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Abstract
The dynamic response of parametrically excited mi-

crobeam arrays is governed by nonlinear effects which di-
rectly influence their performance. To date, documented
theoretical research consists of nonlinear lumped-mass
models. While a lumped-mass approach is useful for a
qualitative understanding of the system response it does
not resolve the spatio-temporal interaction of the individ-
ual elements in the array. Thus, we employ a consistent
nonlinear continuum model to investigate the nonlinear
dynamic behavior of an array ofN nonlinearly coupled
microbeams near the array’s pull-in point. The region near
the pull-in point is shown to be governed by several inter-
nal 3:1 and combination resonances. The nonlinear equa-
tions of motion for a two beam system are solved using the
asymptotic multiple-scales method for the weakly nonlin-
ear system. The analytically obtained periodic response of
two coupled microbeams is verified numerically and com-
plemented by a numerical analysis of a three beam array
which exhibits quasiperiodic response and lengthy chaotic
transients.
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1 Introduction
Arrays of micro- and nano-resonators (Ilicet al., 2005;

Zalatdinovet al., 2006; Despontet al., 2004) consist of
a multitude of coupled elements in configurations where
their collective behavior enables a striking enhancement
that is not attainable with individual element performance.
Applications of increasing interest are high density data
storage devices, (Vettigeret al., 1999), and fast map-
ping of surfaces via atomic force microscopy (Minneet
al., 1999). The dynamic response of such arrays is gov-
erned by nonlinear effects (Buks and Roukes, 2002; Lif-
shitz and Cross, 2003; Bromberget al., 2006; Craig-
head, 2000; Dicket al., 2007) which directly influence
their performance.

BUKS and ROUKES (Buks and Roukes, 2002) employed
optical diffraction to study the mechanical properties of
an electrically tunable array of suspended doubly-clamped
beams which were parametrically excited at primary res-
onance. The experiments depicted complex multivalued
periodic response for a bias DC voltage range from 0 to
20 V and an extremely small periodic AC input of 50 mV.
Motivated by their work, LIFSHITZ and CROSS(Lifshitz

and Cross, 2003) proposed a set of coupled lumped-mass
DUFFING-type equations of motion for an array excited
at its principle parametric resonance and were able to
qualitatively explain some of the documented experimen-
tal phenomena. Their analytical steady state asymptotic
analysis revealed coexisting stable and unstable periodic
solutions for a large bias DC-voltage and a very small AC-
voltage excitation. The qualitative agreement between LC
and BR includes several abrupt drops in the large size
array response as the frequency was swept upwards and
downwards.
Recently, GUTSCHMIDT and GOTTLIEB (Gutschmidt

and Gottlieb, 2007a) investigated a continuum initial
boundary value problem of a doubly-clamped microbeam
array excited for zero DC bias and periodic AC-voltage.
For a zero DC bias the natural frequencies of the array
were identical and thus, the system was excited at its 1:1
internal resonance. A GALERKIN ansatz was employed
to deduce the coupled partial differential equations to a
set of ordinary differential equations which was governed
by a 1:1 and a 1:1:1 internal resonances for a two and
three element array, respectively. Analytical and numeri-
cal analyses revealed multiple coexisting stable and unsta-
ble, periodic and aperiodic solutions.
In this paper, we extend our previous analysis of the mi-

crobeam array of 1:1 internal resonance (with zero DC
bias) to that of a 3:1 internal resonance near the array pull-
in point which is implemented for large DC- and small
AC-voltage excitation. The manuscript is organized as
follows: In Section 2 we formulate the initial boundary
value problem (IBVP) for the array withN = n beams
which includes both localized nonlinear electrodynamic
actuation and dissipation. In the same section the IBVP is



reduced to a modal dynamical system via a GALERKIN

approach which then is investigated analytically in the
equilibrium (Section 3) and asymptotically (Section 4) via
multiple-scales for an array of two elements in the vicin-
ity of the system principle parametric resonance. The
two element analysis is validated numerically and com-
plemented (Section 5) by analysis of a three element array.
We summerize with closing remarks in the Section 6.

2 Model
We consider an array ofN clamped-clamped silicon

beams (see Fig. 1). All microbeams (lengthL, widthB,
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Figure 1. Definition sketch of the micromechanical array; actuation

and dissipative forces applied at mid span of each beam

heightH , respectively) are assumed to have identical ma-
terial properties. The equations of motion for a single
clamped-clamped nonlinear beam can be found in litera-
ture, (Nayfeh, 2000). We assume a linear stress-strain law
and that plane sections remain plane. Unlike in BUKS’
and ROUKE’s experiment, our model considers the elec-
trodynamic interactions as concentrated loads at mid span
of each microbeam, which is proportional to the inverse
second power of the relative displacement, (Wang, 1998).
Similarly, we introduce electrodynamical dissipation at
mid span of each resonator. Note, that the localized par-
allel plate model employed here is accurate for all odd
modes of the array elements. The nondimensional field
equations for an array ofN beams are

wnττ
= Qn(wn, τ) −Rn(wn) − Sn(wn, wnτ

) , (1)

where we have rescaled the beam displacement (wn(s, τ))
and time scale by the length of the beamL and the stan-
dard elastic frequencyω2

s = EI/(̺AL4), respectively.
The forcingQn is composed of the electrodynamic ac-
tuationQE

n , which is proportional to the quadratic ra-
tio between the input voltage and the relative grating
of the array (Senturia, 2001; Wang, 1998) and the non-
linear electrodynamic damping forceQD

n . The nonlin-
ear electrodynamic damping force is deduced from a
quadratic RAYLEIGH dissipation function (Meirovitch,
1970; Gutschmidt and Gottlieb, 2007b), which is moti-
vated by experimental measurements (Buks and Roukes,
2002), that reported on a sharp increase in damping
with an increase in input voltage. The restoring force
Rn(wn) is that of a standard EULER-BERNOULLI beam
with immovable boundary conditions that includes the ef-
fect of residual stresses and nonlinear membrane stiff-

ness (Nayfeh, 2000). We consider here both, linear vis-
cous and a KELVIN -VOIGT visco-elastic damping model
(Shabana, 1991; Gottlieb and Champneys, 2005). The de-
tailed derivation of the dimensional set of equations of
motion are presented in GUTSCHMIDT and GOTTLIEB

(Gutschmidt and Gottlieb, 2007b). The elastic restoring
forceRn, the structural damping forceSn, the general-
ized dissipation forceQD

n and the electrodynamic excita-
tionQE

n for each beam are

Rn(wn)=wnssss
+wnss



κ1−κ3

1
∫

0

w2
ns

ds



, (2)

Sn(wn, wnτ
)=µ̂1wnτ

+ µ̂2wnssssτ
, (3)

QD
n (wn, wnτ

)=

[

(wn+1 − wn)2(w(n+1)τ
− wnτ

)

(γ + wn+1 − wn)2
(4)

− (wn − wn−1)
2(wnτ

− w(n−1)τ
)

(γ + wn − wn−1)2

]

· µ̂3 δ

(

s− 1

2

)

,

QE
n (wn, τ)=Γ2 δ

(

s− 1

2

)

(5)

·
[

1

(γ + wn+1 − wn)2
− 1

(γ + wn − wn−1)2

]

,

respectively. The nondimensional parameters in (2)-(5)
areΓ2 = Γ̂V 2, Γ̂ = 6ε0L/(EH

3), µ̂1 = D1/(̺Aωs),
µ̂2 = D2/(̺AωsL

4), µ̂3 = D3/(̺AωsL
2), κ1 =

N0L
2/EI, κ3 = 6 (L/H)

2, γ = g/L, Ω̂ = ΩAC/ωs,
whereas the voltage isV = VDC + VAC cosΩACt.
ε0, E, I, ρ, A, g, N0, Dj for j = [1..3], Vk for
k = [DC,AC] andΩAC are the dimensional quantities:
electric constant (vacuum permittivity), YOUNG’s modu-
lus, moment of inertia, density, cross sectional area, ar-
ray grating (gap between resonators), pretensional force,
damping coefficients, DC- and AC-voltage and excita-
tion frequency, respectively. The nondimensional bound-
ary conditions arewn(0, τ) = 0, w′

n(0, τ) = 0 and
wn(1, τ) = 0, w′

n(1, τ) = 0 while the first and last beam
of the array are prevented from undergoing any motions,
i.e.w0,N+1(s, τ) = 0.
The dynamic response can be approximated in terms

of a linear combination of a finite number of orthonor-
mal spatial basis functions (referred to separation of vari-
ables) with time dependent amplitudes. The deflections
of each microbeam are expressed as a sum of spatial
mode shapes with time dependent amplitudes, of which
the mode shapes satisfy the b.c. exactly. Due to main-
tained symmetry of the parallel plate model a first-mode
discretization,wn = qn(τ)Φ(s), captures the nonlinear
behavior sufficiently. A comparative study (not included
in this paper) between a first-mode and including higher-
modes discretization reveals relative differences between
the two of less than one percent and thus, justifies the first-
mode approach within the purposes of this paper. We
substitute the first-mode discretization into (1)-(5), and
employ GALERKIN ’s method by multiplication ofΦ and
integration over the length of the beam (from 0 to 1).
We rescale the resulting ordinary differential equations



by xn = Φ̄qn/γ andt∗ = ζ1τ (whereζ1 = 4.732 and
Φ̄ = Φ(1

2 )) to yield the final modal dynamical system:

ẍn + αxn + βx3
n + µ3

[

(xn+1 − xn)2(ẋn+1 − ẋn)

(1 + xn+1 − xn)2

− (xn − xn−1)
2(ẋn − ẋn−1)

(1 + xn − xn−1)2

]

+ µ12ẋn

= (ηDC + ηAC cosΩt∗)2 (6)

·
[

1

(1 + xn+1 − xn)2
− 1

(1 + xn − xn−1)2

]

,

whereas the parameters are defined asα = 1 −
(κ1|J2|)/(J1ζ

2
1 ), β = (κ3γ

2)/(ζ2
1 Φ̄2) · |J3|/J1, µ12 =

µ̂1/ζ1 + µ̂2/ζ1 · J4/J1, µ3 = (µ̂3Φ̄
2)/(J1ζ1), ηk =

√

Γ̂∗Vk, Γ̂∗ = (Γ̂Φ̄2)/(γ3J1ζ
2
1 ), andΩ = Ω̂/ζ1. The

integral coefficientsJm for m = [1..4] areJ1 =
1
∫

0

Φ2ds,

J2 =
1
∫

0

ΦΦssds, J3 =
1
∫

0

ΦΦss

[

1
∫

0

(Φs)
2 ds

]

ds, J4 =

1
∫

0

ΦΦssssds = ζ2
1J1. Derivatives in (6) are with respect

to t∗ and the gap parameter (γ) appears in the cubic stiff-
ness parameter (β) and in both, the bias (ηDC ) and the
excitation parameter (ηAC). We note the dynamical sys-
tem in (6) readily reduces to the coupled DUFFING like
system proposed by LIFSHITZ and CROSS (Lifshitz and
Cross, 2003). However, in their lumped mass approach,
the distinct relationship between the cubic and linear stiff-
ness is arbitrary whereas the IBVP derivation here reveals
that they are not independent parameters but a direct out-
come of the linear material properties and microbeam di-
mensions.

3 Equilibrium Analysis
The equilibrium fixed point equations forn beams de-

duced from (6) are

η2
DC

α
= xn

(

1 +
β

α
x2

n

)

(7)

·
[

(1 + xn+1 − xn)2 (1 + xn − xn−1)
2

(1 + xn − xn−1)2 − (1 + xn+1 − xn)2

]

.

Note, that the equilibrium equations admit multiple so-
lutions including a trivial configuration. It can readily
be shown that the trivial solution is asymptotically sta-
ble below the pull-in threshold. In order to compute
natural frequencies of the microbeam array, (7) is ex-
pended in a TAYLOR series. The natural frequencies are
obtained from the eigenvalue problem of the coefficient
matrix of the linear displacement equations (Gutschmidt
and Gottlieb, 2007b). The natural frequencies for the

two beam system areω1 =
[

α− 3/2η̂2
DC

]1/2
andω2 =

[

α− 1/2η̂2
DC

]1/2
and for the three beam systemω1 =

[

α−
(

1 +
√

2/2
)

η̂2
DC

]1/2
, ω2 =

[

α− η̂2
DC

]1/2
, and

ω3 =
[

α−
(

1 −
√

2/2
)

η̂2
DC

]1/2
, in which hats denote

one half of the parameter. The pull-in instability occurs
where the first natural frequencyω1 for every array con-
figuration is equal to zero. For the two element system the
beams get pulled in at a DC-voltage parameter ofηPI =
√

2α/3. The natural frequencies, integers and combina-
tions of the same forN = 2 are depicted in Fig. 2 as
a function of the normalized DC-voltageη = η̂DC/ηPI .
They denote the regions of internal and parametric res-
onances. For the DC-voltage parameter being near zero

η2

f(ωi)
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Figure 2. Combination frequenciesf(ωi) for the two beam system;

shaded regions I and III: regions of 1:1 and 3:1 internal resonance, region

II: parametric resonance;η = η̂DC/ηPI (DC-voltage parameter scaled

with respect to the pull-in voltage)

the system’s response falls into the 1:1 internal resonance
region (region I in Fig. 2). For increasing values of the
DC-voltage parameter, the natural frequencies reveal a re-
gion of 3:1 internal and several combination resonances
(region III in Fig. 2). The borders between regions I & II
and II & III are set arbitrarily here in order to illustrate an
existence of such regions. A proper definition can be given
by defining a small parameter epsilon and its correspond-
ing DC-domain, within which the relative differences of
frequencies are equal or smaller than epsilon. In general,
the ratios ofωn/ω1 ≈ 3 occur very close to the pull-in
point. Ratios with the reference frequency different from
the fundamental frequency such asωn for n > 1 occur
beyond the pull-in point.

4 Asymptotic Analysis for the two beam system
We employ the method of multiple scales (Nayfeh and

Mook, 1979) to the two microbeam array given in (6),
where a three term solution for both beams is assumed

asxn =
3
∑

j=1

ǫjxnj(T0, T1, T2, ...) +O(ǫ4) and its respec-

tive derivatives. For the DC-parameterη̂DC◦
=

√

8/13α
(VDC◦

= 51.07 V, γ = 0.0148) the ratio of the natural fre-
quenciesω2/ω1 ≈ 3. The AC-voltage parameter is scaled
as η̂AC = ǫ2η̄AC . The DC-voltage parameter is scaled
in the same manner̂ηDC = ηDC◦

+ ǫ2η̄DC , whereas the
pull-in voltage for the array ofN = 2 is ηPI =

√

2α/3
(VPI = 53.15 V, γ = 0.0148). The linear damping coef-



ficient µ12 is scaled asµ12 = ǫ2µ̄12. Substitution of the
solution form, including the scaling of the voltage para-
meters and the linear damping coefficient, and collecting
the terms of different orders inǫ results in

O(ǫ1) : D2
0xn1 + bn1x11 + b2nx21 = 0, (8)

O(ǫ2) : D2
0xn2 + bn1x12 + b2nx22 = fn2, (9)

O(ǫ3) : D2
0xn3 + bn1x13 + b2nx23 = fn3 (10)

for n = [1, 2], wherebij =
5

13
α for i = j andbij =

4

13
α

for i 6= j, (i, j = [1, 2]) andfn2 andfn3 are given in Ap-
pendix A. The two natural frequencies determined from
(8) areω1 =

√

α/13 and ω2 = 3
√

α/13. The de-
tuning, for which the second fundamental eigenfrequency
is approximately three times the first eigenfrequency, is
ǫ2σ1 = ω2 − 3ω1. The homogeneous solution to (8) is

xn1=(−1)n+1A1 exp (iω1T0)+A2 exp (iω2T0)+cc. ,
(11)

whereAj = Aj(T1, T2) for j = [1, 2] andcc. denote con-
jugate complex terms. Substitution of (11) into (9) leads
to

D2
0xn2+bn1x12+b2nx22=(−1)n2iω1D1A1 exp (iω1T0)

−2iω2D1A2 exp (iω2T0) +NSTn + cc. , (12)

whereNSTn represent non-secular terms. Elimination
of secular terms yieldsD1Aj = 0. Thus,Aj(T1, T2) are
independent of the time scaleT1. The non-secular terms
NSTn consist of quadratic and sum and difference fre-
quency terms. Thus, an ansatz for the solutions ofxn2

is

xn2 = (−1)nC1 exp (2iω1T0)+C2 exp (i(ω1+ω2)T0)

−C3 exp (i(ω1−ω2)T0)−(−1)nC4 exp (2iω2T0)

−(−1)nC5 + cc., (13)

whereCj = Cj(T2) for j = [1..5] areC1 = 6A2
1, C2 =

12/7A1A2, C3 = 12/5Ā1A2, C4 = 6/35A2
2, andC5 =

48|A1|2 − 16|A2|2. The solutions ofO(ǫ) andO(ǫ2) are
then substituted into the equations of orderO(ǫ3) (10).
We focus our analysis on the case whereΩ is close

to twice the first natural frequencyω1. Thus, we de-
fine a detuning for the forcing frequencyǫ2σ2 = Ω −
2ω1. In order to determine the solvability conditions of
(10), we seek a particular solution of the formxj3 =
Pj(T2) exp (iωjT0) + Qj(T2) exp (iωjT0) + cc. for j =
[1, 2]. The complex evolution equations are deduced as a
solution ofPj andQj, respectively, by substitutions of the
particular solution into (10) and equating the coefficients
of exp(iωjT0) on both sides. We employ the polar ansatz
and separate imaginary and real terms which yields the

slowly varying dynamical system

a′1=−9

2
ζ3a

3
1−ζ3a1a

2
2−(ζ12−3δAC1 sinψ1) a1, (14)

a1ψ
′

1=δ310a
3
1 + δ312a1a

2
2

+ (σ2 + 12δDC1 + 6δAC1 cosψ1) a1, (15)

a′2=−1

2
ζ3a

3
2 − ζ3a

2
1a2 − ζ12a2, (16)

a2ψ
′

2=δ301a
3
2 + δ321a

2
1a2 − 2δDC2a2, (17)

where the parameters are given in Appendix B. We note
that the equations decouple for zero cubic damping. Thus,
the steady state solutions are either the trivial solution
(a1 = a2 = 0) or a nontrivial solution fora1 obtained
from (14) and (15) wherea2 = 0

36δ2AC1 =

[

2ζ12+9ζ3a
2
1

]2

+
[

δ310a
2
1 + 12δDC1 + σ2

]2
.

(18)
Equation (18) is a biquadratic equation ina1 presenting
the amplitude-frequency relationship for the out-of-phase
vibration mode.
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Figure 3. Frequency response curves for the two beam system at 3:1

internal resonance,̂ηAC = 0.0013, µ̂3 = 1.2, a) η̂DC = 1.3363, Q =

500, b) η̂DC = 1.3352, Q = 5000; triangles: numerical verifications

of periodic out-of-phase response

Fig. 3 depicts the frequency response characteristics for
the parameterŝηAC = 0.0013 (VAC = 0.05 V) and
µ̂3 = 1.2 and two varying sets of DC-voltage parame-
ter and quality factor, a)̂ηDC = 1.3363 (VDC = 51.1
V), Q = 500, b) η̂DC = 1.3352 (VDC = 51.0571 V),
Q = 5000. The frequency response bifurcation structure
includes four regions. Regions I and IV depict a single
stable trivial solution. In region II, three solutions coexist,
a stable trivial, an unstable nontrivial (lower branch) and



a stable (upper branch) solution. Region III portrays two
coexisting solutions, an unstable trivial and a stable non-
trivial solution. The overall frequency response behav-
ior is softening as the contribution of the electrodynamic
terms are larger than the hardening beam stiffness term.
The change of the system’s response from hardening to
softening occurs for a two element array at a DC-voltage
parameter of̂ηDC = 0.9617 (VDC = 36.76 V). We note
that without nonlinear damping the response curves are
unbounded. Fig. 4 portrays the phase plane of the two

ẋn

xn
0.020−0.02

−0.01

0

0.01

Figure 4. Phase diagram of the two beam system with POINCARÉ

pointsXn at 3:1 internal resonance andΩ = 1.935ω1, η̂DC = 1.3352,

η̂AC = 0.0013, Q = 5000, µ̂3 = 1.2; solid line: x1, dashed line:x2

beam system atΩ = 1.935ω1 (Q = 5000). This typical
response shows a bias and the two resonators vibrate out-
of-phase. We note that the response has two POINCARÉ

points, typical for the principle parametric excitation. As-
ymptotic results of the two beam system are verified by
numerical integration of (6) for several frequencies, which
are denoted by triangles in Fig. 3. Numerical and asymp-
totical results are in qualitative agreement. We notice that
the increase toQ = 5000 (Fig. 3b) requires analysis of
higher order scales in order to obtain periodic solutions
for Ω < 1.6ω1.

5 Numerical Analysis of the Three Beam System
A 3:1 internal resonance for the three beam system oc-

curs for two frequency ratios,ω2/ω1 ≈ 3 andω3/ω1 ≈ 3.
The ω2/ω1 ≈ 3 internal resonance occurs for̂ηDC =
1.2705 (VDC = 48.582 V) and theω3/ω1 ≈ 3 inter-
nal resonance for̂ηDC = 1.2403 (VDC = 47.4287 V).
The beams get pulled in for the DC-voltage parameter
η̂DC = 1.3030 (VDC = 49.8239 V). We focus our numer-
ical investigations on the specific parameter combination
where the excitation near the principle parametric reso-
nanceΩ = 2ω1 is close to theω3 ≈ 3ω1 internal reso-
nance and the combination resonance ofω3 ≈ ω2 + ω1.
This is obtained by selectinĝηDC = 1.2396 that yields
ω1 = 0.5245, ω2 = 1.1669, and ω3 = 1.5647 and
thus2ω3/(3ω1) ≈ 1.99 and2(ω1 + ω2)/(3ω1) ≈ 2.15.
Fig. 5 shows the frequency response of the three beam
system near theω3/ω1 internal resonance forQ = 500
andQ = 5000 andη̂DC = 1.2396 (VDC = 47.4 V). The
beams vibrate periodically out-of-phase and with similar
amplitudes. The amplitude of the middle beam is slightly
larger than the amplitudes of the two outer beams, which

|x2|

Ω/ω1
2 2.05

2ω3

3ω1

1.75
0

0.07

Figure 5. Frequency response characteristic of the middle beam for

the three beam system at 3:1 internal resonance (ω3/ω1 ≈ 3); η̂DC =

1.2396, η̂AC = 0.0013, µ̂3 = 0.06, triangles: Q = 500, squares:

Q = 5000; hollow markers: periodic response, solid markers: aperiodic

response

vibrate precisely in-phase and with the same amplitude. A
typical phase plot of this out-of-phase mode for the mid-
dle beam is shown in Fig. 6a. A phase plane forQ = 500

xn

ẋn

0.0250−0.025
−0.025

0

0.025
b)

xn

ẋn

0.0040−0.004
−0.002

0

0.002
a)

Figure 6. Phase diagrams with POINCARÉ points of the three beam

system at 3:1 internal resonance (ω3/ω1 ≈ 3) at a)Ω = 2.01ω1 and b)

Ω = 1.991ω1 andQ = 500 (see Fig. 5)

at the shaded region (Ω = 1.991ω1) of Fig. 5 portrays in
Fig. 6b two additional loops which reveal a more dense
frequency spectrum than that of Fig. 6a. However, the
number of POINCARÉ points remains two. Fig. 7 shows
the POINCARÉ maps of the middle beam for a)Q = 3000
and b)Q = 5000 at Ω = 1.991ω1 (shaded region in
Fig. 5). Fig. 7a portrays a complex quasiperiodic response
whereas Fig. 7b depicts lengthy chaotic transients. We
note that the short time behavior in Fig. 7 is similar to that
depicted in Fig. 7b. Thus, we conjecture that the bifur-
cation governing the appearance of aperiodic response is
associated with the loss of stability of the dominant out-
of-phase vibration mode of two adjacent elements in the
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−0.04
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Ẋ2

0.040−0.04
−0.04
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Figure 7. POINCARÉ maps of the middle beam of the three beam

system at 3:1 internal resonance (ω3/ω1 ≈ 3) at Ω = 1.991ω1 (see

Fig. 5); a) Q=3000 b) Q=5000

array. This behavior will be investigated further in the fu-
ture.

6 Closing Remarks
In this paper we have investigated a consistently derived

nonlinear multi-element dynamical system (Gutschmidt
and Gottlieb, 2007a; Gutschmidt and Gottlieb, 2007b) for
a microbeam array subject to electrodynamic parametric
excitation. The implementation of a large DC-voltage
reveals existence of 3:1 internal and combination reso-
nances near the array’s pull-in point. The asymptotic
multiple-scales analysis for a two element system near the
3:1 internal resonance reveals stable and unstable periodic
out-of-phase solutions, of which the overall frequency re-
sponse is softening. The numerical analysis of the three
beam system in its 3:1 internal resonance reveals out-of-
phase coexisting, periodic and aperiodic solutions. The
degree of complexity is governed by the transition from
the internal resonance ofω2 ≈ 3ω1 to that ofω3 ≈ 3ω1

and a possible combination resonance ofω3 ≈ ω1 + ω2.
Future research will focus on the analysis of the system
response in the region between the two 3:1 internal res-
onances which may include additional combination reso-
nances.
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Appendix A
Forcing terms ofO(ǫ2) andO(ǫ3) equations (9) and (10):

fn2 = −2D0D1xn1 − 2xl1(D
2
0xn1 + αxn1)

+
η2

DC◦

2

(

(−1)n+1x11x21 − (−1)n+1 1

2
x2

l1

)

fn3 = −D2
1xn1 − 2D0D2xn1 − 2D0D1xn2 − βx3

n1

−µ̄12D0xn1 + (−1)n2xl1

(

2D0D1x11 +D2
0xn2

+αxn2

)

+

(

− x2
l1 + 2x2

n1 − 2x11x21 + (−1)n2xl2

)

·(D2
0xn1 + αxn1) − (−1)nµ̂3

(

−x2
21(D0x11−D0x21)

+2x11x21(D0x11−D0x21) + x2
n1(2D0xn1−D0xl1)

)

+ηDC◦

(

η̄DC + η̄AC cosΩt

)

·
(

2xn1 − xl1

)

+(−1)n η
2
DC◦

2

(

x21xll − x11x22 − x12x21

)

with l = −1n+1 + n.

Appendix B
Parameters of slowly varying dynamical system:

δAC1 =
1

4

ηDC◦
η̄AC

ω1
, δ310 =

438

13

α

ω1
− 3

4

β

ω1
,

δDC1 =
1

4

ηDC◦
η̄DC

ω1
, δ312 = −4618

455

α

ω1
− 3

2

β

ω1
,

δDC2 =
1

4

ηDC◦
η̄DC

ω2
, δ321 =

183

35

α

ω2
+

3

4

β

ω2
,

δ301 = −971

455

α

ω2
+

3

8

β

ω2
,

ζ12 =
1

2
µ̄12 , ψ1 = σ2T2 − 2θ1 ,

ζ3 =
1

8
µ̂3 , ψ2 = θ2 − 3θ1


