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Abstract
Microelectromechanical resonators feature nonlinear

dynamic responses. A first-principles based modeling
approach is proposed for a clamped-clamped beam res-
onator. Starting from the partial differential equation
for the beam including geometric and electrostatic non-
linear effects, a reduced-order model is derived. The
model captures the experimentally observed nonlinear
dynamic behaviour of the resonator and allows for fast
simulation and prediction of its response.
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1 Introduction
Single-crystal microelectromechanical silicon res-

onators provide an interesting alternative for quartz
crystals in oscillator circuits for modern data and com-
munication applications (Nguyen, 2005, 2007). Their
compact size, feasibility of integration with IC tech-
nology and low cost are major advantages. In oscillator
circuits, nonlinearities in resonators influence oscillator
performance. Conventional quartz crystal resonators
are not driven into nonlinear regimes, since the rather
bulky quartz crystal units can store sufficient energy for
oscillation while remaining linear. However, MEMS
resonators inherently can store less energy, due to their
smaller size. For this reason, they have to be driven
into nonlinear regimes in order to store enough energy
for a sufficiently good signal to noise ratio (Kaajakari
et al., 2004). Depending on the specific resonator lay-
out, different types of nonlinearities may be dominant
in the resonator dynamic behaviour. The presence of
the nonlinearities is relevant for oscillator performance
and their analysis has to be incorporated in future res-
onator design optimization. In order to determine the
influence of the different nonlinearities, the dynamic

behaviour of the resonator has to be understood. A pre-
dictive modeling approach which enables fast and ac-
curate simulation of the nonlinear dynamics is essential
for this.

The resonator under investigation here has a clamped-
clamped beam layout. Various research groups have
realized clamped-clamped beam resonators and have
reported measurements, see for instance Mattilaet al.
(2002). However, a combined numerical and experi-
mental analysis of the nonlinear behaviour of such a
resonator has not been addressed extensively.

In this paper, a first-principles based approach will be
proposed for modeling and analyzing the nonlinear dy-
namic behavior of clamped-clamped microelectrome-
chanical beam resonators. In previous work (Mes-
trom et al., 2007), based on a heuristic modeling ap-
proach (Kaajakariet al., 2004), a match has been ob-
tained between numerical and experimental results for
a clamped-clamped beam resonator. Here, instead, a
first-principles based modeling approach will be used,
founded on partial differential equations (PDEs). Start-
ing from the PDE, a reduced-order model will be de-
rived, capturing essential nonlinear dynamic behavior
of the resonator. The reduced-order model will be in-
vestigated using numerical tools for steady-state non-
linear dynamic analysis. This approach will allow for
fast simulation and the investigation of nonlinear ef-
fects. Furthermore, it will potentially lead to more
accurate prediction of the dynamic behavior than ob-
tained so far (Mestromet al., 2007).

The outline of the paper is as follows. First, in Sec-
tion 2, the resonator layout and some experimental re-
sults for a clamped-clamped beam resonator will be
discussed. In Section 3, the modeling approach and
the reduced-order model will be described. Simulation
results from the model will be presented in Section 4
for some characteristic nonlinear dynamic effects. Fi-
nally, some conclusions will be drawn and an outlook
to future work will be given in Section 5.



2 Clamped-Clamped Beam Resonator
A schematic drawing of the clamped-clamped beam

resonator under investigation is depicted in Fig. 1.
Herein, its characteristic flexural vibration shape is de-
picted as a dotted line. The actuation of the resonator is
realized by means of a dc (Vdc) and an ac (Vac) voltage
component, which are applied to the two electrodes of
the resonator by means of bias tees. The output of the
resonator is measured as a voltageVout, resulting from
capacitive detection. This quantity can be related to the
beam motion, see also Mestromet al. (2007).
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Figure 1. Schematic resonator layout.

The beam resonator has a length of48 µm, a width of
4 µm and a thickness of1.4 µm. The electrode gaps
are330 nm.
MEMS Resonators are fabricated using Silicon-On-

Insulator (SOI) wafers. In the production process, first,
aluminum bondpads are defined on the wafer surface.
Next, the resonator layout is etched into the1.4 µm
thick SOI layer down to the buried oxide layer by
means of deep reactive ion etching (DRIE). Finally,
the resonator is released from the substrate through
isotropic etching of the buried oxide layer using an HF
wet etch solution. A microscope image of the clamped-
clamped beam resonator is depicted in Fig. 2.
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Figure 2. Microscope image of the resonator.

The grey material is silicon (Si, single-crystal), thin
dark lines are lithography etch gaps and the white,
grainy material corresponds to the aluminum (Al) bond
pads and electrical lines. Six aluminum bond pads can
be distinguished. These are designed in such a way that

they fit the ground-signal-ground probes that are used
during the measurements. The outer four bond pads
are connected to ‘ground’, such that the beam itself is
grounded. The middle two bond pads are used for ac-
tuation and measurement purposes.

During the experiments, the MEMS resonator is lo-
cated in a vacuum (pressurep = 4.6 × 10−4 mbar).
Measurements of the steady-state dynamic behaviour
of the resonator around the fundamental (first) natu-
ral frequency have revealed characteristic nonlinear dy-
namic behavior known as frequency hysteresis. By
sweeping the excitation frequency up and down around
the fundamental resonance frequency, an amplitude-
frequency curve can be constructed. Two examples
of such amplitude-frequency curves are depicted in
Figs. 3 and 4, for ac excitation values ofVac = 70
and139 mV, respectively. In both cases, the bias volt-
ageVdc = 70 V. The peak to peak value ofVout is
depicted on the vertical axis.
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Figure 3. Experimental amplitude-frequency curve,Vac = 70 mV.
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Figure 4. Experimental amplitude-frequency curve,Vac = 139 mV.

From these figures, it can be seen that the reso-
nance frequency of the resonator is approximately
12.875 MHz. Moreover, the resonance peak bends to
the left (lower frequencies) due to nonlinearities. As a
result, the steady-state dynamic behaviour of the res-
onator is found to depend on the sweep direction. Sud-
den jumps in the response, indicated by black arrows,



occur at different frequencies. This typical nonlinear
dynamic effect (frequency hysteresis) has also been re-
ported in Kaajakariet al. (2004).

Another experimentally observed nonlinear dynamic
effect is a1/2 subharmonic resonance, which occurs
at twice the fundamental frequency, near25.753 MHz.
In a 1/2 subharmonic resonance, the fundamental fre-
quency in the system response is half the excitation fre-
quency. The measured amplitude-frequency curve for
Vdc = 70 V andVac = 350 mV is depicted in Fig. 5.
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Figure 5. Experimental amplitude-frequency curve for the 1/2sub-

harmonic resonance.

3 Modelling
The first-principles based modelling approach pre-

sented here, is an extension of recently reported
work (Mestromet al., 2007) on the same resonator,
where a heuristic single-degree-of-freedom model was
proposed to capture experimentally observed behavior.
The current approach will be founded on a partial dif-
ferential equation for the beam, with electrostatic exci-
tation.
Inherently, different physical domains are tightly in-

tertwined at microscale (Senturia, 2001). At the mo-
ment, as a starting point for the modelling procedure,
only structural mechanics and electrostatics have been
included, so thermal effects and fluid damping have not
been taken into account yet.
Underlying assumptions for the model that will be de-

rived are the following. For now, fringing field correc-
tions for the electrostatic actuation, see for instance Ba-
tra et al. (2006a) and Batraet al. (2006b), will not be
included. Furthermore, several damping mechanisms
may be present in micromechanical resonators (Foul-
gocet al., 2006), for instance, clamping losses, surface
and bulk material losses, the already mentioned fluid
(or squeeze film) damping and thermoelastic damp-
ing. For a description of thermoelastic damping see,
for instance, Lifshitz and Roukes (2000) or Nayfeh and
Younis (2004). In the current approach, these differ-
ent damping mechanisms will be lumped into a single,
equivalent linear damping parameter.

The effect and the accuracy of these assumptions will
be addressed in future work.

3.1 Equation of Motion
For the case of flexural vibration of a clamped-

clamped microbeam, consider the beam as depicted in
Fig. 1. The beam is clamped on both sides and sus-
pended between two stationary electrodes. The beam
has a lengthl, a width b (out of plane) and a thick-
nessh. A linear modelling approach for a beam with
a single actuation electrode has already been reported
in Tilmanset al. (1992) and Tilmans and Legtenberg
(1994). This linear PDE is only valid for small trans-
verse deformations of the beam. If deformations be-
come larger, geometric nonlinear effects have to be
considered. The type of effects depends on the type of
resonator. For a clamped-clamped beam, large flexural
deformations are accompanied by longitudinal stretch-
ing of the beam. This effect, also known as mid-
plane stretching (Thomsen, 2003) results in axial ten-
sion in the beam, causing its effective stiffness to in-
crease. Therefore, it corresponds to a hardening non-
linearity. Tilmanset al. (1992) calculated the resonance
frequency of the beam, based on the Rayleigh quotient,
including a correction for the potential energy change
due to midplane stretching of the beam. An alternative
method, described in Abdel-Rahmanet al. (2002), and
Younis and Nayfeh (2003), directly includes a nonlin-
ear term in the partial differential equation to account
for midplane stretching. This term appears in a simi-
lar way as an axial loadN , resulting in the following
equation:

EI
∂4w

∂x4
+ c

∂w

∂t
+ ρA

∂2w

∂t2
=

(

N +
EA

2l

∫ l

0

(

∂w

∂x

)2

dx

)

∂2w

∂x2
+ q(x, t).

(1)

Here, the transverse deflectionw = w(x, t) is a func-
tion of the coordinatex along the beam length and of
time t. E equals the Young’s modulus,ρ is the mass
density andI andA denote the area moment of iner-
tia and the beam cross-sectional area respectively.N
denotes the tensile or compressive axial load present in
the beam. In the following, the axial load is assumed
to be zero,N = 0. In this paper, damping is accounted
for by means of a damping constantc. This parameter
can be seen as an equivalent linear damping parameter,
although it is known that damping may very well de-
pend on the excitation conditions for the resonator (see
also Nayfeh and Younis, 2004). The second term on
the right-hand side,q(x, t), denotes the driving force
per unit length, resulting from electrostatic excitation:

q(x, t) =
1

2

ǫ0b

(d − w)2
V 2

1 (t) −
1

2

ǫ0b

(d + w)2
V 2

2 , (2)



whered denotes the gap width, constantǫ0 is the per-
mittivity of free space and the excitation voltages are
given by:

V1(t) = Vdc + Vac sin(2πft), and V2 = Vdc. (3)

The current model for the electrostatic excitation (2) is
a parallel plate approximation. The effect of fringing
fields (see, for instance Batraet al., 2006a) has not yet
been included.
For a clamped-clamped beam, the boundary condi-

tions of (1) consist of zero deflection and zero gradient
at both clamped edges:

w(0, t) = w(l, t) =
∂w(0, t)

∂x
=

∂w(l, t)

∂x
= 0. (4)

Material nonlinearities (higher-order elasticity ef-
fects) have not yet been included the current model.

3.2 Non-dimensional Equation of Motion
The equations describing the transverse deflection of

the resonator (1), (2) and (3), can be written in non-
dimensional form after scaling the positionx, displace-
mentw and timet as follows:

x̄ =
x

l
, w̄ =

w

d
, t̄ = t

√

EI

ρAl4
. (5)

As a result, spatial and temporal derivatives become:

˙(·) =
∂

∂t̄
=

√

ρAl4

EI

∂

∂t
, (̈·) =

∂2

∂t̄2
=

ρAl4

EI

∂2

∂t2
,

(·)′ =
∂

∂x̄
= l

∂

∂x
.

(6)

By using (5) and (6), the PDE for the beam (1) can be
written as (for notational convenience, the bars, denot-
ing non-dimensional quantities, have been omitted):

ẅ + cdẇ + w(4)−cnl

{
∫ 1

0

(w′)2dx

}

w′′ =

cf

{

V1(t)
2

(1 − w)2
−

V 2
2

(1 + w)2

}

,

(7)

where damping parametercd (-), nonlinear stretching
parametercnl (-) and voltage parametercf (V−2) are
given by:

cd = c

√

l4

ρAEI
, cnl = 6

(

d

h

)2

, cf =
6ǫ0l

4

Ed3h3
. (8)

The boundary conditions for (7) transform to:

w(0, t) = w(1, t) = w′(0, t) = w′(1, t) = 0. (9)

3.3 Galerkin Discretization
The dynamic response of the system can be approxi-

mated in terms of a linear combination of a finite num-
ber of orthonormal spatial basis functions with time-
dependent coefficients. This discretization (or separa-
tion of variables) procedure is often called the Galerkin
procedure and is suited for both linear and nonlinear
PDEs. For the microbeam resonator, the deflection
w(x, t) in (7) is expressed as a sum of spatial shapes
that, a priori, satisfy the imposed boundary conditions:

w(x, t) =

N
∑

i=1

qi(t)φi(x), (10)

whereqi(t) are the time-dependent generalised coordi-
nates andφi(x) are appropriate basis functions. For the
clamped-clamped beam, linear undamped mode shapes
are assumed (see Blevins, 1979):

φi(x) = cosh λix − cos λix

− σi(sinhλix − sin λix).
(11)

whereλi are the roots of the characteristic equation

cos λ cosh λ = 1, (12)

andσi is given by

σi =
cosh λi − cos λi

sinhλi − sinλi

. (13)

The mode-shapes are normalised such that:

∫ 1

0

φiφjdx =

{

1, if i = j,

0, if i 6= j.
(14)

Due to the symmetric electrode layout of the res-
onator, and a bias voltageVdc applied to each of the
two electrodes (see (3)), oscillations of the resonator
take place around its undeformed (w = 0) position.
No static transverse deflection of the resonator will
take place, only dynamic deflection. For this reason,
a single-mode discretization has been found to capture
the nonlinear dynamic behaviour sufficiently well (this
will become clear from Section 4). In case of a one-
sided electrode layout, see for instance Abdel-Rahman
et al. (2002) and Younis and Nayfeh (2003), a single-
mode discretization has been found not to suffice.
To derive a single-mode Galerkin discretization for

the PDE, consider a single-mode version of (10),
w(x, t) = q1(t)φ1(x), for which λ1 andσ1 are found
from Blevins (1979):

λ1 = 4.73004074, and σ1 = 0.982502215. (15)



In order to avoid division by zero in the electrostatic
force term, (7) is multiplied by the common denom-
inator of the right-hand side:(1 − w)2(1 + w)2 =
(1 − w2)2.
The procedure to arrive at the discretized model con-

sists of substitutingw(x, t) = q1(t)φ1(x) into the pre-
multiplied version of (7). The residual, obtained in
this way, is requested to be orthogonal to the single-
mode approximation. This is achieved by multiplying
the residual byφ1 and integrating from0 to 1 overx.
This results in the single degree-of-freedom nonlinear
ordinary differential equation:

(q̈1 + cdq̇1 + λ4
1q1)

×
(

1 − 2q2
1

∫ 1

0
φ4

1dx + q4
1

∫ 1

0
φ6

1dx
)

−cnlq
3
1

∫ 1

0
(φ′

1)
2dx

×
( ∫ 1

0
φ′′

1φ1dx − 2q2
1

∫ 1

0
φ′′

1φ3
1dx + q4

1

∫ 1

0
φ′′

1φ5
1dx

)

= cf

{

( ∫ 1

0
φ1dx + 2q1 + q2

1

∫ 1

0
φ3

1dx
)

V 2
1 (t)

−
( ∫ 1

0
φ1dx − 2q1 + q2

1

∫ 1

0
φ3

1dx
)

V 2
2

}

.

(16)

3.4 Numerical Approach
The simulation model for the clamped-clamped beam

consists of a state-space description of the second-
order nonlinear differential equation (16),ẋ = f(x, t),

where the state column is defined byx =
[

q1 q̇1

]T
.

The steady-state nonlinear dynamic behaviour of the
model is investigated by applying numerical colloca-
tion and continuation techniques, available in the pack-
age AUTO (Doedelet al., 1998). Periodic solutions
(resonator vibrations) for various excitation frequen-
ciesf can be determined. The method is suitable for
general nonlinear systems, in contrast to perturbation
techniques, applied in, for instance, Younis and Nayfeh
(2003). Results will be discussed in Section 4.

4 Results
Numerical simulations have been performed using the

approach described in Section 3.4. Parameter values
for the model have been derived from the physical di-
mensions and material properties of the resonator and
are listed in Table 1. Furthermore, damping has been
implemented by means of a non-dimensional equiva-
lent linear damping coefficientξ, whose value is ob-
tained from Mestromet al. (2007). Due to operation in
vacuum, the system is very weakly damped. The equiv-
alent linear damping coefficientξ would translate to a
Q-factor ofQ = 1/(2ξ) = 6250.

4.1 Frequency Hysteresis
In Figs. 6 and 7, simulated amplitude-frequency

curves are depicted for a bias voltage ofVdc = 70 V
and ac excitation values ofVac = 70 and 139 mV,
respectively. The figures show the maximum non-
dimensional amplitude of the mid-point of the beam

Table 1. Numerical values for the parameters in the model (7).

Parameter Value Unit

E 131.1× 10
9 N/m2

ρ 2.330× 10
3 kg/m3

b 1.4× 10
−6 m

h 4.0× 10
−6 m

l 48.4× 10
−6 m

d 0.330× 10
−6 m

ξ 8.0× 10
−5 –

wmax versus the excitation frequency. Furthermore,
stable and unstable parts of the numerical amplitude-
frequency curves are indicated. Solid curves corre-
spond to stable periodic solutions, whereas dashed
curves correspond to unstable ones (not seen in mea-
surements). The transition between stable and unsta-
ble branches of periodic solutions is characterized by
cyclic fold (cf) bifurcations (see for instance Thomsen,
2003).
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Figure 6. Simulated amplitude-frequency curve,Vac = 70 mV.
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Figure 7. Simulated amplitude-frequency curve,Vac = 139 mV.

The cyclic fold bifurcations in Figs. 6 and 7 are re-
sponsible for sudden jumps in the measured amplitude-
frequency behaviour during frequency sweeps (Figs. 3
an 4). This can be understood by considering the nu-
merical amplitude-frequency curves. Starting from a
frequency below the fundamental resonance, the sys-
tem’s response follows the stable low amplitude branch
if the excitation frequency is increased until the lower
cf point. From there, an increase in frequency makes



the system ‘jump’ to the upper branch of stable solu-
tions. This jump is clearly observed in the experimental
curves (see Figs. 3 and 4). An analogous explanation
holds for the sweep down behaviour by considering the
upper cf bifurcation point.
By comparing the numerical curves with the exper-

imental ones, it can be seen that a good qualitative
match has been obtained. A quantitative comparison
of the results in terms of the output voltageVout is still
in progress and clearly depends on a proper identifica-
tion of the physical parameters. Furthermore, under a
multi-mode approximation (N > 1 in (10)–(14)), re-
sults do not change significantly in the frequency range
of interest.

4.2 Hardening and Softening
Depending on the excitation parameters (Vdc andVac),

the dynamic response may show hardening or soften-
ing nonlinear behavior. Since the excitation contains
V 2

1 (t), see (3), the amplitude of the harmonic excitation
(at frequencyf ) has a value equal to2VdcVac. In Fig. 8,
hardening and softening behaviour is depicted for the
situation whereVdcVac is kept constant at9.73 V2,
which corresponds toVdc = 70 V andVac = 139 mV.
In Fig. 8, the amplitude-frequency curves are depicted

1.275 1.28 1.285 1.29 1.295 1.3 1.305 1.31 1.315 1.32

x 10
7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Frequency (Hz)

w
m

ax
 (

−
)

 

 

V
dc

*V
ac

 = 9.73 V2

V
dc

 = 75 V

V
dc

 = 5 V

locus
stable
unstable

Figure 8. Hardening and softening nonlinearities, depending on the

excitation values. Also the loci of cf points are indicated.

for bias voltages ranging from5 to 75 V. For low bias
voltage values, the resonance peak bends to higher fre-
quencies. Here, the hardening effect due to midplane
stretching dominates the softening effect due to electro-
static excitation. For high bias voltages, the peak bends
to lower frequencies. Here, it is the other way around:
the electrostatic softening dominates the hardening due
to midplane stretching. At intermediate values, a nearly
linear response can be seen. The reason for this is the
balance between the mid-plane stretching nonlinear ef-
fect (hardening) and the electrostatic nonlinear effect
(softening). This has also been reported in Younis and
Nayfeh (2003). Moreover, loci of cf points have been
calculated and are indicated in Fig. 8.

4.3 Subharmonic Resonance
The model is also capable of predicting the1/2 sub-

harmonic resonance, for which the experimental re-
sult was depicted in Fig. 5. The simulation result
for Vdc = 70 V and Vac = 350 mV is depicted
in Fig. 9. In this case, the non-dimensional damping
coefficient is slightly lower than in Table 1, namely
ξ = 4.8 × 10−5. The subharmonic resonance peak is
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Figure 9. Simulated 1/2 subharmonic resonance.

initiated by two so-called period doubling bifurcations
(Thomsen, 2003) near twice the non-dimensional fun-
damental frequency, denoted by ‘pd’ the inset in Fig. 9.

5 Conclusions and Future Work
The proposed first-principles based model for the

clamped-clamped beam resonator captures the experi-
mentally observed nonlinear dynamic behaviour of the
resonator and allows for fast and accurate prediction.
As a result, it will enable parameter studies and inves-
tigation of different design and layout aspects for mi-
croelectromechanical resonators. In this paper, a qual-
itative/quantitative correspondence between numerical
and experimental results has been obtained.
Future work will consist of further experimental ver-

ification of the current reduced-order model. Based
on the assessment of the accuracy of the assumptions
made, future work will incorporate improvement and
extensions of the model. Firstly, this will comprise the
inclusion of fringing field effects in the electrostatic
actuation and a more in-detail description of the var-
ious damping contributions in the system. Secondly,
material nonlinear effects and thermal effects will be
included. Moreover, oscillator design aspects and the
effect of different resonator layouts will be addressed,
in order to predict resonator performance and to derive
guidelines for optimal layout.
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(2004). Nonlinear Limits for Single-Crystal Sil-
icon Microresonators.J. Microelectromech. Syst.
13(5), 715–724.

Lifshitz, R. and M. L. Roukes (2000). Thermoelas-
tic damping in micro- and nanomechanical systems.
Phys. Rev. B 61(8), 5600–5609.

Mattila, T., J. Kiiham̈aki, T. Lamminm̈aki, O. Jaakkola,
P. Rantakari, A. Oja, H. Seppä, H. Kattelus and
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