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Abstract
The study of the features of the nonlinear optical in-

teraction of laser radiation with various media is cur-
rently widely studied, including by mathematical mod-
eling methods. In particular, the interaction of the laser
pulse with the medium doped with nanorods leads to
the melting of these nanorods and distortion of the laser
pulse. In addition, the passage of a laser pulse through
a medium with nanoparticles can lead to a change in the
shape of the pulse and a significant distortion of its spec-
trum, as a result of which a number of undesirable effects
may occur.

The corresponding process can be described by the
nonlinear Schrödinger equation. Analytical studies of
the corresponding variants of the equation and numeri-
cal calculations have shown that the propagation of the
resulting soliton subimpulses is characterized by the for-
mation of a so-called nonlinear frequency chirp in the
region of subimpulses.

When considering the graphs of such a process, the
following assumption arose: it is possible to measure the
degree of nonlinearity by calculating the correlation co-
efficient between the frequency distribution in a linear
and nonlinear medium. In the course of calculations us-
ing correlation analysis, we obtained statistical charac-
teristics similar to those that were assumed in advance.
At the same time, the most adequate variant of the pair
correlation coefficient is obtained in the case of applying
the algorithm proposed by us for its calculation.
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1 Introduction and motivation
In this paper, we consider some algorithms for mathe-

matical modelling femtosecond laser radiation propaga-
tion in a medium with gold nanorods, as well as special
statistical studies of the calculations obtained in these
models.

The study of the features of the nonlinear optical in-
teraction of laser radiation with various media is cur-
rently widely studied, including by mathematical model-
ing methods; they are the subject of this paper. The man-
ifestation of nonlinearity is largely due to the intensity
of the incident radiation. The nonlinearity of the inter-
action may also be due to inclusions of metallic (gold or
silver) nanoparticles. Under the action of laser radiation,
as a result of the excitation of surface waves (plasmon
polaritons), metal nanoparticles can be heated to melt-
ing temperatures. As a result of melting, the shape of
nanoparticles changes, which in turn leads to a change
in the conditions and parameters of the interaction of
laser radiation with a nonlinear medium. Optical non-
linear media containing inclusions of metallic nanopar-
ticles are widely used in various applications [Kim et al.,
2008; Driben et al., 2009; Patwari and Bheemaiah, 2020;
Salih et al., 2021; Zhu et al., 2021], among which five-
dimensional optical memory can be highlighted [Zijlstra
et al., 2009; Park et al., 2020]. In addition to the three
physical dimensions, the recording and reading of in-
formation in five-dimensional memory devices also de-
pends on the orientation of the nanoparticles and the ra-
tio of their sides.

When mathematically describing the interaction of
laser radiation with optical media containing metallic
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nanoparticles, in addition to equations regarding the
electric field strength, it is necessary to write additional
equations describing the process of changing the shape
of nanoparticles. In [Trofimov and Lysak, 2016a], a
mathematical model was proposed that allows taking
into account changes in the parameters of nonlinear in-
teraction as a result of changes in the shape of cylindrical
nanoparticles. The model is based on the cubic nonlinear
Schrödinger equation, the parameters of which depend
on the aspect ratio of nanoparticles, and an equation de-
scribing the change in the aspect ratio under the action
of laser radiation of a certain polarization and frequency
as a result of its resonant absorption.

The passage of a laser pulse through a medium with
nanoparticles can lead to a change in the shape of the
pulse and a significant distortion of its spectrum. As a
result, a number of undesirable effects may occur, in-
cluding false reading and writing of information. It is
possible to avoid these undesirable effects by creating
conditions for soliton or self-similar pulse propagation.
These conditions were studied in [Trofimov and Lysak,
2016a; Trofimov and Lysak, 2017; Trofimov and Lysak,
2018], in which, for the cases of one-, two- and multi-
photon resonances, the phenomena of acceleration and
deceleration of laser pulses while maintaining their soli-
ton shape, as well as splitting of the incident pulse into
several subimpulses of a soliton shape, were demon-
strated. Analytical studies and numerical calculations
have shown that the propagation of such soliton subim-
pulses is characterized by the formation of a nonlinear
frequency chirp (nonlinear dependence of instantaneous
frequency on time) in the subimpulse region. When a
pulse propagates in a linear medium, in the absence of
interaction of laser radiation with nanoparticles, the fre-
quency chirp has a linear character. Thus, the degree
of deviation of the nonlinear frequency chirp from the
linear one can serve as an indicator of the nonlinear na-
ture of the interaction of laser radiation with an optical
medium containing metal nanoparticles.

Thus, from the point of view of nonlinear optics, the
subject of the work is as follows. We applied the
algorithm to the problem of femtosecond laser radia-
tion propagation in a medium with golden nanorods.
This problem is very important, for example, for 5-
dimensional memory, see [Zijlstra et al., 2009; Salih et
al., 2021; Zhang et al., 2024] etc. The interaction of
a laser pulse with a medium doped with nanorods re-
sults in the nanorods melting and the laser pulse distor-
tions. Within the framework of a slowly varying enve-
lope, the process of femtosecond laser pulse propagation
in the medium with golden nanorods can be described by
a nonlinear Schrödinger equation supplemented with an
ordinary differential equation for nanorods aspect ratio,
[Driben et al., 2009].

By examining the graphs of the relevant indicators, ex-
actly for the femtosecond laser radiation propagation in
a medium doped with golden nanorods and in a linear
medium, the following assumption arose.

It is possible to measure the degree of nonlin-
earity by calculating a correlation coefficient
between the chirp distribution in a linear and
nonlinear medium.

Then in the rest of the paper, we shall consider the cor-
relation between two corresponding graphs in different
ways, and try to draw conclusions that are important for
the subject area under consideration. At the same time,
we shall focus on various pair correlation algorithms, in-
cluding the new algorithm proposed in this paper.

From the point of view of mathematical statistics, we
can describe motivation as follows. Previously, in other
subject areas, we tested completely different hypotheses,
but we performed such checks in the same way that we
describe in this paper. At the same time, we have always
received good results, and here the word “good” means
here “expected”. We specifically note that the most ad-
equate results were shown by our proposed variant of
calculating the pair correlation; this variant is also de-
scribed in this paper.

The paper has the following structure.
In Section 2, we list the standard ways to calculate

the rank correlation. Then in Section 3, we propose our
own version for such a calculation; it differs significantly
from Spearman’s and Kendall’s versions.

In Section 4, we describe our task in more detail than in
Introduction from the point of view of nonlinear optics;
at the same time, we pose the problem of why the ob-
served and predicted results should be investigated using
correlation analysis.

In Section 5, we give some results of computing ex-
periments for the real data previously given in Section 4.
Certainly, Section 5 is the main section of the paper, de-
spite its small volume.

Section 6 is the conclusion: we formulate some direc-
tion for the future work.

2 On the rank correlation: various approaches
In this section, we list the standard ways to calculate

the rank correlation.
Thus, let us consider some usual statistical charac-

teristics used in the paper, are agreed with [Lagutin,
2012; Wasserman, 2013]. Sometimes, we use “some
more mathematical” notation, for example, we do not
use MXY etc. The two random variables under consid-
eration are denoted by X and Y; their observed imple-
mentations are denoted in the same way with the corre-
sponding subscripts, i.e.,

Xi and Yi for i = 1, 2, . . . , N.

Firstly, let us formulate the usual definition of corre-
lation: recall that the pair correlation coefficient can be
calculated using the usual formulas:

R(X, Y) =
cov(X, Y)
σX · σY

,
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where

cov(X, Y) = MX·Y −MX ·MY .

In our further tables, this variant of the coefficient will
have the number 0.

Secondly, let us formulate some modificated Kendall’s
correlation coefficient. For it, we define the number
of discrepancies (“entropy coefficient”): a discrepancy
holds if for some pair (i, j) where i ̸= j, we have

Xi > Xj but Yi < Yj . (1)

In the next formulae, let us denote the number of such
discrepancies by entr(X, Y), or simple E if the random
variables are implied.

Since the maximum possible number of such discrep-

ancies is N·(N−1)
2

, we shall consider the modificated
Kendall’s correlation coefficient by

1−
4 · E

N · (N− 1)
;

this value is equal to 1 in case of 0 discrepancies, and
is equal to −1 in case of maximum possible number of
discrepancies. In our further tables and program frag-
ments (Fig. 1), this variant of the coefficient will have
the number 2.

Note that we could calculate this coefficient as follows.
We define the “entropy coefficient” considered before
for each pair of pairs by (1), then we calculate the sum
of these coefficients and divide the result by the value
N·(N−1)

2
already used earlier.

However, different publications provide different ver-
sions of criticism of the Kendall criterion, but the authors
of the current paper consider such a flaw to be the most
important: it does not give very adequate results with a
large number of coincidences in the values of the consid-
ered random variables. Therefore we shall also consider
the following “very modificated” Kendall’s correlation
coefficient.

It is most convenient to consider it as a search for pairs
of pairs, like in the last remark. However, unlike (1),
we also use values 0 (not only 1 and −1): the value 0
is selected if and only if the values of at least one of the
random variables in the considered pairs match.

In our further tables and program fragments (Fig. 1),
this variant of the coefficient will have the number 3.

Thirdly, the Spearman’s correlation coefficient is cal-
culated in the usual way, i.e.

n∑
i=1

(xi −MX) · (yi −MY)

√
n · σX · σY

This is an equivalently modified formula from [Lagutin,
2012]. In our further tables, this variant of the coefficient
will have the number 1.

As we already said, in Section 3 our version of calcu-
lating the pair correlation will also be given. We note in
advance that in our further tables and program fragments
(Fig. 2), our variant of the coefficient will have the num-
ber 4.

3 On the rank correlation: our approach
In this section, we propose our own version for such a

calculation; it differs significantly from Spearman’s and
Kendall’s versions.

As input data, we obtain two different sequences of
values for the same sequence of numbers. For these
two sequences, we calculate the pair correlation in all
the methods described above (recall that they were des-
ignated from (0) to (3)), and, in addition, we also use
method (4), which we shall briefly describe further. We
also remind you that in this method, we tried to take into
account both the relative values of the elements in pairs
(like methods (1), (2) and (3)) and their exact values (like
method (0), i.e., in the case of the usual calculating the
correlation coefficient).

Thus, like methods (2) and (3), we consider the set of
pairs of pairs: the first pair is Xi and Xj (for random vari-
able X implementations), and the second one is Yi and Yj
(for Y). Similarly like methods (2) and (3), each value
can be in the range from −1 to 1 (with the usual mean-
ing of these values), and the final correlation value is ob-
tained by averaging all obtained values. Let us also note
that we are averaging the values in all pairs. Thus, when
considering examples, where each sequence of consists
of 3 000 values (such dimensions are often found in our
practical tasks), there are in total ≈ 4 500 000 pairs of
such values for averaging.

For these pairs, we obtain the value shown on the fol-
lowing Fig. 4. In it, values Xi and Xj are on the left side,
and values Yi and Yj are on the right side.

It is important that Xi ⩽ Xj and Yi ⩽ Yj (otherwise,
we change its order, changing also the sign of the an-
swer), and Xj −Xi ⩽ Yj − Yi (otherwise, we change the
names, not changing the sign of the answer). The answer
is

R =
δA · S

δB · (S+ 1)
, where S =

δ2A
2δδ

and δδ = δB − δA ;

two other values are shown on the figure. This mini-
algorithm is also shown in C++ on the following Fig. 2.

Let us consider some examples of our version of pair
correlation for some specific pairs of value pairs. The
captions to the above figures show whether we observe
a strong, medium or small correlation value, including
figures for degenerate cases.

Firstly, consider Fig. 5. Both examples correspond to
the same order of elements in pairs (as well as all further
drawings, otherwise we change the sign of the answer),
but at the same time in one of the sequences, the differ-
ence in the values of the elements is much smaller than in
the other. As expected, the correlation value is positive,
but very small.
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Figure 1. The part of the text of the function for the modificated Kendall’s correlation coefficient

Figure 2. The part of the text of the function for the proposed calculation of the pair correlation

Figure 3. Frequency chirp and pulse shape
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Figure 4. The proposed calculating the pair correlation

Figure 5. Examples of calculating values for the observed “small” correlation

Figure 6. Example of calculating value for the observed “big” correlation

Figure 7. Example of calculating value for the degenerate cases
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Secondly, consider Fig. 6. It corresponds to the case,
when the difference of the same values is much more.
As expected, the correlation value is more than 0.5.

Thirdly, consider two extreme cases, Fig. 7.
At the end of reviewing these examples, we note the

following. In all the examples (excluding the left degen-
erate case, see the left part of Fig. 7), it makes sense to
consider only the methods of calculating the correlation
(4) and (0) (see Section 4); the other methods, i.e. (1), (2)
and (3), are not meaningless, but make some sense only
when considering more than one pairs of values. Thus,
each time, we can use the above formulas to calculate the
usual value of the correlation coefficient R(0) = 0.5. We
consider the values we receive to be closer to the truth.

Let us also remark that we do not have to count it: we
understand from the statistics course that each time this
value turns out to be equal R(0) = 0.5, excluding the left
degenerate case only.

4 The point of view of nonlinear optics
In this section, we describe our task in more detail than

in Introduction from the point of view of nonlinear op-
tics; at the same time, we pose the problem of why the
observed and predicted results should be investigated us-
ing correlation analysis.

As we already said, within the framework of a slowly
varying envelope, the process of femtosecond laser pulse
propagation in the medium with golden nanorods can be
described by a nonlinear Schrödinger equation with re-
spect to a slowly varying amplitude A(t, z) of laser ra-
diation supplemented with an ordinary differential equa-
tion for nanorods aspect ratio ε(t, z), [Kim et al., 2008;
Driben et al., 2009; Zijlstra et al., 2009] etc. The numer-
ical solution of these equations allows one to obtain the
shape of the pulse (i.e., intensity distribution |A(t, z)|2

along the time coordinate t) and the pulse phase s(t, z)

or frequency chirp (instantaneous frequency ∂s(t,z)
∂t

) dis-
tribution along the time coordinate at each section z =
const of the medium. A nonlinear frequency chirp char-
acterizes propagation of laser radiation in a nonlinear
medium (i.e., with golden nanorods). A linear frequency
chirp characterizes a linear medium (without nanorods).
Thus, the degree of chirp nonlinearity characterizes the
degree of interaction of laser radiation with the medium.

As an example, we used the data form papers [Driben
et al., 2009; Park et al., 2020]. Fig. 3 shows

• frequency chirp ∂s(t,z)
∂t

(upper picture)
• and pulse shape |A(t, z)|2 (bottom picture)

for femtosecond laser radiation propagation

• in a medium with golden nanorods (red lines)
• and in a linear medium (green lines).

Nanorods aspect ratio distribution ε(t, z) is shown in
both pictures by black lines and it reveals the two areas
of rapid change which correspond to the laser subpulses
interaction with nanorods. The largest divergence from
the linear chip takes place in these areas of aspect ratio
rapid change.

Simplifying the situation with Fig. 3 somewhat, we can
say that there is a dependence with a detuning of the
green graph on the red one. Therefore, when considering
this figure and such comments, the following assumption
arose. As we already said, it is possible to measure the
degree of nonlinearity by calculating a correlation coef-
ficient between the chirp distribution in a linear and non-
linear medium. Then we shall consider the correlation
between the red and green lines in different ways,

We can say that we have actually obtained statistical
characteristics similar to those assumed before the cal-
culations. At the same time, the most adequate variant
of the pair correlation coefficient is obtained in the case
of the algorithm proposed by us for calculating it.

5 Most important results of computing experiments
In this section, we give some results of computing ex-

periments for the real data previously given in Section
4. As we said before, this section is the main one of the
paper, despite its small volume.

We consider the pairs corresponding to the above
graphs, exactly, the values of the “green” and “red” ordi-
nates corresponding to the abscissas from 180 to 210 of
Fig. 3. We take 2460 values with the corresponding step,
it turns out to be a little more than 0.0122. Of course,
it is impossible to cite all values in the text of the pa-
per 1, we shall only present the results of calculations of
correlation coefficients:

corr-0: 0.975977
corr-1: 0.982536
corr-2: 0.938336
corr-3: 0.938335
corr-4: 0.733482

Let us note, among other things, the almost com-
plete coincidence of the corr-2 and corr-3 variants
(which is natural for real values, but does not clarify the
example under consideration), as well as the expected
much less change of the corr-4 variant after normal-
ization (0.731 instead of 0.733). Anyway, we see this
variant corr-4 as the most appropriate: it reveals the
difference between the two frequency chirp distributions,
thus differentiating the propagation in a linear and non-
linear media with sufficient accuracy.

Indeed, the difference between the laser pulse propa-
gation in linear and nonlinear medium is significant, as
it is well seen in the Fig. 3. It is very important that two
subpulses, i.e., fast and slow ones, occur in the nonlinear
medium, corresponding to the areas of nanorods melt-
ing. The existence of two subspulses is well marked by
the chirp nonlinear distribution and its detuning from the

1The authors can send us the corresponding file if requested by e-
mail. At the same time, almost all the data can be found at the fol-
lowing link: https://owncloud.nano.sfedu.ru/index.
php/s/MmTni2XsDwiYB2z.
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linear chirp distribution in the linear medium. In the fast
subpulse area, the difference between the linear and the
nonlinear media is most pronounced. In this area, the
chirp distribution in the medium with nanorods is non-
monotonic and is up to two times higher than the chirp
in the linear medium. Obviously, the pair correlation be-
tween the chirps, which is equal to unity, cannot reveal
the difference in the chirp distributions. Consequently, it
cannot differentiate adequately the linear and the non-
linear media.

6 Conclusion
Let us formulate some direction for the future work.
Not very complicated, but rather long direction of work

we consider the such one. We have to compare two sub-
variants of our calculation of pairwise correlation given
in the paper. The results differ quite strongly, but we
have given only one of these sub-variants in the paper,
and for the second one we have specified the formula
only, see Section 3 for both the sub-variants.

Even more important for future work, we consider the
exact formulation of a set of requirements to describe the
computed value for only one pair of element pairs like
(1). Anyway, after that we we are going to calculate the
sum of these “simple” coefficients and divide the result
by the value N·(N−1)

2
, also like Section 3. Indeed, the

formulas given in [Lagutin, 2012, p. 346], passed off as
a universal variant of counting of the pair correlation, in
fact, of course, are not universal, because of the follow-
ing. For instance, we want to make a function depending
on two differences, i.e. let cij = Xi − Xj (notation used
by [Lagutin, 2012]); then we cannot make an arbitrary
such function here, but must be guided exclusively by the
proposed formula.

Also note that the connection of the variants of paired
correlation algorithms considered in the article with dis-
crete optimization problems was considered, for exam-
ple, in [Melnikov, 2006].
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