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Abstract
Agile large-scale information satellites (for communi-

cation, geodesy, radio- and opto-electronic observation
of the Earth et al.) have some principle problems with
respect to a precise attitude determination. In the paper
these problems are considered and obtained results are
presented. The original multiple discrete algorithms for
filtering, integration and calibration of a strapped-down
inertial navigation system (SINS) with astronomical
correction for precise determining a spacecraft (SC) at-
titude are presented. This system consists of an inertial
block (IB) based on the gyro sensors of the SC angular
position quasi-coordinates and an astronomical system
(AS) based on the star trackers with wide field-of-view
that are fixed to the SC body. Some results of computer
simulation are presented.
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1 Introduction
The programmed guidance of the agile large-scale in-

formation SC is presented by a consequence of time
intervals for a target application – in the general case,
the routes (RTs) with the module of an angular rate
vector ω up to 0.5 deg/sec and the intervals of spa-
tial rotational maneuvers (RMs) with variable direction
of the vector ω, which module may be as large as 5
deg/sec, Fig. 1. Some authors’ results on the in-flight
SC equipment’s alignment calibration, the SC attitude
gyromoment guidance and control were presented on
the PhysCon09, Catania (Somov et al., 2009; Somov
and Butyrin, 2009).
The problems of the SINS algorithmic software are

connected with integration of kinematic equations in
using the information on the quasi-coordinate incre-
ment vector iω obtained by the IB over the main dis-
crete period To, filtration of noises, identification and

Figure 1. The scanning pattern of given targets

compensation of errors on a mutual angular position of
the IB and the AS reference frames, variation of the
measure scale coefficients, and the IB bias with respect
to the vector ω. As kinematic parameters many authors
applied the quaternion Λ = (λ0,λ), the vector of Eu-
ler’s parameters L = {l0, l}, the orientation matrix C,
the Euler vector φ = θ e, the vector of terminal rota-
tion θ = 2 tg(θ/2) e etc. Moreover, for the SC low
angular motions with little variation of the angle θ and
practically fixed direction of the Euler axis unit e dur-
ing the discrete period To, the integration of the kine-
matic relations for the Euler vector φ(t) with obtaining
the values Λk ≡ Λ(tk) was usually carried out by the
following scheme:

φk+1 = θk+1ek+1 ≡ iωk+1 =
tk+1∫
tk

ω(τ)dτ ;

iωk+1 ≡ Int(tk, To,ω(t)); tk+1 = tk + To;

φk ≡ φ(tk)⇒ Ck ⇒ Λk, k ∈ N0 ≡ [0, 1, 2, ...).

The solutions of other problems indicated, which are
very topical ones for practical realization of the SINS,



Figure 2. The bases I⊕, Ee and Eh
e

Figure 3. The bases S , F and V

were considered in Branetz and Shmyglevsky (1992);
Gusinsky et al. (1997); Pittelkau (2001) , for example.
Here the problems on the identification of the IB and
the AS reference frames’ ”alignments” (errors on their
mutual angular position) and variation of the measure
scale coefficients by the vector ω(t) into the IB refer-
ence frame at forming the vectors iωk+1 are the most
complicated ones. This is due to a multiplicative char-
acter of the interconnected parametric disturbances in-
dicated.
Standard SINS scheme is applied to determine the at-

titude for spacecraft of this type: the IB is a principle
measuring unit, and the AC signals are applied for its
situational calibration and alignment. Here use is made
of the measured information at the intermediate points
with a period Tq multiple of the main sampling period
To, and integration of the kinematic equation for the
modified Rodrigues parameters vector (hereafter, sim-
ply, the Rodrigues vector) is carried out with applying
multiple discrete filtering and polynomial approxima-
tion. The quaternion Λ = (λ0,λ) is an one-one related
to the Rodrigues vector σ = tg(θ/4) e by the explicit
analytic relations

σ =
λ

1 + λ0
; λ0 =

1− σ2

1 + σ2
; λ =

2σ

1 + σ2
.

To the well-known direct and backward quaternion
kinematic equations there correspond the direct and
backward equations for the Rodrigues vector

σ̇ = 1
4{I3(1− σ2) + 2[σ×] + 2σσt}ω;

ω = 4
(1+σ2)2 {I3(1− σ2)− 2[σ×] + 2σσt}σ̇.

Figure 4. Scheme of the AS base

Figure 5. Scheme of the IB base

2 The Problem Statement
By analogy with Somov and Butyrin (2009) the bases

formed from units and reference frames are introduced:
the inertial reference frame (IRF) O⊕XI

eYI
eZI

e and the
base I⊕ = {i1, i2, i3} of the present time; geodesic
Greenwich reference frame (GRF) Ee (O⊕XeYeZe)
which is rotated with respect to the IRF by angular rate
vector ω⊕ ≡ ωe = ω⊕i3, Fig. 2; the geodesic horizon
reference frame (HRF) Eh

e (C Xh
cYh

cZh
c ) with origin in

a point C and ellipsoidal geodesic coordinates – lon-
gitude Lc, latitude Bc and altitude Hc : axis C Xh

c is
the local vertical, axes C Yh

c and C Zh
c lie in the lo-

cal horizon plane and directed to local East (E) and
local North (N), respectively, Fig. 2; the body refer-
ence frame (BRF) B = {b1,b2,b3} (Oxyz) with ori-
gin in the SC mass center O; the optical telescope (an-
tenna, sensor) reference frame (SRF) S = {s1, s2, s3}
(S xsyszs) with origin in point S – the center of opti-
cal projection, Fig. 3; the image field reference frame
(FRF) F (Oix

iyizi) with origin in center Oi of the
telescope focal plane yiOiz

i; the visual (sighting) ref-
erence frame (VRF) V (Ovx

vyvzv) with origin in cen-
ter Ov of the OEC array, see Fig. 3; the AS virtual base
A = {a1,a2,a3} that is calculated by processing an
accessible measuring information from the star trackers
(Fig. 4), and also the IB virtual base G = {g1,g2,g3}



which is computed by processing the measuring infor-
mation from the integrating gyro sensors (Fig. 5).
For simplicity we will propose that the bases B and

S are coincident. It is assumed that during a mode of
astronomical checking axes concordance (Somov and
Butyrin, 2009), we solved the problem on defining a
fixed mutual angular position of the bases S and A,
when the measuring information obtained both from a
telescope (antenna) and star trackers is applied. Let the
measured values of a vector igωms+1, s ∈ N0, be ob-
tained from the IB with a period Tq << To, and from
the AS – the measured values of quaternion Λa

mk with
a period To:

ωgm(t) = (1−m)S∆(ω(t)− bg);
igωmk+1 = Int(ts, Tq,ω

g
m(t)) + δns+1;

Λa
mk = Λk ◦Λn

k .
(1)

Here the vector ωgm(t) presents the measured angular
rate vector ωg(t) at the base G taking into account the
unknown small and slow variations of the IB bias vec-
tor bg on angular rate; to the orthogonal matrix S∆ of
an error on mutual angular position of the IB and the
AC reference frames there corresponds the quaternion
Λ∆(C(ϕ∆/2), e∆S(ϕ∆/2)) with the unknown Euler
unit e∆ and angle ϕ∆, and the scalar m presents an
unknown error of the IB scale coefficient. The vector
∆ = {∆x,∆y,∆z} components of the IB and AC ref-
erence frames ”alignments” are computed by the for-
mula ∆i = 2ϕ∆e∆, i = x, y, z. The discrete noises
δns+1 and Λn

k of the IB and AS output signals were
taken into account in relations (1).
The problem is to develop the algorithms for estimat-

ing the coordinated values Λ̂l and ω̂gl , l ∈ N0, with an
arbitrary period Tp = tl+1 − tl, multiple of Tq , more-
over Tq < Tp ≤ To, and also the algorithms for the
SINS calibration and alignment at the SC agile rota-
tional maneuvers.

3 An Approach to the Problem Solution
To integrate the kinematic equations with a small

computing drift, an idea is being developed to use the
measured information in the intermediate points with a
period Tq that is multiple of the main sampling period
To. Here the algorithms of discrete filtering and poly-
nomial approximation are applied over the period Tp
inside of the period To. Consequently, by the IB dis-
crete signals one can obtain the SC angular rate vector
as a continuous time function. The integration is per-
formed according to the precise differential equation
for the Rodrigues vector σ = tg(θ/4) e. As a result of
the integration procedure, the quaternion value is ob-
tained at the right-hand end of the next integration step
with a period To.
The problem of the SINS in-flight recurrent calibra-

tion is solved owing to the astronomical correction of
the IB signals with the period To. Moreover, the IB

”distort” vector ∆ = {∆x,∆y,∆z} and the scale co-
efficient m with obtaining ∆̂k and m̂k estimations are
identified by comparing the SC angular rate vector’s
values which are restored in off-line mode by the IB
signals and the AS signals. The identification of the
vector value bg with obtaining an estimation b̂g is en-
sured by Luenberger linear stationary observer.

4 Filtering the IB noise
The polynomial smoothing Savitsky - Goley discrete

filter is applied for suppressing the IB discrete noise
δns+1 in (1). This filter is a modification of the least
squares method. Here approximation is carried out
with a small ”sliding” window for a consequence of the
discrete IB measurements presented in the Rodrigues
vectors form. Such a filtering method does not lead to
a phase displacement for an output signal with respect
to an input signal.

5 Extrapolation of the angular rate vector
After carrying out the filtering mentioned, we obtain

the values of four vectors iω1 , i
ω
2 , i

ω
3 , i

ω
4 over the time

intervals with a period To. On each such an inter-
val the estimation ω̂(t) of the vector ω(t) is presented
by a vector third degree polynomial. This polynomial
is smoothly ”pasted together” with the corresponding
polynomials on the next intervals. The sets of coeffi-
cients for such polynomials are defined by the explicit
relations in Somov (2009).

6 Estimation of the SC attitude
The estimation ω̂(t) obtained in the form of a con-

tinuous time function permits the SC attitude be esti-
mated. With this purpose, we use the direct differen-
tial equation for the Rodrigues vector σ = tg(θ/4) e.
This equation is numerically integrated by well-known
ODE45 method with a fixed step. The computing drift
of such a scheme was studied in Somov (2009), for the
period Tq = 0.015625 s (frequency 64 Hz) it was ob-
tained that the position computing drift of this proce-
dure is no more than 0.00025 arc sec along any motion
axis in a period of 720 sec, e.g. it is very small. As
a result, we have the coordinated estimations Λ̂l and
ω̂gl , l ∈ N0 with the period Tp.

7 The SINS calibration
For the IB situational calibration with respect to the

bias bg a discrete Luenberger observer is applied with
the period To. Such a calibration is fulfilled during
the time intervals, where the module of the SC angu-
lar rate vector does not exceed 0.5 deg/s and the AS
measurements are perfectly precise. At time moments
tk+1 the Rodrigues vector σgk+1 is recalculated to the
quaternion Λg

k+1, the position error vector δk+1 =

2 vect(Λa
mk+1 ◦ Λ̃

g

k+1) is formed and the estimation
b̂gk+1 = b̂gk + go

2δk+1 is calculated for the IB bias



Figure 6. The SC angular rates at consequence of the RMs

Figure 7. Estimations for components of the IB bias vector

Figure 8. Errors of estimating the angular rate vector

Figure 9. Errors of estimating the angular position vector



vector on the next (k + 1) time semi-interval t ∈
[tk+1, tk+1 + To). Here go

2 is a constant scalar coef-
ficient of the Luenberger observer. At the SC fast RMs
with the angular rate module from 0.5 deg/s up to 5
deg/s in the time intervals with the duration of up to
120 s, the astronomical correction is switched off and
estimation of the SC attitude is fulfilled by using a fore-
cast of the IB drift variation. Such a forecast is formed
based on the analysis of the drift trend at some preced-
ing time intervals when the SINS is operated with the
mentioned correction.

8 The SINS alignment
The problem of aligning the SINS and determining an

estimation m̂ of the IB scale coefficient error is also
solved by the situational approach, but off-line. Here
the values of the SC angular rate vector, which are re-
stored autonomously and simultaneously according to
the signals of the IB and the AS, are compared. More-
over, a set of quaternions Λa

mk measured by the AS is
recomputed into a set of the Rodrigues vector values
σak. These values are filtered by the Savitsky - Goley
method and are numerically differentiated by a small
”sliding” window with obtaining the estimations ω̂ak by
the reverse equation for the Rodrigues vector. Further
the modules and the units of the vectors ω̂ak and ω̂gk sets
are computed. Statistical processing of the modules ra-
tio gives the estimation m̂ of the scale coefficient error,
and application of the QUEST algorithm (Somov and
Butyrin, 2009) for vector units permits an estimation of
a quaternion error Λ̂

∆
between the bases A and G to

be obtained.

9 Some results of numerical simulation
Figure 6 presents a consequence of 3 routes and the

components of the SC angular rate vector into the base
B at fulfilling these routes

M1: t ∈ [0, 60) s; M2: t ∈ [80, 120) s
and M3: t ∈ [180, 240] s

with different survey types and 2 rotational maneuvers

RM1: t ∈ [60, 80) s; RM2: t ∈ [120, 180) s

between them. For the periods To = 0.25 s (frequency
4 Hz), Tq = 0.03125 s (frequency 32 Hz) and the QMD
of the AS measuring errors 0.33 arc sec, the given IB
bias vector bg = {1,−0.8, 0.3} arc sec/sec is restored
at 60 sec and then it is followed with the QMD ≈ 1%,
see Fig. 7. The errors of estimating the SC angular rate
and attitude are presented in Figs. 8 and 9. For these
data the estimation of the ”alignment” vector with ac-
curacy ≈ 3 arc sec and the estimation with an accuracy
of 0.025%, were obtained.

10 Conclusion
The original multiple discrete algorithms for filtering,

integration and calibration of a strapdown inertial navi-
gation system with astronomical correction for precise

determining a large-scale spacecraft’ attitude were pre-
sented. Some presented numeric results prove an effi-
ciency of the new method suggested.
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