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Abstract— The report is devoted to realization of some difference frequency. Hence, on the next stage of excitatio
models and phenomena of nonlinear dynamics (Bernoulli map, the first oscillator accepts the phaser. In successive

Armold's cat map, hyperbolic attractor of Smale-Williams type,  gnnchs of excitation the phases of the first oscillator follo
robust strange nonchaotic attractor, Mandelbrot and Julia sets, . .
approximately the Bernoulli map

hyperchaos). The idea is based on a use of a special class
of systems composed of two or more coupled oscillators with
periodically modulated parameters. The subsystems become ¢ =nyp (mod2rm). (2)
active alternately and transfer the excitation each otherMa-

nipulating with phases of the transferred excitation (due b a  (Hereafter we ignore constant additive terms arising ntlyma

proper selection of the coupling terms in the equations) aliws i the course of the phase transfer.) Fig.1 shows an iteratio
implementation of the named models and phenomena. The di for the ph btained f t . fth
proposed systems may be designed e.g. as electronic devices lagram for the phases obtained for a concrete regime of the

del.

|I. INTRODUCTION

Some important concepts and phenomena in the nonlinear / /
science are not attributed yet with good examples of real-

world systems, at least on a level of familiar to physi- /
cists differential equations. This situation relates tanso

classic objects like Bernoulli map, hyperbolic toral maps, f /
strange hyperbolic attractors, phenomena of complex tioaly ' ;
dynamics associated with Mandelbrot and Julia sets [1- (P /
4]. The present research is devoted to implementation of

these concepts in a special class of systems, which allow /
realization e.g. in electronics, nonlinear optics and rlase !
physics. These systems are composed of oscillators excited

and decaying alternately, in which transfer of the exaitats / /[
accompanied with appropriate transformation of the phases .
of the oscillations [5-9]. P

Il. CHAOS GOVERNED BY THEBERNOULLI MAP ) ) . ) )
Fig. 1. The iteration diagram for phases in the model @33, A=3,

Let us consider a system of two van der Pol oscillators 7=10, £=0.5,wp=2r. Observe correspondence of the topological nature of
the empirical map to that of the map (2) with+3

& — [Acos(2mt/T) — 22|i + wix = ey coswp(n — 1)t,

"__A 2(‘,T—2' 22:n ) ) ] 3
§ = [mAcos(2nt/T) = y7ly + nwoy = ex”, 1) To say more accurately, the four-dimensional Poincaré
where an integem > 2, and T = 27N/w. Let the MaP corresponding to evolution over a peribdpossesses
first oscillator have some phase on a stage of activity: & Nyperbolic chaotic attractor of Smale — Williams type. We
2 o cos(wol + ). The termz™ contains thea-th harmonic: can define a toroidal absorbing domain, which is mapped
cos(nwot + ny), and its phase isip. As the half-period inside itself been compressed longitudinally and stretche
comes to the end, the second oscillator inherits the pha@nsversally with turns around “the hole of the doughnut”.
ne because of its excitation in presence of that term. Theh® model (1) is a realistic example of a system with
backward transfer of the excitation takes place due to tH&/Perbolic strange attractor. A similar system was studied

term in the first equation with the spectral component on §cently in an experiment [6].
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Fig. 2. Zone on the parameter plane®# corresponding to bounded dynamics in the model (5) and @estions of the basins of attractorsua=2r,
T=10, F=7, g=0.5,e=1

Py

Fig. 3. Transformation of the area of the cat face in a theglainphases of active oscillators in the model (6) for timervals 2" and 47

of activity for the second oscillator the first one osciltate

i — (Asin (27t/T) — 22)& + wlz = ey sin(wot + 0), with complex amplitudes: z(t) ~ Rea(t)explwot)]. The
ij — (—Asin (27t )T) — y2)y + dwdy = ex sinwot, coupling term in the second equation will be(t) =
6 = wow/T, w=(V5—1)/2. 1la(t)]* + 2Rela? exp(2iwot)]. The germ for oscillations is

(3) delivered by the resonance component represented by the

In this case, for the phase of the first oscillator and for thatecond harmonic, and the complex amplitude of the second

of the quasiperiodic force we get in a certain approximatiofiscillator during the next active stage will be proportibna
to a2. A product of the signal from the second oscillator

¢'=p—0, 0 =0+2rw (mod2m). (4)  with the auxiliary signal of frequenay, yields a component

This is the map used by Hunt and Ott in their constructioff difference frequency. A sum of that component with
of an example of robust strange nonchaotic attractor (SNA&dditional oscillatory term of frequency,, amplitude A

[10]. The robust SNA appears as one adds small nonline@pd phasep effects resonantly upon the first oscillator at
terms to the right-hand part of that map. This is the case féf€ beginning of the next epoch of its activity. Hence, the

the system (3), for which the map (4) delivers an approximafgroboscopic map for the complex amplitude will corre-
description (see [9] for some details). spond in certain normalization to the complex quadratic map

Zp41 = ¢+ 22, wherec ~ \e'?, z ~ a.
IV. COMPLEX ANALYTIC DYNAMICS : MANDELBROT AND
JULIA SETS In dependence on the complex parametdér may occur

The idea of physical realization of phenomena of comthat the solution for the coupled oscillators (5) with iaiti
p|ex ana|ytic dynamics is based on the method of Comp|é§@nditi0ns in some domain remains bounded, or it may tend

amplitudes. Let us turn to the following equations: to infinity. In the left panel of Fig.2 the gray color desigesit
zones of the bounded dynamics. Note a remarkable similarity

of the plot to the classic picture of the Mandelbrot set.
Labels 1, 2, 3 mark “leaves” of the “cactus” associated
with dynamics of periodl’, 2T", 3T, respectively. For the

A dissipation parameter in both oscillators varies slowlypoints marked by the letters A, B, C basins of attraction
with period T = 2xN/wy. Parameterg is positive, less are shown in the two-dimensional cross-section of the four-
then 1. Let us suppose that at the beginning of an epoclimensional phase space of the Poincaré map with the plane

&+ F - [g+sin(2rt/T))d + wiz =
= ey sinwot + Asin(wot + ¢), (5)
i+ F - [g —sin(2rt/T)]y + dwdy = ex?.



(y = 0, g = 0). They resemble Julia sets for the complexObserve that the largest two exponents are close to the
guadratic map. approximate values for the phase map.

More careful analysis shows that the correspondence does
not extends over small-scale details of the Mandelbrot set A [
Indeed, the complex amplitude method is approximate. Ir | A In((7 +/13)/2)
higher orders of the pertu_rbation_ theory corrections_ appez 0.0 A, In((7 - 13)/ 2) —
represented by non-analytic functions. Larger the peféid r
N is, less these corrections are.

-10
V. ARNOLD'S CAT MAP
Increasing a number of the alternately excited oscillators
the construction of the model systems we find an opportunit -20
to get some other interesting types of complex dynamics.
Let us consider a system of four oscillators [7]

-30
i — [Acos(2nt)T) — 2%)i + w3z = ez cos wot, L N L
j— [Acos(2mt/T) — y°ly + wiiy = ew, ©) 10 15 20 25 30 35 A
5 — [~Acos(2nt/T) — 22)% + dwdz = exy,
W — [=Acos(2nt/T) — w|i + wiw = e, Fig. 4. Spectrum of Lyapunov exponents (normalized to tif)efor the

madel (8) versus parametet at wo=2m, T=20, €=0.5. Note presence of

and suppose that the first and the second oscillators duriggy positive exponents in a wide range

the stage of activity have some phases and p,: = ~
cos(wot + ¢z), y ~ cos(wot + ¢,). The coupling term
in the third equation is proportional té cos(p, — ¢y) + VI CON_CLUSION

Lcos(2wot + ¢. + ¢y,). The component of the doubled As follows from the studies we undertake, the systems
activity stage it accepts the phase ~ ¢, +,. In the same excitation each other, are of great interest from the point
time, the fourth oscillator simply inherits the phase offingt ~ Of view of realization of many phenomena of nonlinear dy-
one:p, ~ .. At the beginning of the next activity epoch hamics, till now represented by mathematical construstion
for z andy the termz coswot ~ 1 cos(3wot + @z + @,) + ON @ basis of this general idea we suggested examples of
L cos(wot + ¢u + o) ENSUTES therhasg X 0. R Pt oy the systems governed in some approximation by maps of
for the oscillatorz, and the oscillatoy inherits the phase of Bérnoully and Arnold, a system with robust SNA of Hunt and

the oscillatorw: ¢!, ~ ¢, ~ ¢,. Thus, we arrive at the map Ott, a _system manifesting phe.nomena of complex analytic
dynamics (Mandelbrot and Julia sets). All the schemes we

Pp = P+ Py, ¥y =z (mod 27). (7)  propose allow physical realization e.g. as electron deyice

Two iterations of this map correspond to the Arnold cat maf @S Systems of other physical nature (in mechanics, laser
a well known example of hyperbolic chaotic map on torugPYSICS €tc.).
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