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A controlled version of the celebrated Fermi-Pasta-Ulam problem is studied. The speed-gradient
control algorithm is analyzed by computer simulation. Approximation of the system Hamiltonian
prespecified value is proposed as the control goal. It is demonstrated that the control goal is achieved
in the controlled system. It is shown that the controlled system tends to approximate equipartition
state much faster than it happens in the open loop (classical) system. Such a phenomenon is
observed under control with sufficiently small intensity: less than 0.5% of the total system energy.

FIG. 1. Schematic picture of the FPU model: masses that
can move only in one dimension are coupled by nonlinear
springs. un is the relative displacement with respect to the
equilibrium position of the nth mass. The two ends of the
chain were assumed to be fixed, i.e., u0 = uN = 0

I. INTRODUCTION

The celebrated Fermi-Pasta-Ulam problem bears the
name of the three scientists who were looking for a theo-
retical physics problem suitable for an investigation using
one of the very first computers, the Maniac. They de-
cided to study the thermalization process of a solid. The
Fermi-Pasta-Ulam (FPU) problem was first introduced
in a Los Alamos report in May 1955 [5]. It marked the
beginning of both a new field, nonlinear physics (this
problem is of central importance in the theories of soli-
tons and chaos), and the age of computer simulations of
scientific problems.

The original idea proposed by Enrico Fermi was to
simulate the one-dimensional analogue of atoms in a crys-
tal: a long chain of particles linked by springs that obey
Hooke’s law (a linear interaction), but with a weak non-
linear correction (quadratic for the FPU-α model or cubic
for the FPU-β model), see Figure 1.

The authors were interested in a studying a possibil-
ity of approaching the statistical equilibrium by simula-
tion. However they got some unexpected and counter
intuitive observations that triggered development of the
whole new area of physics surveyed in many papers, see
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e.g. [2, 9]. After more than 50 years there still no unified
understanding of the phenomenon. More or less common
opinion is that there exist two time scales corresponding
to different behavior of the system [1, 4].

In a relatively short time, the system reaches a state
different from the initial one several modes, in addition
to the initially excited ones, enter the game but still very
far from energy equipartition. This is the problematic
state observed at low energy in the original FPU paper.

Such a state, however, is only apparently stationary, in
fact it is not: similarly to a metastable state of statistical
mechanics, on a much longer time scale it does evolve
towards statistical equilibrium.

In the spirit of general cybernetical physics approach
[7] in our research the following two problems were posed.

1. How significantly the system behavior can be altered
by a small controlling action influencing the right hand
sides of the system model?

2. Can a control action speed up or slow down the
transient process of the approaching to the statistical
equilibrium?

The present paper is a continuation of [8]. It con-
tains further examination results providing some evi-
dences that both questions have positive answer. The
key point for evaluation of an appropriate control action
( design of the control algorithm) providing the desired
change in the system behavior is use of the so called
speed-gradient (SG) method [7] allowing one to find a
concise formula for the control of the nonlinear system
energy. The SG-method will be exposed briefly in the
next Section.

Section 3 is devoted to description of the FPU sys-
tem (FPU-α model) in both uncontrolled and controlled
versions. Simulation results for controlled system are
presented in Section 4. The last section contains some
conclusions.
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II. PRELIMINARIES

A. Speed-gradient method

Consider the continuous nonstationary system ẋ =
F (x, u, t). A number of feedback design methods are
based on reduction of the current value of some goal (ob-
jective) function Q

(
x(t), t

)
. The current value Q

(
x(t), t

)
may reflect the distance between the current state x(t)
and the current point of the goal trajectory x∗(t), such

as Q(x, t) =
∣∣x − x∗(t)

∣∣2, or the distance between the
current state and the goal surface h(x) = 0, such as
Q(x) =

∣∣h(x)|2, or the value of some characteristic of
the system dynamics that is desirable to diminish. For
continuous-time systems the value Q(x) does not depend
directly on control u and decreasing the value of the speed
Q̇(x) = ∂Q/∂xF (x, u) can be posed as immediate con-
trol goal instead of decreasing Q(x). This is the basic
idea of the speed-gradient (SG) method, proposed by [6],
where a change in the control u occurs along the gradient
in u of the speed Q̇(x). The general SG algorithm has
the form

u = −Ψ
(
∇uQ̇(x, u)

)
(1)

where Ψ(z) is vector-function forming acute angle with
its argument z. For affine controlled systems ẋ = f(x) +
g(x)u algorithm (1) is simplified to:

u = −Ψ
(
g(x)T∇Q(x)

)
(2)

Special cases of (1) are the proportional SG-algorithm

u = −Γ∇uQ̇(x, u), (3)

where Γ is a positive-definite matrix, and the relay SG-
algorithm

u = −Γ sign
(
∇uQ̇(x, u)

)
. (4)

B. Speed-gradient control of energy

One of the most important quantities in physics is en-
ergy, which is not only the main invariant of a system
and the key to a description of a system on the basis
of the Hamiltonian formalism but also a measure of in-
teraction between different systems. The equations of
dynamics in the Hamiltonian form are used to describe
quite different physical systems and phenomena, from ce-
lestial bodies to molecular ensembles. Hence, it is only
natural to begin the study of the fundamental laws of
transformation of the properties of systems via control
with the energy transformation laws. In this section, it
is assumed that the investigated system is conservative,
i.e., we ignore losses and dissipation. Then, in free mo-
tion (i.e., in the absence of external forces), the system
energy is an invariant. Hence, the statement of the prob-
lem of transfer- ring the system from one energy level to

another by weak (ideally, arbitrarily weak) control makes
sense. For brevity, we limit ourselves to examination of
the control problems in which the mathematical model
of the system is given in the Hamiltonian form,

q̇i =
∂H(q, p, u)

∂pi
, ṗi = −∂H(q, p, u)

∂qi
,

i = 1, . . . , n,

(5)

where n – is the number of the degrees of freedom;
q = col(q1, . . . , qn), p = col(p1, . . . , pn) – are vectors of
generalized coordinates and generalized momenta, which
form the state vector of the system, x = col(q, p); H =
H(q, p, u) – is the Hamiltonian of the controlled system;
and u(t) ∈ Rm – is the dimensionless input (the vector
of external generalized forces). In the vector form, model
(5) an be written as

q̇ = ∇pH(q, p, u), ṗ = −∇qH(q, p, u). (6)

We examine the problem of approaching a given energy
level H∗ of a free (uncontrolled) system, i.e., specify the
control goal as

lim
t→∞

H0(q(t), p(t)) = H∗, (7)

where H0(q, p) = H(q, p, 0) is the Hamiltonian of the free
system described by Eqn. (5) with u = 0. we assume
that the Hamiltonian is linear in control, H(q, p, u) =
H0(q, p) +H1(q, p)Tu, where H0(q, p) is the Hamiltonian
of the free system and H1(q, p) is m-dimensional vector
whose components are the so-called interaction Hamilto-
nians.

To solve the problem, the SG-method (see Section II A,
[7]) is used. We introduce the goal function

Q(x) =
1

2
(H0(q, p)−H∗)2 , (8)

with x = col(q, p). The control goal in (7) then becomes

lim
t→∞

Q(x(t)) = 0. (9)

To apply the SG method, we calculate the speed (rate)
of variation of the goal function caused by the control of
the system,

Q̇ = (H0 −H∗)
(
∂H0

∂q
q̇ +

∂H0

∂p
ṗ

)
=

= (H0 −H∗){H0, H1}u,
(10)

and then calculate the speed gradient in u: ∇uQ̇ = (H−
H∗){H0, H1}T , where {H0, H1} is the Poisson bracket [?
] of the Hamiltonians H0, H1. We can write the SG-
algorithm in the finite form, e.g., in the linear and relay
variants:

u = −γ(H0 −H∗){H0, H1}T , (11)

u = −γ sign
(
(H0 −H∗){H0, H1}T

)
, (12)

where γ > 0 is the control gain.
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III. FERMI-PASTA-ULAM SYSTEM

A. FPU equations of motion

Consider the Hamiltonian of FPU-α model:

H =

N∑
i=0

1

2
p2i +

N∑
i=0

1

2
(ui+1 − ui)2 +

N∑
i=0

α

3
(ui+1 − ui)3,

(13)
where ui is the displacement of atom i, along the chain,
with respect to its equilibrium position, and pi is its mo-
mentum. The coefficient α� 1 measures the strength of
the nonlinear contribution to the interaction potential.
The two ends of the chain were assumed to be fixed, i.e.,
u0 = uN+1 = 0.

The FPU equations of motion [3], derived from Hamil-
tonian (13) are as follows

u̇i = pi,
ṗi = (ui+1 + ui−1 − 2ui)+

+ α[(ui+1 − ui)2 − (ui − ui−1)2].

(14)

The common approach in physics is to think in terms of
the normal modes, related to the displacements through

Ak =
√

2/(N + 1)
∑N

i=1 ui sin(ikπ/N + 1) with the fre-

quencies ω2
k = 4 sin2(kπ/2(N+1)). Energy equipartition

means that the time average of Ek up to time T , namely

Ēk(T ) =
1

T

∫ T

0

Ek(P (t), Q(t))dt, (15)

for large T converges (up to minor nonlinear contribu-
tions) to the energy per degree of freedom ε = E/N , E
denoting the total energy.

Let’s rewrite Hamiltonian (13) as

H =
1

2

N∑
k=1

(Ȧ2
k + ω2

kA
2
k)+

+
α

3

N∑
k,l,m=1

cklmAkAmAlωkωmωl,

(16)

where the coefficients cklm are given, for example, in [10].
The last term, generated by the nonlinear contribution
to the potential, leads to a coupling between the modes,
and scales as N3/2.

Fermi, Pasta and Ulam thought that, due to this term,
the energy introduced into a single mode, mode k = 1 in
their simulation, should slowly drift to the other modes,
until the equipartition of energy predicted by statisti-
cal physics is reached. The beginning of the calculation
indeed suggested that this would be the case. Modes
2, 3, ..., were successively excited. However, one day they
let the program run long after the steady state had been
reached. When they realized their oversight and came

back to the room, they noticed that the system, after
remaining in a steady state for a while, had then de-
parted from it. To their great surprise, after 157 periods
of the mode k = 1, almost all the energy (all but 3%) was
back to the lowest frequency mode, as shown in figure ??
where the identical picture obtained in our numerical ex-
periments is shown.

Note that in order to obtain reliable numerical results
a specific numerical integration method is used, the so
called symplectic or geometrical integration. Particularly
the MATLAB package GniCodes was used.

B. Control of FPU system

To apply the control let us consider the Hamiltonian
of the system with control:

Hcontrol =
N∑
i=0

1

2
p2i +

N∑
i=0

1

2
(ui+1 − ui)2

+

N∑
i=0

α

3
(ui+1 − ui)3 + uNω,

(17)

where ω is the control.
The FPU equations of motion, derived from Hamilto-

nian (17) is
u̇i = pi,
ṗi = (ui+1 + ui−1 − 2ui)

+ α[(ui+1 − ui)2 − (ui − ui−1)2] + µiωi,
(18)

where ωi = −γ(H −H∗)pi, γ > 0, i = 1, . . . , N .
To apply the SG-method one needs to choose an appro-

priate goal function. For control of Hamiltonian system
a natural goal function corresponding to the goal equiva-
lent to energy control is as follows: Q(p, u) = 1

2 (H−H∗)2,
where H is Hamiltonian (13) and H∗ is the goal (desired)
value of the energy.

IV. SIMULATION RESULTS

Simulation of the controlled FPU lattice was carried
out with the following parameters: tfin = 8000, H∗ =
3, N = 32. The following cases were studied:

1. ) i = 32 µ32 = 1, i < 32 µi = 0;

2. ) i = 31 µ31 = 1, i 6= 31 µi = 0;

3. ) i = 30 µ30 = 1, i 6= 30 µi = 0.

Consider the case 1) when apply the control algo-
rithm (18) to last mode i = 32. Fig. 3 presents typi-
cal results of simulation in this case. We could see that
the controlled system tends to approximate equipartition
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FIG. 2. FPU recurrence: the plot shows the time evolution of the sum of kinetic and potential energies Ek = 1
2
(Ȧ2

k + ω2
kA

2
k)

of each of the four lowest modes with tfin = 8000, H∗ = 3, γ = 0. Initially, only mode 1(blue) was excited.

TABLE I. Numerical analysis of the transient time.

γ tpp L d tp
0.01 13000 0.3 130 12500
0.012 10000 0.5 120 10417
0.015 7000 0.31 105 8333
0.02 6000 0.22 120 6250
0.05 3000 0.25 150 2500

state with a reasonable accuracy depending on the con-
trol gain γ. For example, if we consider two cases when
γ = 0.05 and γ = 0.01 we could see that with γ = 0.01
the transient time has increased from 2500 to 10000 (see
Fig. 3(a, d)). Table I presents numerical results that are
based on simulations. Here d = γtpp, L is the amplitude
of the steady-state oscillations, tp is the transient time.
Based on this 5 experiments we could calculate the math-
ematical expectation, which equals to 125 and standard
deviation equals to 15.

Fig. 4(a) depicts the transition time for range of γ =
0.01 – 0.5 is presented. The control strength maxu(t)
could be seen on Fig. 4(b) for various γ. For example,
for γ = 0.01 maxu(t) = 0.0060. Under sufficiently small
control a tendency to the energy equipartition (thermal-
ization) of FPU Lattice is observed.

The Fig. 5(a) refers to an uncontrolled α model, with
N = 32, α = 0.25, at rather small value of ε = 10−3, and
shows the averaged energy spectrum, i.e. Ēk(T ) vs. k
(see equation 15), at different times T . The energy was
initially equidistributed among the lower 10% of modes
(the rectangular profile in the figure). Quite soon, al-
ready at T ' 104, a well defined profile is formed, in
which only some low frequency modes effectively take

part to energy sharing, the energies of the remaining ones
decaying exponentially with k. The Fig. 5(b) refers to
controlled model, with control gain γ = 0.5.

Now consider the cases 2) and 3) when we apply the
control algorithm (18) to mode i = 31 and i = 30. Fig. 6
shows typical results of simulation in the case i = 31, and
Fig. 7 — for the case i = 30.

V. CONCLUSION

In the paper a controlled version of the celebrated
Fermi-Pasta-Ulam problem introduced in [8] is further
analyzed. The algorithm for control of the system energy
based on Speed-gradient approach is proposed and ana-
lyzed by computer simulation. It is demonstrated that
the control goal is achieved in the controlled system with
a reasonable accuracy depending on the control gain γ.
It is shown that the controlled system tends to approxi-
mate equipartition state much faster than it happens in
the open loop (classical) system. Such a phenomenon is
observed under control with sufficiently small strength:
less than 0.5% of the total system energy. The transient
time (time till approximate equipartition is achieved) is
of order 104 while for classical FPU-system it has order
about 108–109, see [1].

Based on simulation results it was shown that the ther-
malization occurs faster if the control action is applied to
the last mode and the degree of thermalization decreases
if we control further from the edge.
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FIG. 3. Controlled FPU system evolution (last mode i = 32): the plot shows the time evolution of the sum of kinetic and
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k + ω2
kA

2
k) of each of the four lowest modes with tfin = 8000, H∗ = 3 for different control gains γ.
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(a)The transient time for controlled FPU system γ = 0.01 ... 1. (b)Control strength umax for γ = 0.01 ... 1.

FIG. 4. The transient time and the control strength

(a)α-model; N = 32, ε = 10−3. (b)Controlled α-model; N = 32, ε = 10−3, γ = 0.5.

FIG. 5. The averaged energy spectrum at different times T

(a)γ = 0.05 (b)γ = 0.03 (c)γ = 0.1

FIG. 6. Controlled FPU system evolution (mode i = 31): the plot shows the time evolution of the sum of kinetic and potential

energies Ek = 1
2
(Ȧ2

k + ω2
kA

2
k) of each of the four lowest modes with tfin = 8000, H∗ = 3 for different control gains γ.

(a)γ = 0.05 (b)γ = 0.03 (c)γ = 0.1

FIG. 7. Controlled FPU system evolution (mode i = 30): the plot shows the time evolution of the sum of kinetic and potential

energies Ek = 1
2
(Ȧ2

k + ω2
kA

2
k) of each of the four lowest modes with tfin = 8000, H∗ = 3 for different control gains γ.


