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Abstract
We optimize the parameters of multiple non-linear

mass dampers based on numerical simulation of tran-
sient wave propagation through a linear mass-spring
carrier structure. Topology optimization is used to ob-
tain optimized distributions of damper mass ratio, nat-
ural frequency, damping ratio and nonlinear stiffness
coefficient. Large improvements in performance is ob-
tained with optimized parameters and it is shown that
nonlinear mass dampers can be more effective for wave
attenuation than linear mass dampers.
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1 Introduction
In this paper we report on a systematic approach

for optimizing the individual parameters of local non-
linear oscillators attached to a linear mass-spring chain.
The optimization procedure is based on transient sim-
ulation of wave propagation through the linear carrier
structure. The work follows a recent theoretical and nu-
merical study (Lazarov and Jensen, 2007) of band gap
formation in this non-linear system.
Band gaps are frequency ranges in which waves can-

not propagate through the structure (Brillouin, 1953).
They occur in infinite periodic systems and also in
mass-spring chains with attached oscillators (Liuet
al., 2000). In a finite structure excitation with a fre-
quency within the band gap results in a localized re-
sponse near the point of excitation or at the bound-
ary of the structure (Jensen, 2003). The attached os-
cillators act as multiple mass dampers (Strasberg and
Feit, 1996) that ”absorb” waves that propagate in the
main chain and can thus be used to reduce the trans-
mission of waves in the chain.
In (Lazarov and Jensen, 2007) it was demonstrated

that non-linear oscillators can be used to shift band

gap frequencies and control the propagation of waves
in the main chain. Additionally, it was demonstrated
that a non-uniform distribution of non-linear coeffi-
cients could be used to improve the attenuation prop-
erties of the structure. In this paper we apply a system-
atic design procedure based on the method of topology
optimization (Bendsøe and Sigmund, 2003) to find op-
timized sets of oscillators parameters that minimize the
transmission of waves.
The paper is organized as follows. In Section 2 we

introduce the physical and numerical model. Typi-
cal transient behavior is illustrated in Section 3. Sec-
tion 4 presents the optimization algorithm including
sensitivity analysis. In Section 5 we show examples
of optimized oscillator parameters for mono-frequency
steady-state behavior as well as full transient behavior.
In Section 6 we give conclusions.

2 A mass-spring chain with attached nonlinear os-
cillators

Fig. 1 illustrates the basic unit cell. The coupled equa-
tions for the displacement of a mass in the chain, de-
noteduj, and the displacement of the attached oscilla-
tor read:

üj + 2uj − uj−1 − uj+1 = β(ω2q + γq3 + 2ζωq̇)(1)

q̈ + 2ζωq̇ + ω2q + γq3 = −üj(2)

Non-dimensional parameters in (1)–(2) areβ = M/m
which is the ratio between the mass of the oscillator
and the mass to which it is attached,ω is the natural
frequency of the oscillator relative to a characteristic
frequency of the main chain denotedω0 =

√

k/m,
ζ is the damping ratio of the oscillator andγ is the
non-linear stiffness coefficient. Additionally, the non-
dimensional time measureτ = ω0t has been intro-
duced.
We consider a finite system based on the building

block unit cell in Fig. 1. Fig. 2 shows this finite system.



The number of masses in the chain that carry an oscil-
lator is denotedN . Additionally, a number of masses
without attached oscillators are connected to the chain
at both ends;Nin to the left, andNout to the right of the
section with oscillators. All oscillators may have differ-
ent parameters, denotedβi, ωi, γi andζi, whereas the
main chain consist of equal springs with stiffnessk and
equal massesm. By setting both end masses tom/2
and adding viscous dampers (c =

√
mk) we mimic

transparent boundaries at both ends of the chain.
Wave motion is imposed by a time-dependent force

f(t) acting on the leftmost mass in the chain. The spe-
cific force is to be specified in the forthcoming example
sections.
Eqs. (1)–(2) are rewritten in matrix form. We intro-

duce a vector of the unknown displacements:

u = {u1 u2 . . . uN+Nin+Nout
q1 q2 . . . qN}T (3)

and can write the model equations as:

ü + Cu̇ + Ku + Fnon(u) = Fext (4)

In (4) C is a damping matrix,K is a stiffness matrix,
Fnon is a vector of nonlinear forces and the vectorFext

contains the external load.

3 Numerical simulation of system behavior
The optimization algorithm is based on repeated anal-

yses of (4), sometimes several hundred, thus a fast and
robust numerical solver is essential. We use a central-
difference explicit scheme (Cooket al., 2002) that is
very fast and stable with a sufficiently small time step.
In all numerical simulations we use trivial initial con-

ditions u = u̇ = 0 and the total simulation time is
denotedT .
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Figure 1. Basic unit cell with a mass in the linear main chain and

an attached non-linear oscillator.

f(t)

Figure 2. Finite chain consisting ofN masses with attached oscil-

lators,Nin andNout masses without oscillators in the left and right

end. Viscous dampers are added in the ends to simulate transparent

boundaries.

Figure 3. Typical transient response. Figures shows (from top and

down): Response of the leftmost and rightmost mass in the main

chain, response of the first and last attached oscillator.

Fig. 3 shows typical simulation results for transient
response of the system – here for the following set of
system parameters:

β = 0.1, ζ = 0.01, ω = Ω = 0.0625, γ = 0
N = 26, Nin = Nout = 1
f(t) = sin(Ω(t − t0))e

−δ(t−t0)2

t0 = 1500, δ = 0.000004

In Fig. 3 the response of the rightmost mass in the chain
is depicted (second plot from top). This illustrates the
signal actually transmitted through the chain. It is seen
that the transmitted signal is composed of a main signal
transmitted instantly followed by a trailing signal due
to reflections in the structure.

4 Optimization of mass damper parameters
We will in the following quantify the mass damper

performance by considering the response of the right-
most mass in the chain integrated over a certain time
interval. We consider the general objective function:

Φ =

∫ T2

T1

c(u)dt (5)

in whichc(u) is a positive real function of the displace-
ment vector. The smallerΦ is, the more effective the
attached mass dampers.



We wish to minimize the functionalΦ by manipulat-
ing the parameters of each of theN attached oscilla-
tors. We may vary all 4 parametersβi, ωi, γi andζi

and have in total4 × N design variables which are de-
fined by the following relations:

βi = βmin + xβ
i (βmax − βmin) (6)

ωi = ωmin + xω
i (ωmax − ωmin) (7)

γi = γmin + xγ
i (γmax − γmin) (8)

ζi = ζmin + xζ
i (ζmax − ζmin) (9)

in which the subscript min and max refer to upper and
lower bounds on the parameters that are specifieda pri-
ori. Thus, continuous design variables varying between
0 and 1 let the material parameters take any value be-
tween these min and max values.
A higher mass of the oscillators generally leads to in-

creased wave attenuation. In order to give a fair com-
parison between the performance of different structures
we therefore introduce a limit on the maximum average
mass ratiõβ, such that:

1
N

N
∑

i=1

βi < β̃ (10)

The continuous design variables allow us to apply a
gradient-based optimization algorithm to optimize the
performance of the structure. In order to do this we
need to compute the gradient ofΦ with respect toxβ

i ,
xω

i , xγ
i andxζ

i . Let x denote any design variable, then
by using the chain rule we obtain:

dΦ

dx
=

∫

T2

T1

dc

du

du

dx
dt =

∫ T2

0

dc

du

du

dx
dt −

∫ T1

0

dc

du

du

dx
dt (11)

In order to eliminate the termdudx
we use the adjoint

method that has previously been applied to transient
design problems (Bendsøe and Sigmund, 2003). We
rewrite (11) as:

dΦ

dx
=

∫

T2

0

(
dc

du

du

dx
+ λ

T
1

dR

dx
)dt

−
∫ T1

0

(
dc

du

du

dx
+ λ

T
2

dR

dx
)dt (12)

in which

R = ü + Cu̇ + Ku + Fnon(u) − Fext (13)

is the residual that vanishes at equilibrium.

We compute

dR

dx
=

dü

dx
+

dC

dx
ü + C

du̇

dx
+

dK

dx
u + K

du

dx

+
dFnon

dx
+

dFnon

du

du

dx
(14)

since we assume that the external force (wave input) is
independent of the design. By inserting (14) and per-
forming partial integration we rewrite (12) into:

dΦ

dx
=

∫

T2

0

(

(
dc

du
+λ̈

T

1 −λ̇
T

1 C+λ
T
1 (K+

dFnon

du
))

du

dx

+ λ
T
1 (

dC

dx
ü +

dK

dx
u +

dFnon

dx
)
)

dt

−
∫

T1

0

(

(
dc

du
+ λ̈

T

2 − λ̇
T

2 C + λ
T
2 (K +

dFnon

du
))

du

dx

+ λ
T
2 (

dC

dx
ü +

dK

dx
u +

dFnon

dx
)
)

dt

+
[

λ
T
1 C

du

dx
+ λ

T
1

du̇

dx
− λ̇

T

1

du

dx

]T2

0

−
[

λ
T
2 C

du

dx
+ λ

T
2

du̇

dx
− λ̇

T

2

du

dx

]T1

0
(15)

By choosing the following conditions:

λ1(T2) = λ̇1(T2) = 0 (16)

λ2(T1) = λ̇2(T1) = 0 (17)

and by requiring the initial response of the structure to
be independent of the design the terms in the square
brackets vanish.
We now require the terms inside the integration terms

that are coefficients todudx
to vanish:

λ̈
T

1 − λ̇
T

1 C + λ
T
1 (K +

dFnon

du
) = − dc

du
(18)

λ̈
T

2 − λ̇
T

2 C + λ
T
2 (K +

dFnon

du
) = − dc

du
(19)

These two new transient problems are solved forλ1

andλ1 and we can compute the sensitivities by the final
expression:

dΦ

dx
=

∫

T2

0

λ
T
1 (

dC

dx
ü +

dK

dx
u +

dFnon

dx
)dt

−
∫

T1

0

λ
T
2 (

dC

dx
ü +

dK

dx
u +

dFnon

dx
)dt (20)

Our strategy for optimizing the oscillator parameters
can be summarized as: perform repeated analyses of
(4), with each analysis followed by a computation of
the sensitivities by solving (18), (19) and (20), and the
sensitivities provided to a mathematical programming
software MMA (Svanberg, 1987) to obtain a design up-
date. This iterative procedure is continued until design
converges within a specified threshold.



5 Results
The optimization algorithm is demonstrated by two

examples where we consider steady-state and transient
response. In both examples we find optimized sets
of oscillator parameters that minimize the transmitted
wave.

5.1 Steady-state mono-frequency behavior
As the first example we optimize the system param-

eters for mono-frequency steady-state behavior. The
system parameters and excitation is:

N = 26, Nin = Nout = 1,Ω = 0.0625
f(t) = sin(Ω(t − t0))e

−δ(t−t0)2 , t < t0
f(t) = sin(Ω(t − t0)), t > t0
t0 = 2500, δ = 0.000002

and the objective function is evaluated in the time in-
terval specified byT1 = 15000 andT2 = 20000. In
this way we ensure that the response has reached steady
state.
First we consider linear oscillators (γi = 0) and op-

timize the distribution of natural frequencies and mass
ratios. The damping ratio is fixed atζ = 0.01. We
allow the parameters to vary as follows:

ωmin = 0.0615, ωmax = 0.0630
βmin = 0.0, βmax = 0.2

and keep the maximum average mass ratio atβ̃ = 0.1.
Fig. 4 shows the oscillator parameters for the optimized
design and Fig. 5 displays the response of the leftmost
and rightmost mass in the chain (two top plots) as well
as the response of the first and last oscillator (two bot-
tom plots). An almost uniform distribution of natu-
ral frequencies is obtained, close to the excitation fre-
quency. This is expected for mono-frequency excita-
tion (cf. working principles of standard mass dampers).
The slight detuning between the excitation and natural
frequencies is due to the presence of damping. The op-
timized design is composed mainly of oscillators with
the maximum mass ratio (β = 0.2) and minimum mass
ratio (β = 0 - corresponding to no oscillator). A physi-
cal interpretation of the effects of this mass distribution
is difficult due to the complexity of the wave motion,
but the effect is a reduction of the objective with about
22% compared to an optimized design with a fixed uni-
form mass ratio ofβ = 0.1.
If we allow the non-linear stiffness coefficients to vary

the performance of the mass dampers can be further
improved. The minimum and maximum coefficients
are chosen as:

γmin = −0.00006, γmax = 0.00006

As seen in Fig. 6 the the distribution of natural frequen-
cies and mass ratios is qualitatively similar to the linear
case. However, the distribution is no longer symmetric
around the chain center and more irregular. The nat-
ural frequencies are lower than for the linear case but
this is combined with positive (hardening) non-linear

Figure 4. Optimized distribution of natural frequencies and mass

ratios for steady-state response. Zero nonlinearity and uniform

damping ratio.

Figure 5. Response for optimized design shown in Fig. 4.



Figure 6. Optimized distribution of natural frequencies, mass ra-

tios and non-linear coefficients for steady-state response. Uniform

damping ratio.

Figure 7. Response for optimized design shown in Fig. 6.

Figure 8. Optimized distribution of natural frequencies and mass

ratios for transient response. Zero nonlinearity and uniform damping

ratio.

stiffness that increases along the chain length. The ob-
jective function is reduced by2.4% compared to the
linear case.
It should be noted that a reduction of the damping ratio

ζ always cause a further reduction ofΦ. No beneficial
effects of a non-uniform damping distribution has been
observed.

5.2 Transient response
We now consider the full transient response of the

chain. The system parameters and excitation are:

N = 26,Nin = Nout = 1,Ω = 0.0625
f(t) = sin(Ω(t − t0))e

−δ(t−t0)2

t0 = 2500, δ = 0.000002

and the objective function evaluates the response in the
entire simulation time interval:T1 = 0 and T2 =
20000.
Fig. 8 shows the optimized design with zero non-

linearity and uniform damping ratioζ = 0.01. The
minimum and maximum values of the natural fre-
quency and mass ratio are:

ωmin = 0.060, ωmax = 0.064
βmin = 0.0, βmax = 0.2

with a constraint on the average mass ratio ofβ̃ = 0.1.
Fig. 8 shows a larger variation of the natural frequen-



Figure 9. Response for optimized design shown in Fig. 8.

cies than for the steady-state case. This is a results of
the broader frequency content of the wave pulse, and
thus a broader spectrum of oscillator frequencies are
needed to quench the signal effectively. The response
shown in Fig. 9 reveals that the output signal consists
of a main signal followed by smaller trailing pulses.
We now allow the nonlinear stiffness to vary between:

γmin = −0.00006, γmax = 0.00006

Interestingly, theγ−distribution shows alternating sec-
tions of softening and hardening non-linearities in the
optimized design. This is combined with an irregular
ω−distribution. As a result the trailing pulses in the
output signal (Fig. 11) are now significantly reduced
in magnitude, leading to a further reduction of the ob-
jective function by21%. Thus, adding nonlinearities
allow for a significant extra reduction of the transmis-
sion of a pulse, whereas for the steady-state response
the effect was smaller.

6 Conclusion
We have used topology optimization based on tran-

sient simulation to design the individual parameters
of nonlinear oscillators attached to linear mass-spring
chain. The optimized parameters minimize the trans-
mission of wave pulses through the main chain.
The natural frequency, mass ratio, nonlinear stiffness

and damping ratio of each oscillator were optimized.

Figure 10. Optimized distribution of natural frequencies,mass ra-

tios and non-linear coefficients for transient response. Zero nonlin-

earity and uniform damping ratio.

Figure 11. Response for optimized design shown in Fig. 10.



Non-trivial parameter distributions were obtained lead-
ing to a significant reduction of the transmitted wave
signal. Two examples were considered. For a mono-
frequency steady-state response it was noted that a
hardening but non-uniform nonlinearity was favored
whereas for a full transient simulation combinations
of softening and hardening nonlinearities appeared in
the optimized design. It was shown also that including
non-linear stiffness was beneficial compared to having
only a linear oscillator. This was most pronounced for
when considering the full transient response.
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