between bodies con-

cerning the post impact velocity. So, the impact laws

have to be formulated on velocity level substituting g

by ġ+ and λ by Λ in the complementarity equations

subject to the condition, that the affected contact is

closed. In this context, it is even possible to define spe-

cial impact laws by replacing ġ+ with adequate physi-

cal approximations to regard for example elastic impact

behaviour.

With the description outlined above, a mechanical sys-

tem is divided in the motion of bodies and in the inter-

action between bodies. Only missing is the calculation

of the direction matrix of generalised contact reactions

W , the gaps g and relative velocities ġ. This is done by

assigning a contour to a body in general characterised

by a 2D-contour parameter vector s. Then assuming

unique point-to-point contacts, the contact parameters

sc1
and sc2

for two contacting bodies necessarily fulfill

T T
1 (sc1

) [r1 (sc1
) − r2 (sc2

)] = 0 , (8)

T T
2 (sc2

) [r1 (sc1
) − r2 (sc2

)] = 0 (9)

with the inertial position r of the bodies and the tangent

matrix T = ∂r
∂s

. Depending on the structure of these

equations either analytical or numerical methods have

to be applied to get a set of potential contact parame-

ters. Selecting the solution with minimal distance

gN = nT
1 (sc1

) [r1 (sc1
) − r2 (sc2

)] (10)

allows calculating the relative normal and tangential

velocities by projection of the relative velocity on the

corresponding matrices n and T . The matrix W is the

projection of the Cartesian directions n and T of con-

tact reactions in the space of generalised velocities u

by appropriate JACOBIAN matrices.

3 Numerical Treatment

In contrast to event-driven schemes so-called time-

stepping schemes can handle even a large number of

contact transitions describing the time-variant topology

of non-smooth systems. They are based on the discreti-

sation of the equations of motion including the com-

plementarity equations not adapting the globally fixed

time step size ∆t due to closing contacts. This forces

the integrator to be very sensible with respect to the

time step size, numerical stability and accuracy; on the

other hand it allows to focus on the global physical be-

haviour of the simulated models minimising the num-

ber of combinatorial problems and therefore increas-

ing computational efficiency (Stiegelmeyr, 2001; Leine

and Glocker, 2003; Funk, 2004; Förg, 2007).

In this paper a half-explicit time-stepping algorithm of

order one is used, whereby a single integration step

l → l + 1 can be summarised as follows:

1. Update the positions ql+1 = ql + ul∆t.



2. Compute the velocities considering violated con-

straints on velocity level labeled by subscript v

M l+1∆ul = ĥ
l+1

∆t + W l+1
v Λl+1

v , (11a)

ġl+1
v = ġv(ul+1, ql+1, tl+1) , (11b)

Λl+1
v = proj(ġl+1

v ,Λl+1
v ) . (11c)

The evaluation ĥ
l+1

= h(ul, ql+1, tl+1) is half-

explicit and increases the numerical stability. An

augmented LAGRANGIAN formulation of the com-

plementarity equations is denoted by proj using

the theory of proximal points (Alart and Curnier,

1991) as well as numerical acceleration and stabi-

lizing methods (Förg, 2007).

3. Correct numerical drifts.

4 Modelling of Pushbelt CVTs

An input and an output pulley as well as the push-

belt set up the variator of the transmission system (left

side of Figure 1). Thereby, each of the pulleys consists

Figure 1. Pushbelt variator and pushbelt with elements

of a fixed and an axially moveable V-shaped sheave.

The pushbelt is composed of approximately 400 ele-

ments, which are guided by two ring packages of nine

to twelve steel rings (right hand side of Figure 1). Fig-

ure 2 shows the functionality for two different trans-

mission ratios. Here, γ̇ denotes the angular velocity

of a pulley, M the torque and FC the clamping force

acting on the loose sheave. The torque is transmitted

from the input to the output pulley via friction forces

between the pushbelt and the sheaves and further on

via push and tension forces within the pushbelt. By ap-

plying hydraulic pressures on the loose sheaves, their

axial positions can be changed, modifying the effective

running radii of the pushbelt within the pulleys contin-

uously.

The model is established in two steps yielding the gen-

eral equations of section 2:

1. The decoupled motion of pulleys, elements and

ring packages is described.

2. The interactions between these bodies as well as

the environment are accounted for.

For the whole variator model the following points have

to kept in mind:

FCI
FCI

MIMI

γ̇Iγ̇I

FCO
FCO

MO MO

γ̇O γ̇O

Figure 2. Functionality of the pushbelt variator

1. The inertial frame of reference (FR) of the whole

CVT is located in the centre of the output pul-

ley symmetric between the input and output fixed

sheave; the xI -axis is in direction to the input pul-

ley and the zI -axis in axial direction to the output

fixed sheave. The yI -axis axis develops a positive

Cartesian coordinate system.

2. Elasticities of pulleys and elements can be consid-

ered within the interaction quasistatically, because

such deformations only happen in case of contact

and effect in a much smaller scale than global mo-

tions.

3. The equations are only shown for smooth dynam-

ics; the impact equations can be derived analo-

gously.

4. Gravity is considered for all components.

4.1 Ring Package

Homogenising the layered structure, the two ring

packages are modelled by a 1D continuum divided in

a number Nb of FE-beams. As a transient model of the

CVT is desired, no reference path of the ring package

can be given. So, the model has to describe free mo-

tion with geometrically nonlinear, large deformations,

but linear material laws. According to a redundant

coordinate method (RCM) of ROLAND ZANDER and

HEINZ ULBRICH (Zander and Ulbrich, 2006b; Zan-

der and Ulbrich, 2006a) comparatively efficiently de-

scribing the planar motion of large deformation beams,

an extension has been derived for the 3D ring pack-

ages. It gives an accurate, comprehensive approach

based on the physically interpretable ideas of EULER-

BERNOULLI beam formulations. Thereby, the advan-

tages of both moving frame of reference (MFR) and

finite element (FE) concepts can be maintained:

Each FE-beam is defined with respect to an inertial FR

of the ring package. Representing 3D angle parametri-

sation of accompanying trihedrals (t, n, b) and ring

structures in the plane of motion of the CVT, the FR

of the ring package is located in the origin of the iner-

tial FR with an adequate rotational transformation.

For the derivation of compact equations of motions, a

so-called internal coordinate set (Figure 3)
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Figure 3. Internal coordinates

qi := (xS , yS , zS , ϕS0, ϕS1, ϕS2, ǫ̃,

dL1, dR1, βL1, βR1, dL2, dR2, βL2, βR2, κ0)
T

(12)

is used separating rigid (rT
S = (xS , yS , zS), ϕS0, ϕS1,

ϕS2) and elastic body motion including elongation (ǫ̃),

bending (dL1, dR1, βL1, βR1, dL2, dR2, βL2, βR2)

and torsion (κ0). It parametrises the neutral fibre rep-

resenting a mixture of co-rotational and inertial frame

approaches. Based on expressions for the elastic, ki-

netic and gravitational energy, the equations of motion

of the FE-beams themselves are calculated with the

LAGRANGE II formalism. Extending the result with

damping yields the equations of motion in terms of the

internal coordinates

M iu̇i − hi = 0 (13)

with ui = q̇i. A second coordinate set (Figure 4) shifts

xR

yR

zR
rL

tL

nLbL

rR

tR

nR

bR

cL1

cL2

cR1

cR2

Figure 4. Global coordinates

the main information of the FE-beams to their left and

right end points:

qg := (xL, yL, zL, ϕL0, ϕL1, ϕL2, cL1
, cR1

,

cL2
, cR2

, xR, yR, zR, ϕR0, ϕR1, ϕR2)
T

. (14)

Thereby, cL1
, cR1

, cL2
and cR2

symbolise interior

bending deflections. After having defined a transfor-

mation between the two coordinate sets, the assembling

in global coordinates does not invoke any additional

constraints. This yields the sparse equations of motion

of a ring package with k FE-beams

k
∑

j=1

JT
ijr

[

M ij J ijru̇r − hij − M ij J̇ ijrur

]

= 0

(15)

projected in the space of the minimal velocity coor-

dinates ur by the JACOBIAN matrices J ijr =
∂q

ij

∂q
r

.

The equations can be implemented very efficiently by

index-scanning for used degrees of freedom. Then, op-

erations on non-zero entries can be avoided.

4.2 Elements

Altogether, Ne rigid elements with dof = 6, respec-

tively, will be used for the CVT dynamics representing

3D angle parametrisation. Figure 5 depicts the element

shape schematically. Thereby, the local FR is located

xE

yE

zE

S

Figure 5. Element - 3D Perspective

in the Centre of Gravity (COG) S. The xE-axis is per-

pendicular to the planar rear side of each element and

in direction to the front side, whereas the yE-axis is

perpendicular to the planar bottom of each element in

direction to the top. The zE-axis completes the xE-

and yE-axis to a positive Cartesian coordinate system.

This results in the canonical equations of motion of the

elements using the NEWTON-EULER formalism.

4.3 Pulleys

As the axis of the pulleys is modelled rigidly, only the

sheaves have to be discussed. The loose sheaves ful-

fill dof = 2 representing translation along and rotation

about their axis. With dof = 1, fixed sheaves can only

rotate. Assuming a symmetric shape, the FR is located

in the COG S of the sheaves. The zS-axis is in ax-

ial direction normal to the rear side and the yS-axis is

initially parallel to the yI -axis of the inertial FR. The

xS-axis completes a positive Cartesian coordinate sys-

tem. Then, the equations of motion of the pulleys are

canonically structured.



4.4 Interactions

For example external borders, connections and con-

tacts are included within interactions. Thereby, a con-

nection combines two bodies bilaterally at a relatively

fixed point without defining friction. With contacts

even friction can be set and moveable points of refer-

ence are possible. Contacts are always described by

sets of points, whereby the intersection must consist of

at most one point. For efficiency, the number of con-

tacts is minimised.

4.4.1 Sheave-Sheave The interface between a

fixed and a loose sheave is defined by a connection en-

suring the same angular velocity of the sheaves. Its

inertia can be considered within the sheaves.

4.4.2 Pulley-Environment There are two possi-

bilities for the border to the environment: a kinetic and

a kinematic excitation. For the output pulley only a ki-

netic excitation is provided. It is given by a 2D load

LO representing the clamping force FC0
and the load

torque MO.

For the input pulley the rotational setting is always

done by the angular velocity γ̇I . The clamping could

be either a kinematic or a kinetic excitation. As the

position is given by initialisation, in the first case the

clamping velocity żCI
is provided. In the second case

the clamping force FCI
is defined.

4.4.3 Element-Pulley The shape of the left and

right body side of the elements is described by its ex-

tremal points, respectively. The sheaves have frustum

contour. So, the contact points are uniquely given and

the contact geometry allows for 3D motion of the ele-

ments, even clamping between the sheaves and friction

torques. The contact reaction law is unilateral with 3D

COULOMB-friction.

As a frustum is a primitive contour, it is possible to sim-

plify the general contact solution algorithm. The con-

tact between a point Q and a frustum with the normed

axis a, the radii r1 and r2 in direction to the axis, the

height h and a starting point P at the centre of the bot-

tom could be declared as follows. Defining

ϕ := atan

(

r2 − r1

h

)

, (16)

d := Q − P , (17)

rh := r1 +
r2 − r1

h
s , (18)

s := aT d , (19)

b :=
d − sa

‖d − sa‖
(20)

with respect to Figure 6 it can be proved, if there is

contact possible by comparing ‖d − sa‖ and rh. Then,

h

ϕ

a

P

Q

r1

r2

n

b

Figure 6. Frustum

the inward pointing normal can be calculated by

n = sin (ϕ) a − cos (ϕ) b (21)

and the gap is given by

gN = [‖d − sa‖ − rh] cos (ϕ) . (22)

So, no explicit evaluation of root functions is necessary.

A basis of the tangential plane can be chosen canoni-

cally and velocity depending values are calculated as

described in the general procedure.

4.4.4 Element-Ring Package If one assumes only

small clearance between the elements in longitudinal

direction and the guidance of the elements by the ring

packages avoiding detachment, this neglects a rota-

tional interaction between the elements and the ring

package. So, a minimal number of contact points at

the element saddles and at the element pillar define

the contact behaviour with the ring package. A bilat-

eral contact reaction law with 2D COULOMB-friction

is used for the saddle contact and a bilateral contact re-

action law without friction specifies the pillar contact.

Thereby, the contacting faces of the ring package are

described by an appropriate adapted flexible band

B : [0, l] ×

[

−
b

2
,
b

2

]

→ IR3 ,

(x, µ) 7→ r (x) − dN

αñ (x) + βb̃ (x)
√

α2 + β2

+ µ
αb̃ (x) − βñ (x)

√

α2 + β2
. (23)

It references to the neutral fibre r of the ring package

with the normal ñ and binormal b̃ of its parametrisa-

tion, the width b and length l of the flexible band, a

normal distance dN and the inward pointing normal di-

rection of the flexible band αñ + βb̃ as linear combi-

nation.

The resulting root function of the contact problem is

solved by a globalised Newton method.



4.4.5 Element-Element The dynamics between

two adjacent elements can be subdivided in the inter-

action of extremal points at the front with a plane con-

tour at the rear side as well as the pin-hole kinematics

modelled with circle-to-frustum geometries. The con-

tact reaction law is frictionless and unilateral.

The impact to the rear side of the neighbouring element

can be reduced to a primitive description. With a point

Q, the starting point P and the inward normal vector

n of a general plane the formula for the gap is easy to

derive and given by

gN = (P − Q)
T

n . (24)

Tangential basis vectors can be chosen canonically and

velocity depending values are calculated as described

in the general procedure.

Even for the pin-hole contact a simplification is possi-

ble: The conic section of the circle plane and the frus-

tum traces the contact problem back to the contact be-

tween a circle and an ellipse. The result is a scalar root

function

0 = 2 [−c1 sin (ϕ) + c2 cos (ϕ)]
T

[MC − ME ]

+ sin (2ϕ)
[

‖c1‖
2
− ‖c2‖

2
]

(25)

with the central points MC and ME of circle and el-

lipse as well as the semi-major and semi-minor axis

vectors c1 and c2 of the ellipse. It is solved by a glob-

alised Newton method yielding the solution parameter

ϕ of the ellipse. This solution parameter is used to cal-

culate the contact point on the circle. With the kinemat-

ics of a point-to-frustum contact described in section

4.4.3, it is possible to calculate the gap as well as the

normal and tangents of both frustum and circle. The

velocity depending values are computed as described

in the general procedure.

4.5 Challenges

It is clear, that Young’s modulus of the ring packages

directly influences the numerical stiffness of the whole

CVT and so the global time step size. But even the high

contact closing frequency has to be resolved in a certain

level to represent the variator dynamics. Together with

the large degree of freedom of the system this causes

long simulation times. Further, the initialisation re-

sults in additional instabilities, for instance because of

a jump from curvature 0 in the trum to a constant cur-

vature 6= 0 in the arcs not being represented exactly

by the bending polynomials. To minimise the effects

on the rest of the simulation, a special pre-integration

has to be performed to get a physically valid, stationary

state of the system.

5 Conclusion

The present paper introduces theoretical and numer-

ical formalisms for solving non-smooth differential

equations. Further, it describes the derivation of a spa-

tial transient model of a pushbelt variator considering

the components of the CVT and the different interac-

tions separately. The resulting non-smooth differen-

tial equations are integrated by efficient time-stepping

schemes. Altogether, the model can be applied to anal-

yse the dynamics of the real system and to improve

its performance concerning out-of-plane motion, mis-

alignments, comfort and fuel consumption using math-

ematical optimisation methods.
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