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noise Gaussian process. The approach is based on applying the maximal correlation func-
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1. AN ANALYSIS OF CONSISTENT MEASURES 
OF DEPENDENCE WITHIN IDENTIFICATION 

PROBLEMS 
 
Statistical linearization of input/output mappings of 
systems under study relates to the class of problems 
of non-linear identification whose solution is consid-
erably determines by characteristics of stochastic 
dependence of input and output processes. At that, 
known approaches are either based on applying con-
ventional correlation functions, or dispersion ones, 
the dispersion linearization. At the same time, meth-
ods of the dispersion linearization leads out the class 
of linearized models. 
 
Among various measures of dependence, the product 
correlation functions are well known and commonly 
used. However, these may vanish even provided that 
a deterministic dependence between input and output 
processes exists (Rajbman, 1981, Rényi, 1959). Also, 
there are known cases when actual dependence be-
tween two variables is nonlinear even provided that 
the regression of a variable onto another one is linear 
(Sarmanov and Bratoeva, 1967). 

 
Rényi (1959) has formulated seven axioms which are 
seemed to be the most natural for a measure of de-
pendence ( )YX ,μ  between two random variables X 
and Y. 
 
A) ( )YX ,μ  is defined for any pair of random vari-

ables X and Y, neither of them being constant 
with probability 1. 

B) ( )YX ,μ = ( )XY ,μ . 
C) ( ) 1,0 ≤≤ YXμ . 
D) ( ) 0, =YXμ  if and only if X and Y are independ-

ent. 
E) ( ) 1, =YXμ  if there is a strict dependence be-

tween X and Y, i.e. either )(XY ϕ=  or 
)(YX ψ=  where ϕ and ψ are Borel-measurable 

functions. 
F) If a Borel-measurable functions ϕ and ψ map the 

real axis in a one-to-one way onto itself, 
( ) ( )YXYX ,)(),( μψϕμ = . 



 

G) If the joint distribution of X and Y is normal, then 
( ) ( )YXrYX ,, =μ , where ( )YXr ,  is the ordi-

nary correlation coefficient of X and Y. 
 
Rényi (1959) has shown that a measure of depend-
ence meeting all the above axioms is the maximal 
correlation: 
 

=),( YXS
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( ) ( ) 0)(,0)( >> XCYB DD , 
 
with here and below supremum being taken over 
Borel-measurable functions {B} and {C}, and 

{ }BB∈ , { }CC∈ . 
 
When investigating random processes, the maximal 
correlation coefficient is transformed to the follow-
ing function 
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with stv −= . In the two above formulae, the ran-
dom processes x(s) and y(t) are considered as jointly 
strongly stationary. The functional )(vS yx  is referred 
as the maximal correlation function of the random 
processes y(t) and x(s). 
 
Existence of the pair of transformations ( )CB,  in 
(1.1) is determined by conditions which are equiva-
lent to those of used for random variables stated by 
Rényi (1959), Sarmanov (1963), Sarmanov and Zak-
harov (1960), with a basic assumption being the sto-
chastic kernel of the random processes 

)()(
),,(),,(
ypxp

vxypvxy =Κ  meeting the condition 

 

∞<Κ∫ ∫
∞

∞−

∞

∞−

dydxvxy ),,(                (1.2) 

 
for any v. 
 
Due to (1.2), the density p(y,x,v) may be represented 
by a corresponding bilinear eigenfunction expansion 
converging in mean (Sarmanov and Zakharov, 1960, 
Chesson, 1976). 
 
In the paper, Section 2 reviews a recent approach 
oriented to applying the maximal correlation within 
statistical linearization, and drawbacks of such an 
approach are demonstrated. In Section 3, a maximal 
correlation approach to the statistical linearization of 
the input/output mapping of a non-linear discrete-
time stochastic system driven by a white-noise Gaus-
sian process is derived. Finally, in Section 4, an ap-
proach to eliminate the influence of unobservable 
output additive disturbances when a priori informa-
tion on the type of their probability distribution is 
available is proposed. 

 
 

2. REVISING RECENT APPROACHES 
 
An approach applying the maximal correlation func-
tions to the statistical linearization has recently been 
proposed by Pashchenko (2001, 2006), who consid-
ered the following “generalization” of the statistical 
linearization (the quotes here are used because the 
models, finally derived, are not linear (with respect 
to the centered input process), and hence the lineari-
zation problem is not solved and substituted by ap-
proximation of an initial system’s input/output map-
ping by an approximation of that mapping by a non-
linear one from a preliminary given class). Namely, 
let a non-linear plant 

 
( )tsXFtY ),()( = ,                    (2.1) 
 

is available, where )(tY  is a random output signal, 
)(sX  is a random input one, ( )⋅⋅,F  is a non-linear 

inertialless or dynamic transformer which may be 
represented by the Urysson operator, non-linear dif-
ferential equation, a non-linear function, may contain 
δ-functions and their derivatives, logic operators, etc. 
(Pashchenko, 2001, 2006). 
 
As the plant’s model, Pashchenko (2001, 2006) con-
siders the expression 

 
)()( sACxtBy = ,                     (2.2) 

 
from a class of models unsuccessfully referred in the 
cited references as “semilinear models”. In (2.2) B is 
a non-linear transformation of the model’s output 
process )(ty , С is a non-linear transformation of the 
model’s input process )(sx , A is a linear mapping. 
 
As criteria of the statistical linearization, Pashchenko 
(2001, 2006) considers the following ones: the first 
criterion is the condition of coincidence of the 
mathematical expectations of the plant’s “output” 
and model’s “output”, the condition of coincidence 
of the functional auto-correlation functions of the 
plant’s “output” and model’s output (see (2.4) below 
and notations therein); the second criterion is the 
condition of the minimum of the mean square error. 
 
Again, Pashchenko (2001, 2006) “for sake of sim-
plicity” assumes that the class of models (2.2) con-
tains the inverse operator 1−B , wile the model of 
plant (2.1) is searched for in the class of models 

 

)()( 1 sACxBty −= .                   (2.3) 
 

Following to Pashchenko (2001, 2006), consider the 
identification problem in accordance to the first and 
second criteria of the statistical linearization. 
 
The first criterion takes in that case the form 

 

),(),();()( stRstRtyty
MM yyyyM

φφ ==MM , (2.4) 
 
where 
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0 sxACBtKsACxBtK

o
−− += M  (2.5a) 

 
or 
 

)()()()()( 10 sxACtKsCxAtKtyM
o

+= M . (2.5b) 
 

In (2.4), ( )( ))(,)(),( sBztzBstRzz cov=φ  is the func-
tional auto-correlation function of the corresponding 
random process (Pashchenko 2001, 2006). In (2.5), 

10 ),( KtK  are some non-random coefficients also 
subject to determination. 
 
Let, in accordance to Pashchenko (2001, 2006), A be 
a linear non-stationary integral operator of the form 

 

∫=
T

dssxstgstAx
0

)(),(),( ,              (2.6) 

 
where 0),( =stg  as [ ]Tts ,0, ∉ ; 0),( ≠stg  as 

[ ]Tts ,0, ∈ . 
 
Then, from conditions (2.4) the following model has 
been derived in (Pashchenko 2001, 2006) 
 

[ ]∫−=
T

dxCtgBtKty
0

1
0 )(),()()( τττMM , (2.7a) 

=),( stRyy
φ  

∫ ∫=
T T

xx ddRsgtgsKtK
0 0

11 ),(),(),()()( λτλτλτ φ . (2.7b) 

 
When applying the second criterion, minimum of the 
mean square error, Pashchenko (2001, 2006) has 
written the following system of equations 

 

( ) [ ] 0)(),()()( 0 =
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
− ∫

T

dxCtgtKtBy τττM , (2.8a) 

∫=
T

xxyx dsRtgtKstR τττ φφ ),(),()(),( 1 .    (2.8b) 

 
At that, Pashchenko (2001, 2006) indicates that solv-
ing this problem of the statistical “linearization” con-
sists of the following four stages. 
 
At the first stage, the operators B and C are deter-
mined in accordance to the criterion 

 

( ) ( )
( ) ( ))()(

)(),(suparg,
}{},{ sCxtBy

sCxtByCB
CB DD

cov
= , (2.9) 

( ) ( ) 1)()( == sCxtBy DD . 
 

At the second stage, the coefficient )(1 tK  is deter-
mined. For instance (?!), 

 

),(),()(1 ttRttRtK xxyy
φφ= .           (2.10) 

 

At the third stage, the operator A or its weight func-
tion ),( stg , is determined, and, finally, at the fourth 
stage, the coefficient )(0 tK  is determined from 
equation (2.7) or (2.8) in dependence on the statisti-
cal linearization criterion chosen. 
 
As seen, the first two stages of the four stages of 
(Pashchenko, 2001, 2006) are of declarative nature 
exclusively and are by no means related to the above 
criteria of statistical linearization. “Linearization” is 
of course another unsuccessful term because no lin-
ear model is derived within the considered scheme. 
Going back to the mentioned term “semilinear” 
models, the approach of Pashchenko (2001, 2006) 
should be referred as “statistical semilinearization”. 
In the scheme presented, condition (2.9) is by no 
means related to the above criteria of the statistical 
“linearization” as a measure of association of the 
plant and model. Condition (2.10) is at all stated as 
imposed “for instance”, from what it follows that the 
coefficient )(1 tK  may be chosen in arbitrary man-
ner, “for instance” one may be set to be equal to 1 or 
to any other constant, or to any a priori given func-
tion, that indicates the inanition of introducing the 
coefficient )(1 tK  in models (2.5a), (2.5b) by Pash-
chenko (2001, 2006). 
 
More over, equations (2.7), (2.8) themselves are nei-
ther derived in (Pashchenko 2001, 2006) no in refer-
ences cited therein. At the same time, credibility of 
these formulae should of certainly cause doubts, tak-
ing into account at least the non-linearity of the op-
erator B. More specifically, one may argue validity 
of equation (2.7a) only, which (the equation) is de-
rived as a result of taking mathematical expectations 
of the left had and right hand parts of equation (2.5) 

(under the condition 0)(1 =− sxACB
o

M ). 
 
As to resting equations, (2.7b), (2.8a), (2.8b), then 
one can bee seen that they are linear both in coeffi-
cients )(0 tK , )(1 tK , and the weight function 

),( stg , while model (2.5) is linear in the coefficients 
)(0 tK , )(1 tK , but is non-linear in the weight func-

tion ),( stg  (one should also be noted that truth 
equation (2.7a) is linear in the coefficient )(0 tK , but 
is non-linear in the weight function ),( stg ). This 
circumstance confirms the assumption on invalidity 
of equations (2.7b), (2.8a), (2.8b). 
 
One may try “to derive”, for instance, equation 
(2.7b). From criterion (2.4), by virtue of the above 
considered stages of (Pashchenko, 2001, 2006) it 
follows: 
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Hence, equation (2.7b) might be valid under the con-
dition that the coefficient )(1 tK  commutes with the 
non-linear transformation B, but there are no reasons 
for such an assumption. 
 
More ambiguity is present in the question on validity 
of equations (2.8a), (2.8b) because in (Pashchenko, 
2001, 2006) under using the second criterion of the 
statistical linearization (minimum of the mean square 
error) its analytical expression is not presented. If a 
common mean square expression may be used as a 
hypothetical point for further inferences, then by 
virtue of the above considered four-stage scheme, in 
accordance to which the transformations B and C are 
chosen from condition (2.9), one may conclude that 
such a criterion is of the form 
 

←
AKK ,, 10

min  

( )
2

1
1

1
0 ()()()()( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−← −− sxACBtKsACxBtKty

o
MM

(2.11). 
 
Hence, the statement that equations (2.8) follow from 
criterion (2.11) does no look believable disregarding 
its mathematical justification. 
 
Thus the above considerations demonstrate the in-
consistency (in the common sense of this word) of 
the method of Pashchenko (2001, 2006) of the statis-
tical “linearization”. 
 
 
3. STATISTICAL LINEARIZATION BY USE OF 

THE MAXIMAL CORRELATION 
 
Let a nonlinear discrete-time system be described by 
an input/output relationship which generically is of 
the form 

 
( )tIsswFty ∈= ),()( ,                 (3.1) 

 
where y(t) is the system output process considered as 
a stationary ergodic random process; w(s), the sys-
tem input process which, within the problem state-
ment, is considered as a white-noise Gaussian ran-
dom process; tI  is the set of discrete times, and 

K,2,1=t  . For sake of simplicity but without loss of 
generality, the above processes y(t) and w(s) are as-
sumed to be zero mean and normalized to unity ones, 
i.e. 
 

{ } { } 0)()( == swty MM , { } { } 1)()( == swty DD . (3.2) 
 
The processes y(t) and w(s) are also assumed to be 
joint stationary in the strict sense. 
 
System (3.1) model will be searched for in the fol-
lowing form  

 

∑
∞

=

−=
1

)()();(ˆ
k

ktwkgGty , K,2,1=t ,   (3.3) 

 
where );(ˆ Gty  is the model output process, 

[ ){ }∞∈= ,1),( kkgG , K,2,1),( =kkg  are the coef-
ficients of the transfer function of the linearized 
model subject to identification in accordance to the 
condition of coincidence of the above indicated At 
that, the statistical linearization criterion is the condi-
tion of coincidence of the mathematical expectations 
of the output processes of system (3.1) and model 
(3.3), and the condition of coincidence of the joint 
maximal correlation functions of the output and input 
processes of the system and the output and input 
processes of the model. Mathematically, such a crite-
rion has the form 

 
{ } { } 0);(ˆ)( == Gtyty MM ,            (3.4) 

)()( )(ˆ kSkS wGyyw = , K,2,1=k  .      (3.5) 
 

Again, following to normalization conditions (3.2), it 
is imposed that { } 1);(ˆ =GtyD  in model (3.3), and, 
correspondingly, the model weight coefficients meet 
the following condition 

 

1)(
1

2 =∑
∞

=k
kg .                      (3.6) 

 
Expressions (3.4) and (3.5) are the criterion of statis-
tical linearization of system (3.1). Correspondingly, 
in terms of the probability densities, condition (3.5) 
by virtue of (3.2) takes the form 
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1
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:,
sup kwGypwCGyB wGy

CB
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CB

DD
MM

dwGyd )(ˆ , K,2,1=k , 

where ),,(, kwyp wy , ),),(ˆ(),(ˆ kwGyp wGy  are corre-
spondingly the joint distribution densities of the sys-
tem input and output processes and the model input 

and output processes, )( yp y , ))(ˆ()(ˆ Gyp Gy , and 

)(wpw  are correspondingly the marginal distribu-
tion densities of the system y(t) and model );(ˆ Gty  



 

output processes, and of the system as well as the 
model input process w(s), stk −= . 
 
Let 
 

=− kvt ∑∑
∞

+=

−

=
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1

1

1
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kj
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j
jtwjgjtwjg , 

K,2,1=k  
 
be a sequence of random variables which are, obvi-
ously, Gaussian zero mean ones, and having the 
variance 
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Then, within the notations introduced and by virtue 
of model (3.3) description, the following matrix 
equalities may be written 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− )(10

)(1
)(

);(ˆ
ktw
kvkg

ktw
Gty t ,      (3.7) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−

)(
);(ˆ

10
)(1

)( ktw
Gtykg

ktw
kvt .    (3.8) 

 
Formulae (3.7), (3.8) thus represent linear transfor-
mation of a Gaussian random vector, and hence 
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that is the density is Gaussian. Hence, it directly fol-
lows, by virtue of the Rényi’s axiom G (Section 1), 
that in condition (3.5) 

 
)()()(ˆ kgkS wGy = , K,2,1=k  .         (3.9) 

 
“To bare” the modulus in (3.9), one should apply the 
sign of regression of the output process onto the in-
put one, i.e. 
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⎭⎬
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Thus, finally, 
 

[ ] )()(sign)( kSkregkg ywyw= , K,2,1=k  . (3.10) 
 
The latter equation determines the coefficients of the 
weight function of linearized model (3.3). 
 

To calculate the maximal correlation )(kS yw , the 
following procedure directly followed from (Sar-
manov, 1963) should be applied. 
 
First of all, some definitions are required. The densi-
ties ),,(, kwyp wy , )(ypy , and )(wpw  generate two 
symmetric distribution densities 
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and two symmetric kernels 
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In accordance to (Sarmanov, 1963), kernels (3.12) 
are positive and have equal spectra of eigenfunvalues 
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and, generically, different spectra of eigenfunctions 
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Again, 
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is referred as the maximal (in absolute value) corre-
lation corresponding to the density ),,(, kwyp wy , 

i.e. )()( kSkR yw=•  (in the present notations), and 

)(
1)( 2

1 k
kR

λ
=••  is the maximal correlation for 

symmetric densities (3.11). 
 
Then, calculation of the maximal correlation )(kS yw  
is based on the following process of sequential ap-
proximations. 
 
As an initial approximation )(0 wh  one may take any 
function having a variance (without limitation of 
generality, )(0 wh  is set to be zero mean). Let 
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Then, with an accuracy up to normalizing factors 
)(1 ke , )(1 kg , the first pair of the eigenfunctions is 

determined by the relationships 
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If l is large enough, then 
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The latter relationship implies the values of )(kS yw , 

K,2,1=k  by virtue of (3.13). In turn, the densities 
),,(, kwyp wy  and )(ypy  in (3.14) are to be pre-

liminary restored by applying a procedure of non-
parametric density estimation via sampled data; is-
sues of deriving such estimates, including the 
strongly consistent ones, are at present profoundly 
developed, involving such practically important 
cases as estimating distribution densities by use of 
dependent observations (e.g. (Györfi and Masry, 
1990) and related papers). 
 
 

4. NOISE CANCELLATION ISSUES 
 
Let now the output process of the initial non-linear 
system of form (3.1) be disturbed by an unobservable 
zero mean strongly stationary noise )(tξ  with known 
probability distribution density )(ξξp , i.e. 

 
( ) )(),()(~ tIsswFty t ξ+∈= .             (4.1) 

 
Also, the processes )(tξ  and )(sw  are stochastically 
independent. 
 
At that, the statistical linearization problem statement 
is to be reformulated in order to achieve statistical 
coincidence of the linearized system’s model in (3.3) 
and system (4.1) but taken as “noise free”, i.e. as 

0)( ≡tξ  almost surely. In that case, the criterion 
expressed by conditions (3.4), (3.5) remains to be 
applicable but with taking into account that )(ty  
therein is to be a “noise free” process, i.e. within 
notations of system (4.1): 

 
surelyalmosttastyty 0)()(~)( ≡≡ ξ .  (4.2) 

 
To apply the inferences of Section 3, one should to 
receive an estimation of the joint distribution density 

),,(, kwyp wy  of the observable input process )(sw  
and the unobservable “noise free” output process 

)(ty  from (4.2). Let ),,~(,~ kwyp wy  be the joint dis-
tribution density of the observable input process 

)(sw  and the observable disturbed output process 
)(~ ty  of system (4.1). Then, due to stochastic inde-

pendence of the processes )(tξ  and ( )tIsswF ∈),( , 
one can finally write 
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∫
∞

∞−

+= ξξξ ξ dpkwyp wy )(),,~(,~ .         (4.3) 

 
Thus applying a non-parametric estimation of the 
joint distribution density ),,~(,~ kwyp wy  via sample 
data leads to the possibility of using formulae (3.14) 
and followed by them to find the weight function 
coefficients in (3.10) for linearized model (3.3) of 
system (4.1). At that, one just may be noted that with 
regard to system (4.1), in (3.10) 

)()( ~ kregkreg wyyw = . 
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