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Abstract— The report is devoted to realization of some
models and phenomena of nonlinear dynamics (Bernoulli map,
Arnold’s cat map, hyperbolic attractor of Smale-Williams type,
robust strange nonchaotic attractor, Mandelbrot and Julia sets,
hyperchaos). The idea is based on a use of a special class
of systems composed of two or more coupled oscillators with
periodically modulated parameters. The subsystems become
active alternately and transfer the excitation each other.Ma-
nipulating with phases of the transferred excitation (due to a
proper selection of the coupling terms in the equations) allows
implementation of the named models and phenomena. The
proposed systems may be designed e.g. as electronic devices.

I. I NTRODUCTION

Some important concepts and phenomena in the nonlinear
science are not attributed yet with good examples of real-
world systems, at least on a level of familiar to physi-
cists differential equations. This situation relates to some
classic objects like Bernoulli map, hyperbolic toral maps,
strange hyperbolic attractors, phenomena of complex analytic
dynamics associated with Mandelbrot and Julia sets [1-
4]. The present research is devoted to implementation of
these concepts in a special class of systems, which allow
realization e.g. in electronics, nonlinear optics and laser
physics. These systems are composed of oscillators excited
and decaying alternately, in which transfer of the excitation is
accompanied with appropriate transformation of the phases
of the oscillations [5-9].

II. CHAOS GOVERNED BY THEBERNOULLI MAP

Let us consider a system of two van der Pol oscillators

ẍ − [A cos(2πt/T ) − x2]ẋ + ω2
0x = εy cosω0(n − 1)t,

ÿ − [−A cos(2πt/T )− y2]ẏ + n2ω2
0y = εxn,

(1)
where an integern ≥ 2, and T = 2πN/ω0. Let the
first oscillator have some phaseϕ on a stage of activity:
x ∝ cos(ω0t + ϕ). The termxn contains then-th harmonic:
cos(nω0t + nϕ), and its phase isnϕ. As the half-period
comes to the end, the second oscillator inherits the phase
nϕ because of its excitation in presence of that term. The
backward transfer of the excitation takes place due to the
term in the first equation with the spectral component on a
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difference frequency. Hence, on the next stage of excitation
the first oscillator accepts the phasenϕ. In successive
epochs of excitation the phases of the first oscillator follow
approximately the Bernoulli map

ϕ′ = nϕ (mod2π). (2)

(Hereafter we ignore constant additive terms arising normally
in the course of the phase transfer.) Fig.1 shows an iteration
diagram for the phases obtained for a concrete regime of the
model.

Fig. 1. The iteration diagram for phases in the model (1):n=3, A=3,
T=10, ε=0.5,ω0=2π. Observe correspondence of the topological nature of
the empirical map to that of the map (2) withn=3

To say more accurately, the four-dimensional Poincaré
map corresponding to evolution over a periodT possesses
a hyperbolic chaotic attractor of Smale – Williams type. We
can define a toroidal absorbing domain, which is mapped
inside itself been compressed longitudinally and stretched
transversally withn turns around “the hole of the doughnut”.
The model (1) is a realistic example of a system with
hyperbolic strange attractor. A similar system was studied
recently in an experiment [6].

III. ROBUST STRANGE NONCHAOTIC ATTRACTOR

The next construction we discuss is a system with quasi-
periodic driving [9]:



Fig. 2. Zone on the parameter planeλeiϕ corresponding to bounded dynamics in the model (5) and cross-sections of the basins of attractors atω0=2π,
T=10, F =7, g=0.5, ε=1

Fig. 3. Transformation of the area of the cat face in a the plane of phases of active oscillators in the model (6) for time intervals 2T and4T

ẍ − (A sin (2πt/T ) − x2)ẋ + ω2
0x = εy sin(ω0t + θ),

ÿ − (−A sin (2πt/T )− y2)ẏ + 4ω2
0y = εx sinω0t,

θ̇ = ω0w/T, w = (
√

5 − 1)/2.
(3)

In this case, for the phase of the first oscillator and for that
of the quasiperiodic force we get in a certain approximation

ϕ′ = ϕ − θ, θ′ = θ + 2πw (mod2π). (4)

This is the map used by Hunt and Ott in their construction
of an example of robust strange nonchaotic attractor (SNA)
[10]. The robust SNA appears as one adds small nonlinear
terms to the right-hand part of that map. This is the case for
the system (3), for which the map (4) delivers an approximate
description (see [9] for some details).

IV. COMPLEX ANALYTIC DYNAMICS : MANDELBROT AND

JULIA SETS

The idea of physical realization of phenomena of com-
plex analytic dynamics is based on the method of complex
amplitudes. Let us turn to the following equations:

ẍ + F · [g + sin(2πt/T )]ẋ + ω2
0x =

= εy sin ω0t + λ sin(ω0t + ϕ),
ÿ + F · [g − sin(2πt/T )]ẏ + 4ω2

0y = εx2.
(5)

A dissipation parameter in both oscillators varies slowly
with period T = 2πN/ω0. Parameterg is positive, less
then 1. Let us suppose that at the beginning of an epoch

of activity for the second oscillator the first one oscillates
with complex amplitudea: x(t) ∼ Re[a(t)exp(iω0t)]. The
coupling term in the second equation will bex2(t) =
1

2
|a(t)|2 + 1

2
Re[a2 exp(2iω0t)]. The germ for oscillations is

delivered by the resonance component represented by the
second harmonic, and the complex amplitude of the second
oscillator during the next active stage will be proportional
to a2. A product of the signal from the second oscillator
with the auxiliary signal of frequencyω0 yields a component
of difference frequency. A sum of that component with
additional oscillatory term of frequencyω0, amplitude λ
and phaseϕ effects resonantly upon the first oscillator at
the beginning of the next epoch of its activity. Hence, the
stroboscopic map for the complex amplitude will corre-
spond in certain normalization to the complex quadratic map
zk+1 = c + z2

k, wherec ∼ λeiϕ, z ∼ a.

In dependence on the complex parameterc it may occur
that the solution for the coupled oscillators (5) with initial
conditions in some domain remains bounded, or it may tend
to infinity. In the left panel of Fig.2 the gray color designates
zones of the bounded dynamics. Note a remarkable similarity
of the plot to the classic picture of the Mandelbrot set.
Labels 1, 2, 3 mark “leaves” of the “cactus” associated
with dynamics of periodT , 2T , 3T , respectively. For the
points marked by the letters A, B, C basins of attraction
are shown in the two-dimensional cross-section of the four-
dimensional phase space of the Poincaré map with the plane



(y = 0, ẏ = 0). They resemble Julia sets for the complex
quadratic map.

More careful analysis shows that the correspondence does
not extends over small-scale details of the Mandelbrot set.
Indeed, the complex amplitude method is approximate. In
higher orders of the perturbation theory corrections appear
represented by non-analytic functions. Larger the period ratio
N is, less these corrections are.

V. A RNOLD’ S CAT MAP

Increasing a number of the alternately excited oscillatorsin
the construction of the model systems we find an opportunity
to get some other interesting types of complex dynamics.

Let us consider a system of four oscillators [7]

ẍ − [A cos(2πt/T ) − x2]ẋ + ω2
0x = εz cosω0t,

ÿ − [A cos(2πt/T )− y2]ẏ + ω2
0y = εw,

z̈ − [−A cos(2πt/T )− z2]ż + 4ω2
0z = εxy,

ẇ − [−A cos(2πt/T )− w2]ẇ + ω2
0w = εx,

(6)

and suppose that the first and the second oscillators during
the stage of activity have some phasesϕx and ϕy : x ∼
cos(ω0t + ϕx), y ∼ cos(ω0t + ϕy). The coupling term
in the third equation is proportional to1

2
cos(ϕx − ϕy) +

1

2
cos(2ω0t + ϕx + ϕy). The component of the doubled

frequency effects resonantly the oscillatorz, and on the
activity stage it accepts the phaseϕz ≈ ϕx+ϕy. In the same
time, the fourth oscillator simply inherits the phase of thefirst
one:ϕw ≈ ϕx. At the beginning of the next activity epoch
for x andy the termz cosω0t ∼ 1

2
cos(3ω0t + ϕx + ϕy) +

1

2
cos(ω0t+ϕx +ϕy) ensures the phaseϕ′

x ≈ ϕz ≈ ϕx +ϕy

for the oscillatorx, and the oscillatory inherits the phase of
the oscillatorw: ϕ′

y ≈ ϕw ≈ ϕx. Thus, we arrive at the map

ϕ′

x = ϕx + ϕy, ϕ′

y = ϕx (mod 2π). (7)

Two iterations of this map correspond to the Arnold cat map,
a well known example of hyperbolic chaotic map on torus.
Fig.3 illustrates transformation of the traditional picture of
the cat face on two steps of iterations obtained from computer
solution of Eqs. (6).

VI. H YPERCHAOS

Our last example is a system

ẍ − [A cos(2πt/T ) − x2]ẋ + ω2
0x = εz cosω0t,

ÿ − [A cos(2πt/T )− y2]ẏ + ω2
0y = εw cos 2ω0t,

z̈ − [−A cos(2πt/T − z2]ż + 4ω2
0z = εxy,

ẅ − [−A cos(2πt/T ) − w2]ẇ + 9ω2
0w = εx3,

(8)

demonstrating hyperchaos, a dynamical regime with two
positive Lyapunov exponents. Dynamics of phases of the
active oscillators is governed by stroboscopic map

ϕ′

x = ϕx + ϕy, ϕ′

y = 3ϕx (mod2π). (9)

Two Lyapunov exponents expressed via the eigenvalues
of the associated2 × 2 matrix are both positive:Λ1 =
ln

(

(7 +
√

13)/2
)

= 1.67 and Λ2 = ln
(

(7 −
√

13)/2
)

=
0.51. Fig.6 shows a plot for all Lyapunov exponent of
the original coupled oscillator model versus parameterA.

Observe that the largest two exponents are close to the
approximate values for the phase map.

Fig. 4. Spectrum of Lyapunov exponents (normalized to timeT ) for the
model (8) versus parameterA at ω0=2π, T=20, ε=0.5. Note presence of
two positive exponents in a wide range

VII. C ONCLUSION

As follows from the studies we undertake, the systems
of coupled non-autonomous oscillators alternately passing
excitation each other, are of great interest from the point
of view of realization of many phenomena of nonlinear dy-
namics, till now represented by mathematical constructions.
On a basis of this general idea we suggested examples of
the systems governed in some approximation by maps of
Bernoully and Arnold, a system with robust SNA of Hunt and
Ott, a system manifesting phenomena of complex analytic
dynamics (Mandelbrot and Julia sets). All the schemes we
propose allow physical realization e.g. as electron devices,
or as systems of other physical nature (in mechanics, laser
physics etc.).
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