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Abstract
We study synchronization in two delay-coupled

FitzHugh-Nagumo systems with slow-varying delays,
which are the simplest model of neural network. Fur-
ther we generalize FitzHugh-Nagumo model and con-
sider synchronization in the more common case. We
show that external stimulus can be used to control syn-
chronization. We develop one algorithm for synchro-
nization of FitzHugh-Nagumo systems and the other
one to control synchrony in the generalized neural
model, and find the conditions of their applicability.
The first algorithm provides synchronization in the
case, when all parameters are known and measurable,
while the second one is an adaptive controller and is
used in the case with uncertain parameters of the sys-
tem.

Key words
Synchronization, Neural networks, Adaptive control

1 Introduction
The ability to control nonlinear dynamical systems

has brought up a wide interdisciplinary area of research
that has evolved rapidly in the past decades [Schöll and
Schuster, 2008]. This field has various aspects com-
prising stabilization of unstable fixed points (steady
states), control of oscillation in systems with several
degrees of freedom [Plotnikov and Andrievsky, 2013],
or control of network dynamics [Selivanov et al., 2012;
Lehnert et al., 2014]. One of the important areas to
consider is the synchronization in neural networks.
As any other kind of physical, chemical, or biological

oscillators, such neurons could synchronize and exhibit
collective behavior that is not intrinsic to any individual
neuron. For example, partial synchrony in cortical sys-
tems is believed to generate various brain oscillations,
such as the alpha and gamma EEG rhythms. Increased
synchrony may result in pathological types of activity,
such as epilepsy. Coordinated synchrony is needed for

locomotion and swim pattern generation in fish [Izhike-
vich, 2005]. On the one hand, synchronization can
be good, while, on the other hand, it can be harmful.
Therefore, it is important to study synchronization in
neural networks. The control of synchronization has so
far focused on networks of identical nodes with con-
stant parameters [Zhou, Lu and Lu, 2008; Lu and Qin,
2009; Lu et al., 2012; Selivanov et al., 2012; Guzenko,
Lehnert and Schöll, 2013; Lehnert et al., 2014]. How-
ever, in realistic networks the nodes are always charac-
terized by some diversity meaning that the parameters
of the different nodes are not identical and may vary
over the time. These variations and heterogeneities in
the nodes can hinder or prevent synchronization.
In order to grasp the complicated interaction of neu-

rons in large neural networks, those are often lumped
into groups of neural populations each of which can
be represented as en effective excitable element that
is mutually coupled to other elements [Rosenblum
and Pikovsky, 2004; Popovych, Hauptmann and Tass,
2004]. In this sense the simplest model which may re-
veal features of interacting neurons consists of two cou-
pled neural oscillators. Each of this can be represented
by a simplifiled FitzHugh-Nagumo system [FitzHugh,
1961; Nagumo, Arimoto and Yoshizawa, 1962].
We propose the algorithm to control synchronization

in two delay-coupled systems with slowly-varying de-
lays and show that it can be used to counteract the vari-
ations in connections time between the neurons. Fur-
ther we generalize FitzHugh-Nagumo model and con-
sider synchronization in the more common case with
sector bounded nonlinearities and unknown parame-
ters. The adaptive controller, which is based on SG
method [Fradkov, 1979; Fradkov, 2007], allows to es-
timate unknown parameters of the system and provide
the synchronization.
The paper is organized as follows. After this introduc-

tion we describe the system model, define the synchro-
nization problem for two FHN-systems and develop
the control algorithm in Sec. 2. Section 3 describes
the control algorithm for two generalized systems with



uknown parameters. Section 4 shows the results of
the numerical simulation of developed algorithm per-
formance. Finally, we conclude with Sec. 5.

2 Synchronization of two FHN-systems
We consider two delay-coupled FitzHugh-Nagumo

(FHN) systems [FitzHugh, 1961; Nagumo, Arimoto
and Yoshizawa, 1962], which are the simplest model
of neural network. The FHN model is paradigmatic for
excitable dynamics close to a Hopf bifurcation [Lind-
ner et al., 2004], which is not only characteristic for
neurons but also occurs in the context of other systems
ranging from electronic circuits [Heinrich et al., 2010]
to cardiovascular tissues and the climate system [Mur-
ray, 1993; Izhikevich, 2000]. The plant is described as
follows:

εu̇1 = u1 −
u31
3
− v1 + C[u2(t− τ)− u1(t)] + I,

v̇1 = u1 + a,

εu̇2 = u2 −
u32
3
− v2 + C[u1(t− τ)− u2(t)],

v̇2 = u2 + a,
(1)

where ui and vi denote the membrane potential and re-
covery variable of the nodes i = 1, 2 respectively, ε
is a time-scale parameter and typically small, meaning
that ui is a fast variable, while vi changes slowly. τ
is the delay, i.e., the time the signal needs to propagate
between two nodes. Let assume that the delay τ is a dif-
ferentiable function with τ̇ 6 d < 1 (this is tha case of
slowly-varying delays). I is external stimulus and will
be considered as a control. The coupling strength is
given by C. In the uncoupled system (C = 0), a is the
threshold parameter: for a > 1 the system is excitable
while for a < 1 it exhibits self-sustained periodic fir-
ing. This is due to a supercritical Hopf bifurcation at
a = 1 with a locally stable fixed point for a > 1 and a
stable limit cycle for a < 1.
Let state the problem of variable value synchroniza-

tion in two coupled FHN systems. We subtract the third
equation from the first one, and the fourth one from the
second one (1) making the following substitution

δ1 = u1 − u2, δ2 = v1 − v2, (2)

and get

εδ̇1(t) = (1− C − φ(t))δ1(t)
− Cδ1(t− τ(t))− δ2(t) + I(t),

δ2(t) = δ1(t),

(3)

φ = 1/3(u21 + u1u2 + u22), φ(t) > 0 ∀t is nonnegative
function. Then the control goal can be described as
follows

δ1(t)→ 0, δ2(t)→ 0, while t→∞. (4)

We want to find the control I(t) to ensure the control
goal (4). For this purpose let introduce the following
Lyapunov function

V (t,∆(t)) = εδ21 + δ22 + θ0

t∫
t−τ(t)

δ21(s)ds, (5)

where ∆ = (δ1, δ2), while θ0 > 0 is some positive
parameter. Find its derivative according to the system
(1)

V̇ (t,∆(t)) = (2− 2C − 2φ(t) + θ0)δ
2
1(t)

− 2Cδ1(t)δ1(t− τ)
− θ0(1− τ̇)δ21(t− τ) + 2δ1(t)I(t). (6)

Let choose the control I(t) in form

I(t) = −θ1δ1(t) + θ2δ1(t− τ), (7)

where θ1 > 0, θ2 are control parameters. We sub-
stitute the chosen control to the expression (6). We
should choose control parameters such that to make
the Lyapunov function derivative negative for all δ1(t),
δ1(t − τ) except zero, i.e., the following inequality
should be fulfilled

(2− 2C − 2φ(t) + θ0 − 2θ1)δ
2
1(t)− 2(C − θ2)

× δ1(t)δ1(t− τ)− θ0(1− τ̇)δ21(t− τ) < 0, (8)

that can be presented in form

[
δ1(t) δ1(t− τ)

]
W

[
δ1(t)

δ1(t− τ)

]
< 0, (9)

where

W =

[
2(1− C − φ− θ1) + θ0 −C + θ2

−C + θ2 −θ0(1− τ̇)

]
< 0.

(10)
Thus, we should make matrix W be negative-definite

(10) by tuning the control parameters θ0, θ1, θ2. We
use Sylvester’s criterion to determine whether the ma-
trixW is negative-definite. Since θ > 0 and τ̇ 6 d < 1
then the lower principal minor of matrixW is negative.
The matrix W is negative-definite if and only if its de-
terminant is positive. Since φ(t) > 0 and τ̇ 6 d < 1,
then control parameters must satisfy the inequality

(2θ1+2C− θ0− 2)θ0(1− d)− (θ2−C)2 > 0, (11)

that can be rewritten as

−(1−d)θ20+2(θ1+C−1)θ0− (θ2−C)2 > 0. (12)



This inequality is fulfilled for some positive θ0, when
the following quadratic equation for θ0 has real roots

−(1−d)θ20+2(1−d)(θ1+C−1)θ0− (θ2−C)2 = 0,
(13)

and the following inequality is fulfilled by Vieta’s for-
mulas

θ1 + C − 1 > 0. (14)

Thus, the discriminant of the equation (13) must be
positive

4(1−d)2(θ1+C−1)2−4(1−d)(θ2−C)2 > 0, (15)

that, considering inequality (14), can be presented as

θ1 >
|θ2 − C|√

1− d
− C + 1. (16)

Thus, the following theorem takes place

Theorem 1. Let the delay τ be slowly-varying differ-
ential function in the plant (1), i.e., τ̇ 6 d < 1. Then
the control I(t) in form (7), where parameters θ1 > 0
and θ2 satisfy the inequality (16), ensures the control
goal (4), meaning the substitutions (2).

3 Synchronization of two generalized systems
Now consider the case of two neural systems with un-

certain parameters, which is described by the following
equations

εu̇1 = u1 − f1(u1)− v1 + C[u2(t− τ)− u1(t)] + I,

v̇1 = u1 + a,

εu̇2 = u2 − f2(u2)− v2 + C[u1(t− τ)− u2(t)],
v̇2 = u2 + a,

(17)
where f1, f2 are some functions, which satisfy
f1(u1)− f2(u2) = (u1 − u2)g(u1, u2) with nonnega-
tive function g(t) > 0 ∀t. The coupling strength C and
threshold a are uncertain parameters, and the delay τ is
a measurable function.
Now we want to state the synchronization problem

for the system (17). Let choose the substitutions (2)
and the control goal (4). We subtract the third equation
from the first one, and the fourth one from the second
one (17) and get

εδ̇1(t) = (1− C − g(t))δ1(t)
− Cδ1(t− τ(t))− δ2(t) + I(t),

δ2(t) = δ1(t).

(18)

Now let introduce the following Lyapunov function

V (t,∆(t)) = εδ21 + δ22 +
1

γ0
(θ(t)− C)2, (19)

where ∆ = (δ1, δ2), while θ and γ0 > 0 are tunable
parameters which will be defined later. Find its deriva-
tive according to the system (17)

V̇ (t,∆(t)) = 2(1− C − g(t))δ21(t) + 2δ1(t)I(t)

− 2Cδ1(t)δ1(t− τ) +
2

γ0
(θ(t)− C)θ̇(t). (20)

Let choose the control I(t) in form

I(t) = θ(δ1(t) + δ1(t− τ))− γδ1(t), (21)

where γ > 1 is a gain. The tuning of parameter θ can
be performed by SG-algorithm [Fradkov, 2007]

θ̇(t) = −γ0δ1(t)(δ1(t) + δ1(t− τ)). (22)

Let substitute the control I(t) in form (21), (22) to the
Lyapunov function derivative (20), then

V̇ (t,∆(t)) = −2(g(t) + γ − 1)δ21(t), (23)

which is negative for all δ1 except zero.
Thus, the following theorem takes place

Theorem 2. Suppose that in the plant (17) f1, f2
are some functions, which satisfy f1(u1) − f2(u2) =
−(u1−u2)g(u1, u2) with nonnegative function g(t) >
0 ∀t. Then the control I(t) in form (21), (22) with
γ > 1, γ0 > 0 ensures the control goal (4), meaning
the substitutions (2).

4 Simulation
The simulation was carried out in Matlab R2009b.
Firstly, we consider the case of the system (1) behav-

ior without control. The system parameters: a = 0.7,
C = 1, ε = 0.1, τ(t) = 3 + 1/2 cos(t). The initial
conditions: u1(t) = cos(t), u2(t) = − cos(t), v1(t) =
sin(t), v2(t) = − sin(t) for t ∈ [−τ, 0]. The two cou-
pled FHN-systems do not synchronize: Figure 1 shows
in (a) and (b) the time series of the membrane poten-
tials and the recovery variables, respectively, in (c) the
synchronization errors of the membrane potentials, in
(d) the phase portrait.
Now we use the control according to Eq. (7) with
θ1 = 5, θ2 = 1 in order to synchronize the two sys-
tems. Figure 2 shows the results. After a transient
time of approximately 20 units of time the two systems



(a) (b)

(c) (d)
Figure 1. Dynamics of two coupled FitzHugh-Nagumo systems ac-
cording to Eq. (1) without control. Green solid line marks node
one, red line with circles marks node two. (a) and (b): time series
of the membrane potential and the recovery variable, respectively;
(c): time series of synchronization errors of the membrane poten-
tials; and (d): phase space. The system parameters: a = 0.7,
C = 1, ε = 0.1, τ(t) = 3 + 1/2 cos(t). The initial condi-
tions: u1(t) = cos(t), u2(t) = − cos(t), v1(t) = sin(t),
v2(t) = − sin(t) for t ∈ [−τ, 0].

(a) (b)

(c) (d)

(e) (f)
Figure 2. Control of synchronization of two coupled FitzHugh-
Nagumo systems (Eq. (1)) with control algorithm in form (7). (a)
and (b): time series of the membrane potential and the recovery vari-
able, respectively; (c) and (d): time series of synchronization errors
of the membrane potential and the recovery variable, respectively;
(e): phase space; and (f): time series of the external stimulus adapted
according to Eq. (7). θ1 = 5, θ2 = 1. Other parameters and
initial conditions as in Fig 1.

(a) (b)

(c) (d)

(e) (f)
Figure 3. Control of synchronization of two coupled neural systems
(Eq. (24)) with adaptive controller in form (21), (22). (a) and
(b): time series of the membrane potential and the recovery variable,
respectively; (c) and (d): time series of synchronization errors of
the membrane potential and the recovery variable, respectively; (e):
phase space; and (f): time series of the external stimulus adapted
according to Eq. (21), (22). γ = 0, γ0 = 0.1. Other parameters
and initial conditions as in Fig 1.

reach the desired synchronized state (see the time se-
ries of the membrane potential and the recovery vari-
able in Fig. 2(a), (b) and their synchronization errors
in Fig. 2(c), (d).) Thus, the control is successful. Note
that the control I is bounded and tends to zero while
t→∞ (see Fig. 2(f)).
Finally, we consider the following system

εu̇1 = u1 −
u51
5
− v1 + C[u2(t− τ)− u1(t)] + I,

v̇1 = u1 + a,

εu̇2 = u2 −
u52
5
− v2 + C[u1(t− τ)− u2(t)],

v̇2 = u2 + a,
(24)

with the same parameters and initial conditions as in
the previous cases. Suppose that parameters a, C and ε
are uknown. Therefore, we use the adaptive controller
in form (21), (22) with γ = 1, γ0 = 0.1 in order to
synchronize the two systems. Figure 3 shows the re-
sults. After a transient time of approximately 20 units
of time the two systems reach the desired synchronized
state (see the time series of the membrane potential and
the recovery variable in Fig. 3(a), (b) and their synchro-



nization errors in Fig. 3(c), (d).) Thus, the control is
successful. As in the previous case, the control I is
bounded and tends to zero while t→∞ (see Fig. 3(f)).

5 Conclusion
We have proposed two methods for controlling syn-

chrony in two delay-coupled neural systems with time-
varying delays. The first method is used to control of
two FitzHugh-Nagumo systems, a neural model which
is considered to be generic for excitable systems close
to a Hopf bifurcation. It deals with the case, when
all parameters of the system are measurable. We have
posed the synchronization problem and introduced the
Lyapunov function to find control and prove the syn-
chronization problem. Based on this function we have
derived a controller, which makes the synchrony stable
despite the time-varying delay.
Then, we have considered the case of generalized sys-

tem with sector bounded nonlinearities and uncertain
parameters. For the estimation of uncertain parameters
we have used the speed-gradient algorithm. Based on
SG-algorithm we have derived an adaptive controller,
which makes the synchrony stable despite the time-
varying delay and uncertain parameters.
We have found the conditions of applicability of two

proposed methods and have formulated the theorems of
control goal achievement. The simulation has shown
that these methods ensure the control goal. Given the
paradigmatic nature of the FitzHugh-Nagumo system
we expect our method to be extended to the case with
several nodes of the system and be applicable in a wide
range of neural system models.
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