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Abstract

We investigate the Lyapunove exponents in the fixed points
of one dimensional nonlinear oscillation driven by rapidly changing
external force. We present phase portraits of the systems in the
neighbourhood of the fixed points and demonstrate the changing of
the Lyapunov spectrum under the application of different forms of
feed forward control.

1 Introduction

Here we discuss the case of Kapitza pendulum driven by sin- or cos-
rapidly oscillating periodical force [1]. We use the averaging proce-
dure with respect to the rapidly changing movement and start from
the effective potential energy of the pendulum [2]. Our purpose is
to investigate how the open-loop control scheme influences on the
structure of the Lyapunov spectrum in the fixed points of the dy-
namical system. We investigate the phase portraits of the systems in
the neighbourhood of the fixed points and demonstrate the changing
of the Lyapunov spectrum under the application of different forms
of feedforward control.
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2 Lyapunov exponents of the pendulum driven

by external periodical force:

Horizontal Modulation

Consider the motion of a pendulum of mass m whose point of sup-
port oscillates horizontally with a high frequency γ >>

√

g

l
,where g

is the gravitational acceleration and l is the length of pendulum.Now
the differential equation of such a dynamical system is

mlϕ̈ = −
1

l

dUeff

dϕ
(1)

where ϕ = ϕ(t) is the angular displacement of the pendulum and

Ueff = mgl[− cos ϕ + (
a2γ2

4gl
) cos2 ϕ]

is the effective potential energy, where a is the amplitude of the os-
cillation. Therefore our dynamical system for horizontal modulation
becomes

ml2ϕ̈ +
1

2
ma2γ2 sin ϕ cos ϕ = mgl sin ϕ (2)

Now equation (2) in Cauchy Form can be written as

{

ẋ1 = x2

ẋ2 = −g

l
sin x1(1 − a2γ2

2gl
cos x1)

(3)

By solving simultaneous equations

ẋ1 = 0 and ẋ2 = 0

The fixed points are

(kπ, 0), k ∈ Z and (arccos(
2gl

a2γ2
), 0)

Now we check the behaviour of the system by determining the sta-
bility of the fixed points
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At fixed point (0,0) the Lyapunov exponents are

λ+

1 = +
aγ
√

2l

√

1 −
2gl

a2γ2
and λ−

2 = −
aγ
√

2l

√

1 −
2gl

a2γ2

The Lyapunov exponents are real and distinct

i.eλ+

1 > 0, λ−

2 < 0 if 2gl

a2γ2 < 1

The Lyapunov exponents are real and coincide

i.eλ+

1 = 0, λ−

2 = 0 if 2gl

a2γ2 = 1

Lyapunov exponents are distinct and pure imaginary

if 2gl

a2γ2 > 1

At fixed point (π, 0) the Lyapunov exponents are

λ+

1 = +
aγ
√

2l

√

1 +
2gl

a2γ2
and λ−

2 = −
aγ
√

2l

√

1 +
2gl

a2γ2

The Lyapunov exponents are real and distinct
i.eλ+

1 > 0, λ−

2 < 0 if 2gl

a2γ2 < 1, 2gl

a2γ2 = 1, 2gl

a2γ2 > 1

At fixed point (arccos( 2gl

a2γ2 ), 0) the Lyapunov exponents are

λ+

1 = +
aγ
√

2l

√

( 2gl

a2γ2

)2 − 1 and λ−

2 = −
aγ
√

2l

√

( 2gl

a2γ2

)2 − 1

For x1 = arccos( 2gl

a2γ2 ), cos x1 ≤ 1
Therefore Lyapunov exponents are distinct and pure imaginary
if 2gl

a2γ2 < 1

The Lyapunov exponents are real and coincide
i.e λ+

1 = 0, λ−

2 = 0 if 2gl

a2γ2 = 1
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3 Lyapunov exponents of the pendulum driven

by external periodical force:

Vertical Modulation

In this case

Ueff = mgl[− cos ϕ + (
a2γ2

4gl
) sin2 ϕ] (4)

is the effective potential energy, where a is the amplitude of the
oscillation. Therefore our dynamical system for vertical modulation
becomes

ml2ϕ̈ + mgl sin ϕ =
1

2
ma2γ2 sin ϕ cos ϕ (5)

Now equation (5) in Cauchy Form can be written as







ẋ1 = x2

ẋ2 = −g

l
sin x1(1 + a2γ2

2gl
cos x1)

(6)

By solving simultaneous equations

ẋ1 = 0 and ẋ2 = 0

The fixed points are

(kπ, 0), k ∈ Z and (arccos(
−2gl

a2γ2
), 0)

Now we check the behaviour of the system by determining the sta-
bility of the fixed points
At fixed point (0,0) the Lyapunov exponents are

λ+

1 = +
aγ
√

2l

√

1 +
2gl

a2γ2
i and λ−

2 = −
aγ
√

2l

√

1 +
2gl

a2γ2
i

The Lyapunov exponents are distinct and pure imaginary if

2gl

a2γ2 > 1, 2gl

a2γ2 = 1, 2gl

a2γ2 < 1
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At fixed point (π, 0) the Lyapunov exponents are

λ+

1 = +
aγ
√

2l

√

2gl

a2γ2
− 1 and λ−

2 = −
aγ
√

2l

√

2gl

a2γ2
− 1

The Lyapunov exponents are distinct and pure imaginary if 2gl

a2γ2 < 1

The Lyapunov exponents are real and coincide

i.eλ+

1 = 0, λ−

2 = 0 if 2gl

a2γ2 = 1

The Lyapunov exponents are distinct and real

i.eλ+

1 > 0, λ−

2 < 0 if 2gl

a2γ2 > 1

At fixed point (arccos(−2gl

a2γ2 ), 0) the Lyapunov exponents are

λ+

1 = +
aγ
√

2l

√

( 2gl

a2γ2

)2
+ 1 i and λ−

2 = −
aγ
√

2l

√

( 2gl

a2γ2

)2
+ 1 i

For x1 = arccos(−2gl

a2γ2 ), cos x1 ≥ −1

Therefore the Lyapunov exponents are distinct and pure imaginary

if 2gl

a2γ2 < 1 and 2gl

a2γ2 = 1
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4 Conclusions

We present our results in the form of Table 1.

2gl

a2γ2 < 1 2gl

a2γ2 = 1 2gl

a2γ2 > 1

(a) (arccos( 2gl

a2γ2 ), 0) (arccos( 2gl

a2γ2 ), 0)

λ1andλ2 λ1 and λ2

are Pure Imaginary Coincides
Horizontal (0,0) (0,0) (0,0)
oscillation λ1 > 0 and λ2 < 0 λ1 and λ2 λ1 and λ2

Coincides are Pure Imaginary
(π, 0) (π, 0) (π, 0)

λ1 > 0 and λ2 < 0 λ1 > 0 and λ2 < 0 λ1 > 0 and λ2 < 0

(b) (arccos(− 2gl

a2γ2 ), 0) (arccos(− 2gl

a2γ2 ), 0)

λ1 and λ2 λ1 and λ2

are Pure Imaginary are Pure Imaginary
Vertical (0,0) (0,0) (0,0)

oscillation λ1 and λ2 λ1 and λ2 λ1 and λ2

are Pure Imaginary are Pure Imaginary are Pure Imaginary
(π, 0) (π, 0) (π, 0)

λ1 and λ2 λ1 and λ2 λ1 > 0 and λ2 < 0
are Pure Imaginary Coincides

From the table we can see that the fixed points of the system are
limited in their types; and the Lyapunov spectrum in their neigh-
bourhod can be controlled with the open-loop scheme.
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