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Abstract
The Shannon entropy of a time series is a standard

measure to assess the complexity of a dynamical pro-
cess and can be used to quantify transitions between
different dynamical regimes. An alternative way of
quantifying complexity is based on state recurrences,
such as those available in recurrence quantification
analysis. Although varying definitions for recurrence-
based entropies have been suggested so far, for some
cases they reveal inconsistent results. Here we suggest
a method based on weighted recurrence plots and show
that the associated Shannon entropy is positively corre-
lated with the largest Lyapunov exponent. We demon-
strate the potential on a prototypical example as well as
on experimental data of a chemical experiment.
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1 Introduction
First conceived to visualize the time-dependent be-

havior of complex dynamical systems, recurrence plots
(RPs) have been shown to be a powerful technique to
uncover statistically many characteristic properties of
such systems [Eckmann et al., 1987; Marwan et al.,
2007]. A crucial issue in the study of time series orig-
inating from complex systems is the detection of dy-
namical transitions, a task that RPs have been accom-
plishing due to a set of RP-based measures of complex-
ity. Examples of their successful application in real-
world systems can be found in neuroscience, earth sci-
ence, astrophysics , and other areas of research [Mar-
wan et al., 2007]. The so-called recurrence quantifica-
tion analysis (RQA) provides measurements based on
the density and the length of diagonal and vertical line
patterns in RPs, which turn out to be an alternative way
to quantify the complexity of physical systems. The
time-dependent behavior of nonlinear time series can

then be uncovered by setting sliding time windows in
order to identify dynamical transitions, such as peri-
odic to chaos transitions [Trulla et al., 1996] and even
chaos-chaos transitions [Marwan et al., 2002]. The
great merit of this approach resides in the fact that the
calculation of Lyapunov exponents is often impracti-
cable when the equations of motion are unknown. In
this way, many measurements based on RQA have been
proposed in order to better quantify the properties of
dynamical systems. For instance, one of the most em-
ployed quantifiers able to detect bifurcation points are
entropy-based measurements, e.g., the normalized en-
tropy of recurrence times [Baptista et al., 2010; Little
et al., 2007] or the Shannon entropy of the distribution
of length of diagonal line segments [Trulla et al., 1996].
However, the entropy of the diagonal line segments is
known to present in some cases a counterintuitive an-
ticorrelation with Lyapunov exponents, leading to high
values for periodic dynamics and low values in chaotic
regimes [Trulla et al., 1996]. In this work we tackle this
problem of the apparent contradiction by proposing an
alternative RP-based entropy of weighted Recurrence
Plots (wRPs). In other words, instead of considering
binary RPs, we allow them to have weights propor-
tional to the euclidean distances between the points in
the phase space [Eroglu et al., 2014].

2 Recurrence Plots and Entropy
Given a trajectory xi (i = 1, ..., N , x ∈ R) embedded

in am-dimensional phase space we define the weighted
RP as [Eroglu et al., 2014]

W̃ij = e−||xi−xj ||, (1)

where || · || is the Euclidean norm. The definition
in Eq. 1 scales the distances to be bounded in be-
tween [0, 1], where W̃ij → 1 for recurrent points and
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Figure 1. Recurrence plot of logistic map for (a) periodic regime and (b) chaotic regime and (c) weighted recurrence plot of logistic map for
chaotic regime.

W̃ij → 0 for distant states. This definition presents
the benefit that it does not require selection of a recur-
rence threshold ε, for which there is no general method
available yet [Marwan et al., 2007] .
Figures 1(a) and (b) show typical RPs of the logis-

tic map in the periodic and chaotic regime, respec-
tively; while Fig. 1 shows the corresponding wRP for
the chaotic regime.
Having the weighted recurrence matrix W̃ we then

define the strength of point i in the time series
as [Eroglu et al., 2014]

si =

N∑
j=1

W̃ij . (2)

Thus, by the computing the heterogeneity of the
strength distribution p(s) we are able to quantify the
amount of statistical disorder in the system. Therefore,
such task can be accomplished by the calculation of
the Shannon entropy associated to the distribution of
strengths, i.e., [Eroglu et al., 2014]

SwRP = −
∑
{s}

p(s) ln p(s). (3)

Figure 2 shows the comparison between our approach,
the traditional RP-based entropy measurement based
on length of diagonal lines and the Lyapunov applied
to to the logistic map. As we can see, although SRP

predicts the dynamical transitions, it is strongly anticor-
related with the Lyapunov exponent for some intervals
of the bifurcation parameter a. In contrast, the entropy
associated to wRPs is, in general, positively correlated
with λmax throughout almost the entire range of pa-
rameter a. In [Eroglu et al., 2014] we further show that
similar results are obtained with time series originated
by the Rössler system and also data obtained from real
experiments with coupled chemical oscillators.

Bifurcation parameter a
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Figure 2. Comparison between the Lyapunov exponent λmax, (b)
Entropy SRP associated to the distribution of length of line seg-
ments in RPs and (c) entropy SwRP of wRPs.

3 Conclusion
We have presented a recurrence-based matrix to quan-

tify the dynamical properties of a given system. The
Shannon entropy of the recurrence matrix has been
defined as a complexity measure and compared with
the Shannon entropy of other recurrence-based ap-
proaches. Although entropy is a well known measure
of disorder, in recurrence plot terminology, entropy is
determined as a heuristic measure, in order to detect
the transitions between different regimes. The proba-
bility of occurrence of diagonal line segments of dif-
ferent lengths is not equal since a recurrence plot is a
square matrix whose dimension is limited by the length
of the time series. The Shannon entropy is computed



from the diagonal line distribution in the RP approach.
Hence, the commonly adopted entropic measures based
on line segments can often yield counterintuitive re-
sults when quantifying the complexity of a given sys-
tem. This was exemplified with the logistic map case in
which the entropy of black and white dots was observed
to be anticorrelated with the Lyapunov exponent. On
the other hand, the entropy of weighted RPs presented
here recovered the expected dependence as a function
of the systems complexity, i.e., showing higher values
within regions in which chaos is observed. Moreover,
for the continuous systems such as the Rossler attractor
and experimental time series of electrochemical os-
cillators, although black dots and weighted entropies
are both positively correlated with the emergence of
chaotic behavior, the latter definition was observed to
have more stable values for voltage ranges that lead to
periodic time series. The ideas presented here can be
extended and applied to other complex systems with
the potential to better identify dynamical transitions in
time series originating from them.
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