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We describe a new procedure to monitor and forecast the onset of transitions in high dimensional
stochastic complex systems (see Phys.Rev. Lett. 113, 264102 (2014)) . We illustrate the methodol-
ogy by an application to the Tangled Nature model of evolutionary ecology but expect the method
to be of general applicability. The quasi-stable configurations of the full stochastic dynamics are
taken as input for a stability analysis by means of the deterministic mean field equations. Numerical
analysis of the high dimensional stability matrix allows us to identify unstable directions associated
with eigenvalues with positive real part. The overlap of the instantaneous configuration vector of
the full stochastic system with the eigenvectors of the unstable directions of the deterministic mean
field approximation is found to be a good early-warning of the transitions occurring intermittently.

Introduction - Many complex high dimensional systems are characterised by intermittent dynamics, where relatively
long quiescent periods are interrupted by sudden and quick bursts of activity during which the system suffers hectic
rearrangements. These rearrangements can be seen as transitions between metastable states. Examples of abrupt
transitions have been identified in a broad range of systems [1]: in biological ecosystems [2, 3] transitions from a
flourishing to a wild state can occur, in financial markets [4] endogenous crisis can destabilize an existing balance, in
the human brain [5] epileptic seizures signals a switch from a regular to an irregular condition, climate [6] can exhibit
sudden changes both overall or in one of its subsystems, like when a bloom of harmful algae suddenly forms in the
sea [7].

We focus on the Tangled Nature (TaNa) model [8–10] of evolutionary ecology. The initial aim of the model was to
establish a sound and simple mathematically framework for ”punctuated equilibrium”, i.e. the observed intermittent
mode of macro-evolution. The TaNa model is an individual based stochastic model of coevolution. The model’s
phenomenology is in good agreement with biological observations [11]. At the microscopic level of individuals the
dynamics is unfolding at a smooth constant pace: agents reproduce, mutate and die at essentially constant rates. On
the contrary, at the systemic level the generated ecological network structures jump from one metastable configuration
to another (denoted quasi-Evolutionary Stable Strategies or qESS). We investigate these macroscopic instabilities by
performing a Linear Stability Analysis (LSA) of the mean field representation of the dynamics about the actual
configurations produced by the full stochastic dynamics. LSA is obviously a standard procedure to analyze the nature
of fixed points for deterministic autonomous equations of motion. Here we develop the method to allow applications
to high dimensional stochastic dynamics.

When we apply this procedure to very high dimensional situations like the TaNa model it is not possible to solve
directly the fixed point equation: F(n∗) = 0. Instead, we can use the observed qESS configurations generated by the
full stochastic dynamics to approximate n∗ and perform a LSA of the mean field dynamics about these configurations.
To our knowledge this procedure for applying LSA to high dimensional stochastic dynamics has hardly been attempted
before. Only recently, LSA of agent-based models have been studied: in [12] the stability properties of the attractors
of a generalized Sznajd model are derived from its mean-field formulation, whereas in [13] a similar analysis has been
done for a network of pulse-coupled neurons. Neither of these systems, however, exhibits intermittent behavior as we
observe in the TaNa.The intermittent dynamics allows us to define a new mean-field based early-warning measure for
the occurrence of abrupt transitions.

How effective an unstable eigendirection is in destabilising the configuration n(t) will depend on the overlap between
the deviation from n̄stoc: δn(t) = n(t) − n̄stoc and the unstable directions. During the qESS we therefore introduce
the following instability indicator:

Q(t) = max
λ∈Sp+(M[n̄stoc])

∣∣eλ 〈(n(t)− n̄stoc), eλ〉
∣∣ (1)

where the eigenvalues λ and the correspondent eigenvectors eλ of M[n̄stoc] can be computed numerically for high
dimensions (in our case with the Intel DGEEV routine). Sp+(M[n̄stoc]) refers to the eigenvalues with positive real
part and the brackets denotes the scalar produc
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In Fig. 1 we show Q as a function of the microscopic time steps (blue curve). We observe that ‖δn(t)‖ fluctuates
during the qESS. In contrast Q only grows when a transition is about to occur. Typically Q starts to increase several
generations prior to the transition corresponding, in this particular case, to thousands of single update events.
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Figure 1. Typical behavior of Q(t) and ‖δn(t)‖ in a single run of the TaNa in time steps. Clearly Q(t) ' 0 even for more
rare strong fluctuations (dashed circle) inside the qESSs, whereas it starts to increase rapidly before the actual transition. In
the inset, we zoom on the transition and indicate with markers the points observed at the coarse-grained level of generations.
Notice that between two generations many time steps (events) are present.
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Figure 2. 2D distribution P (‖δn(t∗ − τ)‖, Q(t∗ − τ)) averaged over 17000 transitions for different values of τ . The predictive
power of Q is evident: typical fluctuations inside the qESSs are not signaled by Q (panels (e-f)), whereas dangerous perturbations
leading to a transition are recognized by the increasing of Q away from zero (panels (a-d)). This is already seen for τ = 5,
which is still remarkably far from the transition. Examples of predicted/non predicted transitions are then shown with arrows
in panels (d-a). The other plots can be interpreted in a similar way.

To understand the relation between ‖δn‖ and Q we show in Fig. 2 the joint probability density P (‖δn(t∗−τ)‖, Q(t∗−
τ)) for τ generations before the time t∗ of the transition. We identify t∗ as the time when the condition: ‖δn(t∗)‖ > d
holds persistently for at least 10 generations for a fixed threshold d = 150, corresponding to the typical amplitude
of the fluctuations inside the qESSs. From the way the region of largest support move in the Q − ‖δn‖ plane as
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the transition is approached we see to what extent monitoring Q allows one to predict the transition. Note that a
significant support for values of Q larger than about 10 starts to develop from around τ = 5. At these times the
deviation ‖δn‖ is still most often below the inherent qESS fluctuation level of 150. We may encounter situations
where Q gives a false signal, by increasing significantly in correspondence to small amplitude perturbations of n(t).
Remarkably, we can see that these events happen with low probability, thus not affecting significantly the performance
of the Q measure.

Finally, our success rate in predicting transitions is approximately 84-86%, however non-predicted transitions do
occur and are related to a non-vanishing probability that a direction which is weakly stable (negative eigenvalues close
to zero) of the mean field can trigger a transition[14].
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