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PUSHBELT CVTS - A NON-SMOOTH CHALLENGE
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Abstract

This paper deals with a spatial transient mathemat-
ical model of pushbelt Continuously Variable Trans-
missions (CVT) characterised by numerous contacts
and a large degree of freedom. The non-smooth equa-
tions of motion are derived using methods of multibody
theory and nonlinear mechanics. Thereby, the bodies
themselves are described using rigid and large deflec-
tion elastic mechanical models. In-between the bod-
ies, all possible flexible or rigid contact descriptions,
namely frictionless unilateral contacts, bilateral con-
tacts with 2D-friction and even unilateral contacts with
3D-friction occur. The resulting stiff measure differ-
ential inclusion (MDI) is integrated using robust and
efficient time-stepping schemes.
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1 Introduction

In contrast to smooth mechanical systems, accelera-
tion and even velocity jumps can occur in non-smooth
systems normally induced by impacts and rigid con-
tacts. Although these velocity jumps could be avoided
by using regularised contact models, it is numerically
better to integrate the non-smooth equations. Then,
a solution can be calculated more efficiently and sta-
ble avoiding a high numerical stiffness due to springs.
Since the 1980s, the theory and numerics of non-
smooth mechanics has been a major research area for
the Institute of Applied Mechanics of the Technische

Universitdat Miinchen. Especially with the mathemati-
cal formulation of PFEIFFER and GLOCKER (Pfeiffer
and Glocker, 1996; Glocker, 2001), the time-stepping
schemes of STIEGELMEYR and FUNK (Stiegelmeyr,
2001; Funk, 2004) and the further developments of
FORG (Forg, 2007) mainly with respect to the evalu-
ation of set-valued force laws, it is possible to integrate
even complex industrial systems, for example pushbelt
CVTs.

A pushbelt CVT is an alternative transmission system
with high expectations. Especially the optimal opera-
tion of the whole drive train including the engine ex-
plains the increasing production volume of this trans-
mission type. Per year about three million pushbelts
are installed in over 70 different vehicle models.

In an ongoing cooperation with Bosch, a mathemati-
cal model for the planar dynamics of the pushbelt CVT
was established and validated (Geier, 2007). It is com-
pared with measurement data close to normal oper-
ating conditions (Schindler ef al., 2007) and shows,
how a profound understanding of the dynamics can be
achieved without mostly expensive and elaborate ex-
periments. But further, the model can be used to iden-
tify the potential of the pushbelt CVT with respect to
industrially relevant topics like fuel consumption. This
supported the improvement in the emissions’ properties
by a new slip control” strategy investigated by Bosch
(van der Sluis et al., 2006).

With a spatial model of the pushbelt CVT it would be
possible to consider even out-of plane effects for in-
stance pushbelt misalignment. So in time of tightening
emission legislation, further optimisations could be in-
vestigated concerning comfort, cost, fun to drive and
especially fuel consumption.



2 Non-Smooth Multibody Systems

The theory of the dynamics of systems with con-
straints, friction and frictional impacts can be expressed
in the sense of distributions or by a measure differential
equation

Mp®* = pS+)  pH (1)
k

together with complementarity equations. Thereby, the
measures p represent the velocity by the superscript
u, LEBESGUE-integrable forces by G and impacts at
time ¢y, by the Heaviside functions H . The symmetric
and positive definite mass matrix M depends on the
position g of the system.

It is also possible to distinguish between smooth and
impact dynamics. Then, the equations of motion can
be written like

Mu=h+WA, 2
Mk (u: — u,;) = WkAk Vk (3)

using © for denoting the weak time derivative of u
and u; as well as u, for describing the velocity after
and before an impact time. The vector h contains all
smooth forces not depending on additional constraints
symbolizing rigid interactions between bodies. It is a
function of g, w and explicitly of ¢t. The directions
of generalised contact reactions are summarised in the
matrix W as well as A and Ay refer to smooth and
non-smooth contact reaction values, respectively.

The complementarity equations result from the contact
reaction laws defining the relationship of the contact

reactions to the state (qT7 uT)T of the system at the
time ¢. Three main types of contact reaction laws can
be distinguished. Considering only smooth motion, on
position level they are given by a bilateral constraint

gn =0, ANS0 (4)
and an unilateral constraint
)\N 2 Oa

gy >0, Angn =0 )

for the normal contact distance gy. COULOMB dry
friction for the tangential contact gaps g is repre-
sented by

A7l < pAy for gr=0, (6
Ar = —pAn 2L for gp #£0, ()
gl

if the normal distance g is zero. The constant friction
coefficient is denoted by p.

An impact influences all contacts between bodies con-
cerning the post impact velocity. So, the impact laws
have to be formulated on velocity level substituting g
by g7 and )\ by A in the complementarity equations
subject to the condition, that the affected contact is
closed. In this context, it is even possible to define spe-
cial impact laws by replacing ¢+ with adequate physi-
cal approximations to regard for example elastic impact
behaviour.

With the description outlined above, a mechanical sys-
tem is divided in the motion of bodies and in the inter-
action between bodies. Only missing is the calculation
of the direction matrix of generalised contact reactions
W, the gaps ¢ and relative velocities §. This is done by
assigning a contour to a body in general characterised
by a 2D-contour parameter vector s. Then assuming
unique point-to-point contacts, the contact parameters
S¢, and s, for two contacting bodies necessarily fulfill

; ®)
©))

with the inertial position  of the bodies and the tangent
matrix T' = %. Depending on the structure of these
equations either analytical or numerical methods have
to be applied to get a set of potential contact parame-

ters. Selecting the solution with minimal distance

gn =nj (se,) [r1(se,) —72(sc,)]  (10)

allows calculating the relative normal and tangential
velocities by projection of the relative velocity on the
corresponding matrices 2 and T'. The matrix W is the
projection of the Cartesian directions n and T" of con-
tact reactions in the space of generalised velocities
by appropriate JACOBIAN matrices.

3 Numerical Treatment

In contrast to event-driven schemes so-called time-
stepping schemes can handle even a large number of
contact transitions describing the time-variant topology
of non-smooth systems. They are based on the discreti-
sation of the equations of motion including the com-
plementarity equations not adapting the globally fixed
time step size At due to closing contacts. This forces
the integrator to be very sensible with respect to the
time step size, numerical stability and accuracy; on the
other hand it allows to focus on the global physical be-
haviour of the simulated models minimising the num-
ber of combinatorial problems and therefore increas-
ing computational efficiency (Stiegelmeyr, 2001; Leine
and Glocker, 2003; Funk, 2004; Forg, 2007).
In this paper a half-explicit time-stepping algorithm of
order one is used, whereby a single integration step
[ — 1 + 1 can be summarised as follows:

1. Update the positions g'*1 = q' + u! At.



2. Compute the velocities considering violated con-
straints on velocity level labeled by subscript v

~1
M A = AL WA (11a)
gt = g (a1t gttty L (11b)
AT = proj(gitt, AL (11c)

The evaluation i T~ = h(u!,g' Tt t'*1) is half-
explicit and increases the numerical stability. An
augmented LAGRANGIAN formulation of the com-
plementarity equations is denoted by proj using
the theory of proximal points (Alart and Curnier,
1991) as well as numerical acceleration and stabi-
lizing methods (Forg, 2007).
3. Correct numerical drifts.

4 Modelling of Pushbelt CVTs

An input and an output pulley as well as the push-
belt set up the variator of the transmission system (left
side of Figure 1). Thereby, each of the pulleys consists

Figure 1. Pushbelt variator and pushbelt with elements

of a fixed and an axially moveable V-shaped sheave.
The pushbelt is composed of approximately 400 ele-
ments, which are guided by two ring packages of nine
to twelve steel rings (right hand side of Figure 1). Fig-
ure 2 shows the functionality for two different trans-
mission ratios. Here, 4 denotes the angular velocity
of a pulley, M the torque and F- the clamping force
acting on the loose sheave. The torque is transmitted
from the input to the output pulley via friction forces
between the pushbelt and the sheaves and further on
via push and tension forces within the pushbelt. By ap-
plying hydraulic pressures on the loose sheaves, their
axial positions can be changed, modifying the effective
running radii of the pushbelt within the pulleys contin-
uously.

The model is established in two steps yielding the gen-
eral equations of section 2:

1. The decoupled motion of pulleys, elements and
ring packages is described.

2. The interactions between these bodies as well as
the environment are accounted for.

For the whole variator model the following points have
to kept in mind:

Figure 2. Functionality of the pushbelt variator

1. The inertial frame of reference (FR) of the whole
CVT is located in the centre of the output pul-
ley symmetric between the input and output fixed
sheave; the x r-axis is in direction to the input pul-
ley and the z;-axis in axial direction to the output
fixed sheave. The y;-axis axis develops a positive
Cartesian coordinate system.

2. Elasticities of pulleys and elements can be consid-
ered within the interaction quasistatically, because
such deformations only happen in case of contact
and effect in a much smaller scale than global mo-
tions.

3. The equations are only shown for smooth dynam-
ics; the impact equations can be derived analo-
gously.

4. Gravity is considered for all components.

4.1 Ring Package

Homogenising the layered structure, the two ring
packages are modelled by a 1D continuum divided in
a number NV, of FE-beams. As a transient model of the
CVT is desired, no reference path of the ring package
can be given. So, the model has to describe free mo-
tion with geometrically nonlinear, large deformations,
but linear material laws. According to a redundant
coordinate method (RCM) of ROLAND ZANDER and
HEINZ ULBRICH (Zander and Ulbrich, 2006b; Zan-
der and Ulbrich, 2006a) comparatively efficiently de-
scribing the planar motion of large deformation beams,
an extension has been derived for the 3D ring pack-
ages. It gives an accurate, comprehensive approach
based on the physically interpretable ideas of EULER-
BERNOULLI beam formulations. Thereby, the advan-
tages of both moving frame of reference (MFR) and
finite element (FE) concepts can be maintained:
Each FE-beam is defined with respect to an inertial FR
of the ring package. Representing 3D angle parametri-
sation of accompanying trihedrals (¢, n, b) and ring
structures in the plane of motion of the CVT, the FR
of the ring package is located in the origin of the iner-
tial FR with an adequate rotational transformation.
For the derivation of compact equations of motions, a
so-called internal coordinate set (Figure 3)



Internal coordinates

Figure 3.

q; ‘= (x55y33257@503¢517§0327€3
dL17dRhﬂLlaﬂRladL27dR25ﬁL27ﬂR27KO)T (12)

is used separating rigid (r} = (zs,ys, 25), ©s0> P51
55) and elastic body motion including elongation (€),
bending (dLl’ de’ ﬁLl’ 61‘31’ dL2’ dR2’ 6112’ 6R2)
and torsion (xg). It parametrises the neutral fibre rep-
resenting a mixture of co-rotational and inertial frame
approaches. Based on expressions for the elastic, ki-
netic and gravitational energy, the equations of motion
of the FE-beams themselves are calculated with the
LAGRANGE II formalism. Extending the result with
damping yields the equations of motion in terms of the
internal coordinates

M;i; —h; =0 (13)

with u; = g;. A second coordinate set (Figure 4) shifts
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Figure 4. Global coordinates

the main information of the FE-beams to their left and
right end points:

qg = (x[myL)ZLa PLo»PL1,¥YL2;CL,sCRy>

T
CLysCRy, TR, YR, 2R, PRO> PR1> PR2) - (14)

Thereby, cr,, cr,, cr, and cp, symbolise interior
bending deflections. After having defined a transfor-
mation between the two coordinate sets, the assembling
in global coordinates does not invoke any additional

constraints. This yields the sparse equations of motion
of a ring package with k& FE-beams

;T

k
T . ;
ST [ My T — by, = My | =0
i=1

15)

projected in the space of the minimal velocity coor-
. . dq; .
dinates u, by the JACOBIAN matrices J;,, = 6q]
The equations can be implemented very efficiently by
index-scanning for used degrees of freedom. Then, op-

erations on non-zero entries can be avoided.

4.2 Elements

Altogether, NV, rigid elements with dof = 6, respec-
tively, will be used for the CVT dynamics representing
3D angle parametrisation. Figure 5 depicts the element
shape schematically. Thereby, the local FR is located

S~

d

Figure 5. Element - 3D Perspective

in the Centre of Gravity (COG) S. The x g-axis is per-
pendicular to the planar rear side of each element and
in direction to the front side, whereas the y-axis is
perpendicular to the planar bottom of each element in
direction to the top. The zpg-axis completes the x -
and y ;-axis to a positive Cartesian coordinate system.
This results in the canonical equations of motion of the
elements using the NEWTON-EULER formalism.

4.3 Pulleys

As the axis of the pulleys is modelled rigidly, only the
sheaves have to be discussed. The loose sheaves ful-
fill dof = 2 representing translation along and rotation
about their axis. With dof = 1, fixed sheaves can only
rotate. Assuming a symmetric shape, the FR is located
in the COG S of the sheaves. The zg-axis is in ax-
ial direction normal to the rear side and the y g-axis is
initially parallel to the y;-axis of the inertial FR. The
xg-axis completes a positive Cartesian coordinate sys-
tem. Then, the equations of motion of the pulleys are
canonically structured.



4.4 Interactions

For example external borders, connections and con-
tacts are included within interactions. Thereby, a con-
nection combines two bodies bilaterally at a relatively
fixed point without defining friction. With contacts
even friction can be set and moveable points of refer-
ence are possible. Contacts are always described by
sets of points, whereby the intersection must consist of
at most one point. For efficiency, the number of con-
tacts is minimised.

4.4.1 Sheave-Sheave The interface between a
fixed and a loose sheave is defined by a connection en-
suring the same angular velocity of the sheaves. Its
inertia can be considered within the sheaves.

4.4.2 Pulley-Environment There are two possi-

bilities for the border to the environment: a kinetic and
a kinematic excitation. For the output pulley only a ki-
netic excitation is provided. It is given by a 2D load
Lo representing the clamping force F, and the load
torque Mo.
For the input pulley the rotational setting is always
done by the angular velocity 4;. The clamping could
be either a kinematic or a kinetic excitation. As the
position is given by initialisation, in the first case the
clamping velocity Z¢, is provided. In the second case
the clamping force F, is defined.

4.4.3 Element-Pulley The shape of the left and

right body side of the elements is described by its ex-
tremal points, respectively. The sheaves have frustum
contour. So, the contact points are uniquely given and
the contact geometry allows for 3D motion of the ele-
ments, even clamping between the sheaves and friction
torques. The contact reaction law is unilateral with 3D
CouLOMB-friction.
As a frustum is a primitive contour, it is possible to sim-
plify the general contact solution algorithm. The con-
tact between a point @) and a frustum with the normed
axis a, the radii 71 and r3 in direction to the axis, the
height h and a starting point P at the centre of the bot-
tom could be declared as follows. Defining

o 1= atan (’"2 - ”) , (16)
h

d=Q—-P, a7

TR = r1+r2;r15, (18)

s:=a’d, (19)
d— sa

b=—— (20)
|d — sal|

with respect to Figure 6 it can be proved, if there is
contact possible by comparing ||d — sa/|| and r},. Then,

.P -

Figure 6. Frustum

the inward pointing normal can be calculated by

n =sin (p)a — cos (¢) b 1)
and the gap is given by
gy = [lld = sa| —rn]cos (¢) - (22)

So, no explicit evaluation of root functions is necessary.
A basis of the tangential plane can be chosen canoni-
cally and velocity depending values are calculated as
described in the general procedure.

4.4.4 Element-Ring Package If one assumes only
small clearance between the elements in longitudinal
direction and the guidance of the elements by the ring
packages avoiding detachment, this neglects a rota-
tional interaction between the elements and the ring
package. So, a minimal number of contact points at
the element saddles and at the element pillar define
the contact behaviour with the ring package. A bilat-
eral contact reaction law with 2D COULOMB-friction
is used for the saddle contact and a bilateral contact re-
action law without friction specifies the pillar contact.
Thereby, the contacting faces of the ring package are
described by an appropriate adapted flexible band

B:[0,]] x [—gg] —R?,
an (z) + b (z)
NG

ab (z) — fn (z) .

JEt R

It references to the neutral fibre r of the ring package
with the normal 7 and binormal b of its parametrisa-
tion, the width b and length [ of the flexible band, a
normal distance dy and the inward pointing normal di-
rection of the flexible band an + 65 as linear combi-
nation.

The resulting root function of the contact problem is
solved by a globalised Newton method.

(2,1) = 7 (@) — duy

+p (23)



4.4.5 Element-Element The dynamics between

two adjacent elements can be subdivided in the inter-
action of extremal points at the front with a plane con-
tour at the rear side as well as the pin-hole kinematics
modelled with circle-to-frustum geometries. The con-
tact reaction law is frictionless and unilateral.
The impact to the rear side of the neighbouring element
can be reduced to a primitive description. With a point
@, the starting point P and the inward normal vector
n of a general plane the formula for the gap is easy to
derive and given by

gv=(P-Q) n. (24)

Tangential basis vectors can be chosen canonically and
velocity depending values are calculated as described
in the general procedure.

Even for the pin-hole contact a simplification is possi-
ble: The conic section of the circle plane and the frus-
tum traces the contact problem back to the contact be-
tween a circle and an ellipse. The result is a scalar root
function

0=2[—¢;sin () + ¢z cos ()] [M e — M g)
+sin (2¢) lleal]” = llea|® (25)

with the central points M ¢ and M g of circle and el-
lipse as well as the semi-major and semi-minor axis
vectors ¢; and ¢ of the ellipse. It is solved by a glob-
alised Newton method yielding the solution parameter
 of the ellipse. This solution parameter is used to cal-
culate the contact point on the circle. With the kinemat-
ics of a point-to-frustum contact described in section
4.4.3, it is possible to calculate the gap as well as the
normal and tangents of both frustum and circle. The
velocity depending values are computed as described
in the general procedure.

4.5 Challenges

It is clear, that Young’s modulus of the ring packages
directly influences the numerical stiffness of the whole
CVT and so the global time step size. But even the high
contact closing frequency has to be resolved in a certain
level to represent the variator dynamics. Together with
the large degree of freedom of the system this causes
long simulation times. Further, the initialisation re-
sults in additional instabilities, for instance because of
a jump from curvature O in the trum to a constant cur-
vature # 0 in the arcs not being represented exactly
by the bending polynomials. To minimise the effects
on the rest of the simulation, a special pre-integration
has to be performed to get a physically valid, stationary
state of the system.

5 Conclusion
The present paper introduces theoretical and numer-
ical formalisms for solving non-smooth differential

equations. Further, it describes the derivation of a spa-
tial transient model of a pushbelt variator considering
the components of the CVT and the different interac-
tions separately. The resulting non-smooth differen-
tial equations are integrated by efficient time-stepping
schemes. Altogether, the model can be applied to anal-
yse the dynamics of the real system and to improve
its performance concerning out-of-plane motion, mis-
alignments, comfort and fuel consumption using math-
ematical optimisation methods.
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