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Abstract
The state estimation problem for uncertain impulsive

control systems with a special structure is considered.
The initial states are taken to be unknown but bounded
with given bounds. We assume here that the coeffi-
cients of the matrix included in the differential equa-
tions are not exactly known, but belong to the given
compact set in the corresponding space. We present
here algorithms that allow to find the external ellip-
soidal estimates of reachable sets for such bilinear im-
pulsive uncertain systems.
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1 Introduction
The paper deals with an impulsive control systems

with unknown but bounded uncertainties related to the
case of a set-membership description of uncertainty
[Kurzhanski and Valyi, 1997; Schweppe, 1973; Walter
and Pronzato, 1997; Boyd, El Ghaoui, Feron and Bal-
akrishnan, 1994]. Systems with such uncertainties may
be found in many applied areas such as engineering
problems in physics and cybernetics [Ceccarelli and
etc., 2006], economics, biological and ecological mod-
eling when it occurs that a stochastic nature of errors
is questionable. A special type of nonlinear system is
considered in the paper. The matrix of the system is
uncertain and only the bounds of the admissible values
of these matrix coefficients are known. For such bilin-
ear systems the reachable sets are star-shaped sets and,
in particular, can be non-convex.

Such systems can simulate various types of systems
whose parameters are unknown, but can vary within
certain limits, when the stochastic nature of errors is
questionable due to limited data or because of the com-
plexity of the model [August, Lu and Koeppl, 2012;
Boscain, Chambrion and Sigalotti, 2013; Boussaı̈d,
Caponigro and Chambrion, 2013; Ceccarelli and etc.,
2006; Gough, 2008; Nihtila, 2010]. For instance one
can indicate mechanical systems in which the stiffness
or friction coefficients are given inaccurately. Electri-
cal systems where the resistance, capacitance, induc-
tance, or feedback coefficients are known with a certain
accuracy can also be described within the framework of
this model.

Related results connected with a so-called bounded-
error characterization, also called set-membership ap-
proach, has been proposed and intensively developed.
Among them we mention here [Kurzhanski and Va-
lyi, 1997; Kurzhanski and Varaiya, 2014; Mazurenko,
2012; Schweppe, 1973; Walter and Pronzato, 1997].
For models with linear dynamics under such set-
membership uncertainty there are several constructive
approaches which allow to find effective estimates of
reachable sets of control systems under uncertainty
[Gusev, 2017; Chernousko, 1996; Filippova, 2010;
Kurzhanski and Valyi, 1997; Kurzhanski and Varaiya,
2014; Polyak and etc., 2004].

The paper deals with the guaranteed state estimation
problem and uses ellipsoidal calculus [Chernousko,
1994; Kurzhanski and Valyi, 1997] to construct exter-
nal reachable sets estimates for such systems. Here we
develop the set-membership approach based on ellip-
soidal calculus for the considered system. Also we
generalize earlier results [Filippova and Matviychuk,
2015; Filippova, 2016; Matviychuk, 2017a], in partic-
ular we consider more complicated model of the con-
trol system than in [Matviychuk, 2017b]. In this paper
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the control function of studied bilinear impulsive con-
trol system is a pair of a classical (measurable) con-
trol and an impulsive control function. It is assumed
that a classical control should belongs to a given finite-
dimensional ellipsoid and an impulsive control func-
tion is the scalar function of bounded variation. The al-
gorithms of constructing external ellipsoidal estimates
for studied systems are given.

2 Basic Notations
Let Rn be the n–dimensional vector space, compRn

be the set of all compact subsets of Rn, convRn be
the set of all convex and compact subsets of Rn, Rn×n

stands for the set of all real n× n–matrices and x′y =
(x, y) =

∑n
i=1 xiyi be the usual inner product of

x, y ∈ Rn with prime as a transpose, ∥x∥ = (x′x)1/2.
Let I ∈ Rn×n be the identity matrix, Tr(A) be the
trace of n × n-matrix A (the sum of its diagonal ele-
ments), diag b = diag{bi} be the diagonal matrix A
with aii = bi where bi are components of the vector b.
For a set A ⊂ Rn we denote its closed convex hull
as coA.
We denote by B(a, r) = {x ∈ Rn : ∥x − a∥ ≤ r}

the ball in Rn with a center a ∈ Rn and a radius r > 0
and by E(a,Q) = {x ∈ Rn : (Q−1(x − a), (x −
a)) ≤ 1} the ellipsoid in Rn with a center a ∈ Rn and a
symmetric positive definite n×n-matrix Q. Denote by
h(A,B) the Hausdorff distance between sets A,B ∈
Rn.

3 Problem Formulation
Consider the following bilinear impulsive control sys-

tem

dx =
(
A(t)x(t) + u(t)

)
dt+B(t)dv(t), (1)

x(t0 − 0) = x0, t ∈ [t0, T ],

here x ∈ Rn, vector-function B(·) ∈ Rn is continuous
on [t0, T ]. The initial condition x(t0 − 0) = x0 to the
system (1) is assumed to be unknown but bounded

x0 ∈ X0 = E(a0, Q0). (2)

Let us assume that the control function u(t) in (1) is
Lebesgue measurable on [t0, T ] and satisfies the con-
straint

u(t) ∈ U = E(â, Q̂), for a.e. t ∈ [t0, T ], (3)

where â ∈ Rn, Q̂ ∈ Rn×n. The impulsive control
function v(·) ∈ Rn is a scalar function of bounded vari-
ation, monotonically increasing and right-continuous

for t ∈ [t0, T ]. Also it is assumed that for some given
µ > 0 we have

Var
t∈[t0,T ]

v(t) = sup
{ti}

k∑
i=1

|v(ti)− v(ti−1)| ≤ µ, (4)

where supremum is taken over all {ti} such that
t0≤t1≤ . . .≤tk = T . Denote by V the class of all
admissible controls v(·) for which (4) holds.
The n× n–matrix function A(t) in (1) has the special

form

A(t) = A0 +A1(t) +A2(t), t ∈ [t0, T ],

where A0 ∈ Rn×n is given and the measurable,
A1(t), A2(t) ∈ Rn×n are unknown but bounded

A(t) ∈ A = A0 +A1 +A2, t ∈ [t0, T ], (5)

A1(t) ∈ A1 =
{
A = {aij} ∈ Rn×n :

|aij | ≤ cij , i, j=1, . . . , n
}
,

(6)

A2(t) ∈ A2 = {A ∈ Rn×n : A = diag a,

a = (a1, . . . , an) ∈ A0},
(7)

A0 = {a ∈ Rn :

n∑
i=1

|ai|2 ≤ 1},

where cij ≥ 0 (i, j = 1, . . . n) are given.
Let the function x(·) = x(·; t0, x0, A(·), u(·), v(·))

be a solution of the system (1)–(5) with initial state
x0 ∈ X0, with controls u ∈ U , v ∈ V and with a matrix
A(·) ∈ A(·).
The trajectory tube X (·) = X (·;X0,A,U ,V) of the

system (1)–(5) is defined as the following set (see also
[Filippova and Matviychuk, 2011])

X (·) =
∪{

x(·) = x(·; t0, x0, A(·), u(·), v(·)) :

x0∈X0, A(·)∈A(·), u∈U , v∈V
} (8)

and the reachable set of the system (1) at the time t
is the cross-sections X (t) of the tube X (·) (8) at the
instant t (t ∈ [t0, T ]).
The main problem considered in this paper is to

find the external ellipsoidal estimates for reachable
sets X (t) of the dynamic control systems (1)–(5) with
uncertain matrix of the system and uncertain initial
state basing on the special structure of the data A, U , V
and X0.

4 Preliminary Results
Consider first some auxiliary results.
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4.1 Bilinear System
Consider first the following bilinear system

ẋ = A(t)x, t0 ≤ t ≤ T,

x0 ∈ X0 = E(a0, Q0), A(t) ∈ A,
(9)

where x ∈ Rn, the set A is defined in (5).
The reachable set X (t) = X (t;X0,A) at the time t

(t0 < t ≤ T ) of the system (9) is defined as the follow-
ing set

X (t) =
∪{

x(t) = x(t; t0, x0, A(t)) :

x0∈X0, A(t)∈A
}
.

(10)

Note that the reachable sets X (t) for the bilinear sys-
tem (9) are star-shaped sets.

A set Z ⊆ Rn is called star-shaped (with center c) if
c+ λ(Z − c) ⊆ Z for all λ ∈ [0, 1].

The set of all star-shaped compact subsets Z ⊆ Rn

with center c will be denoted as St(c,Rn), StRn =
St(0,Rn).

Assumption 1. For every t ∈ [t0, T ] the inclusions
0 ∈ U and 0 ∈ X0 are true.

We will assume further that Assumption 1 is satisfied.

Theorem 1. [Kurzhanski and Filippova, 1993] Under
Assumption 1 the reachable sets X (t) are star-shaped
and compact for all t ∈ [t0, T ] (X (t) ∈ StRn).

Let ρ(l|C) be the support function of a convex com-
pact set C ∈ convRn, i.e.,

ρ(l|C) = max{l′c : c ∈ C}, l ∈ Rn .

We will denote the Minkowski function of a set M ∈
StRn by

hM (z) = inf{t > 0 : z ∈ tM, z ∈ Rn}.

We need the following notation

M∗X = {z ∈ Rn : z = Mx, M ∈ M, x ∈ X},

where M ∈ convRn×n, X ∈ convRn.
Then the evolution equation known as the integral

funnel equation [Kurzhanski and Filippova, 1993;
Kurzhanski and Valyi, 1997] that describes the dynam-
ics of star-shaped trajectory tubes is given in the fol-
lowing theorem.

Theorem 2. [Filippova and Lisin, 2000] The trajec-
tory tube X (t) of the bilinear differential system (9)
with constraints (2), (5) is the unique solution to the
evolution equation

lim
σ→+0

σ−1h
(
X (t+ σ), (I + σA) ∗ X (t)

)
= 0, (11)

with initial condition X (t0) = X0, t ∈ [t0, T ].

From Theorem 2 we have

X (t0 + σ) ⊆ (I + σA) ∗ X0 + o(σ)B(0, 1),

where σ−1o(σ) → 0 for σ → +0. Taking into ac-
count (5), we note that

(I + σA) ∗ X0 =

= (I + σ(A0 +A1)) ∗ X0 + σA2 ∗ X0,
(12)

where sets A1 and A2 are defined in (6) and (7) respec-
tively.
Consider the auxiliary bilinear system

ẋ = A(t)x, t ∈ [t0, T ],

x0 ∈ X0 = E(a0, Q0), A(t) ∈ A0 +A1.
(13)

The external ellipsoidal estimate of set
(I + σ(A0 +A1)) ∗ X0 may be found by apply-
ing the following theorem.

Theorem 3. [Chernousko, 1996] Let a∗(t) and Q∗(t)
be the solutions of the following system of nonlinear
differential equations

ȧ∗ = A0a∗, a+1 (t0) = a0, (14)

Q̇∗ = A0Q∗ +Q∗A0′ + qQ∗ + q−1G, (15)

Q∗(t0) = Q0, t0 ≤ t ≤ T,

q =
(
n−1 Tr ((Q∗)−1G)

)1/2
,

G = diag
{
(n− v)

[ n∑
i=1

cji|a∗i |

+
(

max
σ={σij}

n∑
p,q=1

Q∗
pqcjpcjqσjpσjq

)1/2]2}
.

Here the maximum is taken over all σij = ±1, i, j =
1, . . . , n, such that cij ̸= 0 and v is a number of
such indices i for which we have: cij = 0 for all
j = 1, . . . , n. Then the following external estimate for
the reachable set X (t) of the system (13) is true

X (t) ⊆ E(a∗(t), Q∗(t)), t0 ≤ t ≤ T. (16)
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Figure 1. Trajectory tube X (t) and its ellipsoidal estimating tube
E(a∗(t), Q∗(t)) for the bilinear system with uncertain initial
states.

Corollary 1. Under conditions of the Theorem 3 the
following inclusion holds

(I + σ(A0 +A1)) ∗ X0

⊆E(a∗(t0 + σ), Q∗(t0 + σ))+o(σ)B(0, 1),
(17)

where σ−1o(σ) → 0 for σ → +0.

The following example illustrates the Theorem 3.

Example 1. Consider the following bilinear system

{
ẋ1 = x2,
ẋ2 = c(t)x1,

0 ≤ t ≤ 0.8,

where x0 ∈ X0 = B(0, 1), the uncertain but
bounded measurable function c(t) satisfies the inequal-
ity |c(t)| ≤ 1 (0 ≤ t ≤ 0.8).
The trajectory tube X (t) and its external ellipsoidal

estimating tube E(a∗(t), Q∗(t)) calculated by the The-
orem 3 are given in the Figure 1.

The following theorem is hold.

Theorem 4. [Filippova and Lisin, 2000] For every z ∈
Rn such that zi ̸= 0 (i = 1, . . . , n) the following for-
mula is true

hA2∗X0
(z) = min

{
max
l ̸=0

1

ρ(l|X0)

n∑
i=1

lizia
−1
i :

a ∈ A0, ai ̸= 0, i = 1, . . . , n
}
.

Remark 1. [Filippova and Lisin, 2000] Let the set A2

is defined in (7) and X0 = E(0, Q0), then the following
formula is true

hA2∗E(0,Q0)(z) = ∥Q− 1
2

0 z∥l1 .

The external ellipsoidal estimate of set σA2 ∗ X0 may
be found by applying the following theorem.

Theorem 5. [Matviychuk, 2016] For X0 = E(a0, Q0)
and all σ > 0 the following external estimate is true

σA2 ∗ X0 ⊆ E(a0, Q̃(σ)) + o(σ)B(0, 1), (18)

where σ−1o(σ) → 0 for σ → +0,

Q̃(σ) = diag{(p−1 + 1)σ2(a0i )
2 + (p+ 1)r2(σ)},

a0 = {a0i }, r(σ) = σmax
z

∥z∥
(
∥Q− 1

2
0 z∥l1

)−1
.

Here p is the unique positive root of the equation∑n
i=1 1/p+ αi = n/p(p+ 1), where αi ≥ 0 (i =

1, ..., n) being the roots of the following equation∏n
i=1

(
σ2(a0i )

2 − αr2(σ)
)
= 0.

Then an external ellipsoidal estimate of the trajectory
tube X (t) of the system (9) may be found by applying
the following new result.

Theorem 6. [Matviychuk, 2017b] For the trajectory
tube X (t) of the system (9) and for all σ > 0 the fol-
lowing inclusion holds

X (t0 + σ)⊆E(a+(σ), Q+(σ))+o(σ)B(0, 1), (19)

where σ−1o(σ) → 0 for σ → +0,

a+(σ) = a∗(t0 + σ),

Q+(σ) = (p−1 + 1)Q̃(σ) + (p+ 1)Q∗(t0 + σ).

Here a∗(t0+σ), Q∗(t0+σ), Q̃(σ) are defined in The-
orem 3 and Theorem 5 and p is the unique positive root
of the equation

∑n
i=1 1/p+ αi = n/p(p+ 1), where

αi ≥ 0 (i = 1, ..., n) being the roots of the following
equation |Q̃(σ)− αQ∗(t0 + σ)| = 0.

The following algorithm is based on Theorem 6 and
may be used to produce the external ellipsoidal esti-
mates for the reachable sets of the system (9).
Algorithm 1. The time segment [t0, T ] is subdivided

into subsegments [ti, ti+1] where ti = t0 + iσ (i =
1, . . . ,m), σ = (T − t0)/m, tm = T .
• For the given X0 = E(a0, Q0) we find the external

estimate E(a+(σ), Q+(σ)) by Theorem 6 such that

X (t1) = X (t0 + σ) ⊆ E(a+(σ), Q+(σ)).

• Consider the system on the next subsegment [t1, t2]
with E(a+(σ), Q+(σ)) as the initial ellipsoid at in-
stant t1.
• The next step repeats the previous iteration begin-

ning with new initial data.
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Figure 2. Trajectory tube X (t) and its ellipsoidal estimating tube
E(a+(t), Q+(t)) for the bilinear control system with uncertain
initial states.

At the end of the process we will get the external es-
timate of the tube X (·) of the system (9) with accuracy
tending to zero when m → ∞.
The following example illustrates the Algorithm 1.
Example 2. Consider the following system

{
ẋ1 = a1x1 + x2,
ẋ2 = a2x2 + c(t)x1,

0 ≤ t ≤ 0.18,

where x0 ∈ X0 = B(0, 1), c(t) is an unknown but
bounded measurable function with |c(t)| ≤ 1, the un-
certain bounded matrix function A2(t) ∈ A2 where

A2 =
{
A2(t) : A2(t) = diag{a1, a2},

a21 + a22 ≤ 1, t ∈ [0, 0.18]
}
.

The trajectory tube X (t) and its external ellipsoidal es-
timate E(a+(t), Q+(t)) calculated by Algorithm 1 are
given in the Figure 2.

5 Main Result
Consider the bilinear impulsive control system (1)

with restrictions (2)–(5)

dx =
(
A(t)x(t) + u(t)

)
dt+B(t)dv(t),

x(t0 − 0) = x0 ∈ X0 = E(a0, Q0), t ∈ [t0, T ],

A(t) ∈ A, u ∈ U = E(â, Q̂), v ∈ V.

Let us introduce a new time variable [Rishel, 1965]
η = η(t) and a new state coordinate τ = τ(η)

η(t) = t+

t∫
t0

dv(s), τ(η) = inf{t : η(t) ≥ η}.

Consider the following differential inclusion

d

dη

(
z
τ

)
∈ H(τ, z), (20)

z(t0) = z0 ∈ X0 = E(a0, Q0),

τ(t0) = t0, t0 ≤ η ≤ T + µ,

H(τ, z) =
∪

0≤ν≤1

{
(1− ν)

(
A(τ)z + E(â, Q̂)

1

)

+ ν

(
B(τ)
0

)}
.

Denote by w = {z, τ} the extended state vector
of the differential inclusion (20) and by W (η) =
W (η; t0,X0×{t0},A) (t0 ≤ η ≤ T+µ) the reachable
set of the system (20).

Theorem 7. For any σ > 0 following inclusion holds

W (t0 + σ) ⊆ W (t0, σ) + o(σ)Bn+1(0, 1), (21)

lim
σ→+0

σ−1o(σ) = 0,

W (t0, σ) =
∪

0≤ν≤1

W (t0, σ, ν),

W (t0, σ, ν)=

(
E
(
a+(t0, σ, ν), Q

+(t0, σ, ν)
)

t0 + σ(1− ν)

)
,

a+(t0, σ, ν)=ã∗(σ, ν) + σ(1− ν)â+ σνB(t0),

Q+(t0, σ, ν)=(p−1 + 1)σ2(1− ν)2Q̄(σ)

+(p+ 1)Q̃∗(σ, ν),

Q̄(σ) = (q−1 + 1)Q̂+ (q + 1)Q̃(σ),

where Q̃(σ) is defined in the Theorem 5 and functions
ã∗(σ, ν), Q̃∗(σ, ν) are calculated as a∗(t), Q∗(t) in
the Theorem 3 but when we replace matrix A0 in (14),
(15) by Ã0 = (1 − ν)A0. Here p = p(σ, ν) is the
unique positive root of the equation

∑n
i=1 1/p+ λi =

n/p(p+ 1), λi = λi(σ, ν) ≥ 0 being the roots of the
equation |σ2(1−ν)2Q̄(σ) − λQ̃∗(σ, ν)| = 0, and q =
q(σ, ν) is the unique positive root of the equation

n∑
i=1

1/q + αi = n/q(q + 1),

where αi = αi(σ, ν) ≥ 0 satisfy the equation |Q̄(σ)−
αQ̃(σ)| = 0.

Proof. The proof of this theorem uses the procedure
of external ellipsoidal estimating a sum of two ellip-
soids [Chernousko, 1994; Kurzhanski and Valyi, 1997].
Applying the scheme from [Filippova and Matviychuk,
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2011; Filippova and Matviychuk, 2015] and using re-
sults of the Theorem 6 we can find the upper estimates-
for reachable sets W (t0 + σ) of the differential inclu-
sion (20). �
Remark 2. To find the estimate of the reachable set
W (t0 + σ) we introduce a small parameter ε > 0 and
embed the degenerate ellipsoid W (t0, σ, ν) in the non-
degenerate ellipsoid E

(
wε(t0, σ, ν), Oε(t0, σ, ν)

)
:

W (t0, σ, ν) ⊆ E
(
wε(t0, σ, ν), Oε(t0, σ, ν)

)
,

wε(t0, σ, ν) =

(
a+(t0, σ, ν)
t0 + σ(1− ν)

)
,

Oε(t0, σ, ν) =

(
Q+(t0, σ, ν) 0

0 ε2

)
.

Thus, for all small ε > 0 we get

W (t0 + σ) ⊆ W (t0, σ) ⊆ Wε(t0, σ),

Wε(t0, σ) =
∪

0≤ν≤1

E
(
wε(t0, σ, ν), Oε(t0, σ, ν)

)
,

where lim
ε→+0

h(W (t0, σ),Wε(t0, σ)) = 0.

The passage to the family of nondegenerate ellipsoids
enables one to use the algorithms of [Vzdornova and
Filippova, 2006] and construct an external estimate of
the union of the ellipsoids

Wε(t0, σ) ⊂ Eε(w
+(σ), O+(σ)).

The following lemma explains the reason of construc-
tion of the auxiliary differential inclusion (20).

Lemma 1. [Filippova and Matviychuk, 2011] The set
X (T ) = X (T, t0,X0) is the projection of W (T + µ)
at the subspace of variables z X (T ) = πzW (T + µ).

The next iterative algorithm is based on Theorem 7
and allows to find the external ellipsoidal estimates of
the reachable sets of the studied bilinear impulsive con-
trol system (1)–(5).
Algorithm 2. The time segment [t0, T + µ] is sub-

divided into subsegments [ti, ti+1] where ti = t0 + iσ
(i = 1, . . . ,m), σ = (T+µ−t0)/m, tm = T+µ. Sub-
divide the segment [0, 1] into subsegments [νj , νj+1]
where νj = jh∗, h∗ = 1/k, ν0 = 0, νk = 1
(j = 1, . . . , k).

1. For the given X0 = E(a0, Q0) define sets
W (t0, σ, νj), j = 0, . . . , k by Theorem 7.

2. Fix the small parameter ε > 0 and for
sets W (σ, νj) (j = 0, . . . , k) find ellipsoids
E(wε(t0, σ, νj), Oε(t0, σ, νj)) by Remark 2.

3. Find ellipsoid Eε(w1(σ), O1(σ)) in Rn+1 such
that

Wε(t0, σ) =
m∪
j=1

E
(
wε(t0, σ, νj), Oε(t0, σ, νj)

)
⊆ Eε(w1(σ), O1(σ)).

At this step we find the ellipsoidal estimate for the
union of a finite family of ellipsoids [Filippova and
Matviychuk, 2011; Matviychuk, 2012].

4. Find the projection of Eε(w1(σ), O1(σ)) at the
subspace of variables z by Lemma 1: E(a1, Q1) =
πzEε(w1(σ), O1(σ)).

5. Consider the system on the next subseg-
ment [t1, t2] with E(a1, Q1) as the initial
ellipsoid at instant t1.

6. The next step repeats the previous iteration begin-
ning with new initial data.

At the end of the process we will get the external es-
timate E(a+(T ), Q+(T )) of the reachable set X (T )
of the impulsive control system (1)–(5) with uncertain
matrix of the system and uncertain initial state basing
on the special structure of the data A, U and X0.

6 Conclusion
The problem of state estimation of the reachable sets

for uncertain impulsive control systems for which we
assume that the initial state is unknown but bounded
with given constraints and the matrix in the linear part
of state velocities is also unknown but bounded was
considered in this paper.
The modified state estimation method which uses the

special constraints on the controls and uncertainty and
allows to construct the external ellipsoidal estimates of
reachable sets is presented here. This method is based
on results of ellipsoidal calculus developed earlier for
some classes of uncertain systems.
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17, pp. 22–188.

Kurzhanski, A.B. and Valyi, I. (1997). Ellipsoidal
Calculus for Estimation and Control. Birkhäuser,
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