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Abstract— In the dynamics of open quantum systems, the
interaction with the external environment usually leads to a
contraction of the set of reachable states for the system as time
increases, eventually shrinking to a single stationary point. In
this contribution we describe to what extent it is possible to
modify this asymptotic state by means of indirect control, that
is by using an auxiliary system coupled to the target system in
order to affect its dynamics, when there is a purely dissipative
coupling between the two systems. We prove that, also in
this restrictive case, it is possible to modify the asymptotic
state of the relevant system, give necessary conditions for that
and provide physical examples. Therefore, in indirect control
schemes, the environmental action has not only a negative
impact on the dynamics of a system, it is rather possible to
make use of it for control purposes.

INTRODUCTION

The study of quantum mechanical systems is relevant not
only for a deep understanding of the fundamental physical
laws, but also for its potential applications [1]. In particular, it
has been proved that the use of quantum-based technologies
would highly increase the performance of a computational
device [2]. This is due to the mathematical structure of
the theory, leading to peculiar features for the microscopic
systems, absent in the macroscopic, classical world. Among
them, the most relevant (and not completely understood) is
represented by the quantum correlations known asentangle-
ment, typical of quantum systems, whose complete charac-
terization has been given only in the low dimensional cases.
These correlations are the key of many recently proposed
protocols, as teleportation [3] or quantum cryptography [4].

However, quantum systems are fragile: their relevant fea-
tures are usually degraded by their interaction with the
external environment, leading to irreversibility, dissipation
and decoherence. Therefore closed systems, described by the
Schr̈odinger equation, are only approximations of real sys-
tems, that are necessarily open since they exchange energy
and information with the external world. To account for this,
the standard dynamical model is given by aquantum dynam-
ical semigroup, that is a one-parameter family of Markovian
(i.e., satisfying the semigroup property) completely positive
maps, transforming pure states into mixtures and destroying
quantum coherence [5], [6]. Irreversibility is due to the
fact that quantum dynamical semigroups are contractions
in the state space of the system: this highly reduces the
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ability of manipulation on the system, since many transitions
become forbidden. The extremal case is represented by the
so-called uniquely relaxing semigroups, where there is a
unique asymptotic state for every initial state of the system.
Therefore, in order to fully make use of the potentialities
of quantum systems, it is fundamental to understand the
mechanisms leading to dissipation and to conceive methods
to counteract them, and, more in general, to control the
dynamics of the system.

With these motivations in mind, several solutions to the
problem have been proposed. The study of the symmetries
of the system-environment coupling has lead to the no-
tion of decoherence-free subspaces or subsystems, that are
quiet places, unaffected by decoherence, where to encode
the relevant information (for a review on the topic, see
[7]). From a more active perspective, a theory of quantum
control has developed, dealing with the effect of external
manipulations that can be performed on the system. In the
standard setting (coherent control), the control parameters
enter the Hamiltonian of the system, for example through
external fields coupled to the system (for a geometric control
perspective, in line with that developed in this work, refer
to [8], [9], [10], [11], [12], [13], [14]). Although this is
the most natural way to introduce external actions in the
dynamics of a system, its ability to fight the unwished effects
of the irreversible dynamics is limited [14], unless some
information about the state of the system is collected, and
then used to update in real time the controls. This information
is usually obtained via an indirect continuous measurement
and, because of this, the master equation describing the
system becomes stochastic. Thisquantum feedbackscheme
represents a promising approach in many interesting cases
[15], [16], [17].

A different approach to quantum control has been recently
discussed, in which the control does not enter through the
Hamiltonian of the system, but it is rather obtained by means
of an auxiliary system (ancilla) [18], [19], [20], that can be
manipulated and put in interaction with the relevant system,
and finally discarded at the end of the procedure. The ability
of driving the target system through the auxiliary one is
determined by the correlations between them. The interest in
this indirect controlmethod is twofold. It is complementary
to the coherent control approach, that is, it can be applied to
experimental setups where the coherent control technique is
not appropriate. Moreover, in the indirect control approach
the environment does not only represent a source of noise,
it can also be used for control purposes. In fact, it has
been proved that the environment can correlate two systems



immersed in it via a noisy mechanism, not only destroy their
existing correlations [21], [22]. This mechanism can be used
to obtain total control of the target system even if there is
not a direct interaction between the two parties [23].

In this contribution we prove that, in the indirect control
scheme, the environment induced correlations can be used
to manipulate the asymptotic states of the target system.
This result gives further evidence that, in this framework,
it is possible to engineer the environmental action to get
controllability. The work is organized as follows: in Section I
we summarize some standard results about quantum dynam-
ical semigroups and their stationary states, in Section II we
provide necessary conditions for the indirect manipulation
of the asymptotic states of the relevant system under a
purely dissipative dynamics, in Section III we evaluate the
stationary states and describe a concrete physical example of
application, and finally we conclude in Section IV.

I. QUANTUM DYNAMICAL SEMIGROUPS AND THEIR

STATIONARY STATES

In many situations (usually, when there is a weak in-
teraction with the surrounding environment) it is possible
to approximate the reduced dynamics of an open system
S using a Markovian one-parameter family of completely
positive maps{γt; t > 0}, satisfying the semigroup property
γt+s = γt ◦ γs, with t, s > 0, with

ρs(t) = γt[ρs(0)], (1)

where the state of the systemS is given by the Hermitian,
positive, unit trace operatorρs (statistical operator), acting on
the n-dimensional Hilbert space associated toS. Complete
positivity is necessary in order to guarantee a physically
consistent interpretation of the formalism when dealing with
composite, entangled systems. The generatorL of the dy-
namics is defined byρ̇s = L[ρs], and it is possible to
prove that it has the general form (the so-called Lindblad-
Kossakowski form)

L[ρs] = −i[Hs, ρs]+
∑

i,j

cij

(
FiρsF

†
j −

1
2
{F †j Fi, ρs}

)
, (2)

where Hs = H†
s is the Hamiltonian ofS, and the set

{Fi; i = 1, . . . , n2 − 1}, along with the n-dimensional
identity operator, form a basis for the operators acting on
the Hilbert space associated toS, satisfyingTrFi = 0, and
Tr(FiF

†
j ) = δij . The (n2 − 1)× (n2 − 1) matrix C = [cij ]

(Kossakowski matrix) fulfillsC† = C andC > 0, necessary
and sufficient condition for the complete positivity of the
dynamics [5], [6].

In the following, S is a bipartite system,S = T + A,
where T is the target system (to be manipulated) andA
the ancilla. We assume thatT and A are two copies of
the same two-level system, separately interacting with the
same environment, assumed to be spatially homogeneous,
according to the Markovian dynamics (2). We further assume
that Hs = 0, since we want to study a purely dissipative
dynamics. To model this system, it is sufficient to consider
the basis{Fi; i = 1, . . . , 6}, given by the local operators

Fi = σi⊗ I for i = 1, 2, 3 andFi = I⊗ σi−3 for i = 4, 5, 6,
where σi, i = 1, 2, 3 are the Pauli matrices. We consider
the standard representation of these operators in whichσ3 is
diagonal. The6× 6 matrix C has the form

C =
[

A B
B† A

]
, (3)

where A = A† is the Kossakowski matrix for the system
T (or A) alone, andB represents the dissipative coupling
between the two parties.A and B are 3 × 3 blocks. The
form (3) is not the most general joint Kossakowski matrix,
as we have assumed that the two parties interact separately
with the environment, and that the two local dissipative
contributions are equal (homogenous environment). We will
limit our attention to models well described by (3); moreover,
for simplicity, we will further assumeB = B†. This choice
produces a significative simplification in the treatment and it
is still of great phenomenological interest.

The first term in the right hand side of (2) represents the
coherent part of the evolution and it generates a group of
reversible, unitary transformations. The second term gener-
ates the irreversible dynamics, according to the matrixC
whose entries depend on the microscopical details of the
interaction between system and environment. It also leads
to the appearance of attractors in the state space ofS, and
consequently relaxation to equilibrium of the states of the
open system. A stationary state for the dynamics,ρ∞s , is
defined by the condition on the generatorL[ρ∞s ] = 0. Since
the dynamics is linear in the stateρs, it is possible to fully
characterize the asymptotic fate of the system by studying
the eigenvalues of the dynamical matrix appearing in the
coherence vector representation of (2) [24]. Although this
treatment is very general, it is not suitable for the purposes of
this work. We will rather refer to some necessary conditions
for the existence of stationary states, and for the convergence
of ρs(t) to them, given in terms of the operators{Vi; i}
appearing in the diagonal form of (2),

L[ρs] =
∑

i

(
ViρsV

†
i −

1
2
{V †

i Vi, ρs}
)
. (4)

These conditions are expressed by the following theorem
[25], that has been adapted to the present context.

Theorem 1:Given the quantum dynamical semigroup (4),
assume that it admits a stationary stateρ0 of maximal
rank. DefiningM = {Vi, V

†
i ; i}′, the commutant of the

Hamiltonian plus the dissipative generators, the following
conditions hold true:

1. If M = span(I), thenρ0 is the unique stationary state.
Moreover, if {Vi; i} is a self-adjoint set with{Vi; i}′ =
span(I), then for every initial conditionρs(0)

lim
t→+∞

ρs(t) = ρ0.

2. If M 6= span(I), then there exist a complete family
{Pn; n} of pairwise orthogonal projectors such thatZ =
M∩M′

= {Pn; n}′′ . If {Vi; i}′ = M, two extreme cases
together with their linear superpositions may occur.



i. If Z = M, then for every initial conditionρs(0)

lim
t→+∞

ρs(t) =
∑

n

Tr(Pnρs(0)Pn)
Pnρ0Pn

Tr(Pnρ0Pn)
.

ii. If Z = M′
, then for everyρs(0)

lim
t→+∞

ρs(t) =
∑

n

Pnρs(0)Pn.

Therefore, the stationary states of a quantum dynamical
semigroup can be characterized by means of the algebras
M, M′, andZ, if a maximal rank stationary stateρ0 is
available. These quantities are evaluated in the next section,
depending on the form of the matrixC.

II. RELEVANT ALGEBRAIC QUANTITIES

Following Theorem 1, we need to writeC in diagonal
form in order to find the operatorsVi appearing in (4). This
is achieved by means of the unitary transformationU such
that

UCU† = diag(λi, i = 1, . . . , 6), (5)

whereλi are the eigenvalues ofC. U has the form

U =
1√
2

[
Ũ Ũ

−Û Û

]
(6)

and Ũ , Û are unitary transformations such that

Ũ(A + B)Ũ† = diag(λ+
i , i = 1, 2, 3),

Û(A−B)Û† = diag(λ−i , i = 1, 2, 3). (7)

The eigenvalues ofC are ordered asλi = λ+
i for i = 1, 2, 3

andλi = λ−i−3 for i = 4, 5, 6. Comparing the generator forms
(2) and (4), and using the notationU = [uij ], we have

Vi =
6∑

k=1

u∗ikFk. (8)

Following (6), it is possible to write

Vi =




I⊗ σ̃i + σ̃i ⊗ I, i = 1, 2, 3

I⊗ σ̂i−3 − σ̂i−3 ⊗ I, i = 4, 5, 6
(9)

where we have defined

σ̃i =
3∑

k=1

ũ∗ikσk, σ̂i =
3∑

k=1

û∗ikσk, (10)

and we used the notatioñU = [ũij ], Û = [ûij ]. The
operators in (10) satisfyTr σ̃i = Tr σ̂i = 0 andTr(σ̃iσ̃

†
j ) =

Tr(σ̂iσ̂
†
j ) = δij . They are self-adjoint if and only if the

unitary operators̃U and Û are orthogonal.
The commutant of Theorem 1 can be expressed as

M = {Vi, V
†
i ; i|λi 6= 0}′ =

⋂

i|λi 6=0

{Vi, V
†
i }

′
, (11)

where only non-vanishing eigenvaluesλi have to be consid-
ered, otherwise the correspondingVi do not appear in the
generator (4). Moreover, for a giveni,

{Vi, V
†
i }

′
= {v|v ∈ {Vi}

′
, v† ∈ {Vi}

′}, (12)

therefore we can limit our attention to the sets{Vi}′ . We
find convenient to consider separately the two kinds of
contributions defined in (9). To begin with, we consider
a fixed index i such thatλ+

i 6= 0, and assume that the
corresponding̃σi is non-singular. In this case it can be written
as

σ̃i = µ̃iRiσ3R
−1
i (13)

where it is possible to chooseRi = R−1
i , and

µ̃2
i =

∑

j

(ũ∗ij)
2. (14)

Since I ⊗ σ̃i + σ̃i ⊗ I = µ̃iRi(I ⊗ σ3 + σ3 ⊗ I)Ri, with
Ri = Ri ⊗Ri, it follows that

{I⊗ σ̃i + σ̃i ⊗ I}
′
= Ri{I⊗ σ3 + σ3 ⊗ I}

′Ri (15)

and then, after the explicit computation,

{Vi}
′
= span(I⊗ I, I⊗ σ̃i, σ̃i ⊗ I, σ̃i ⊗ σ̃i, Ω+, ∆−

i ), (16)

having defined the additional operators

Ω+ = σ1 ⊗ σ1 + σ2 ⊗ σ2 + σ3 ⊗ σ3,

∆−
i = Ri(σ1 ⊗ σ2 − σ2 ⊗ σ1)Ri. (17)

Notice that, in general, the operators in the right hand
side of (16) are not self-adjoint, nor orthogonal each other
in the Hilbert-Schmidt metric, since the transformationRi

is not unitary (equivalently, self-adjoint). However, if the
coefficientsũ∗ij , j = 1, 2, 3, are real,σ̃i is self-adjoint and
Ri unitary. Consequently, in this case the basis of{Vi} is
made of Hermitian, orthogonal operators.

The commutants{Vi}′ are completely characterized for
i = 1, 2, 3. Finally, {Vi, V

†
i }

′
can be found by considering

(12):

{Vi, V
†
i }

′
=




{Vi}′ , iff σ̃i = σ̃†i ;

span(I⊗ I, Ω+), otherwise.
(18)

The corresponding sets fori = 4, 5, 6 can be found by
applying the same procedure tôσi, assuming thatλ−i 6= 0.
The result is

{Vi}
′
= span(I⊗ I, I⊗ σ̂i, σ̂i ⊗ I, σ̂i ⊗ σ̂i, Ω−i , ∆+

i ), (19)

where

Ω−i = Si(σ1 ⊗ σ1 − σ2 ⊗ σ2)Si,

∆+
i = Si(σ1 ⊗ σ2 + σ2 ⊗ σ1)Si, (20)

andSi = Si ⊗ Si, with

σ̂i = µ̂iSiσ3S
−1
i , (21)

whereSi = S−1
i , and

µ̂2
i =

∑

j

(û∗ij)
2. (22)

Finally, in this case

{Vi, V
†
i }

′
=




{Vi}′ , iff σ̂i = σ̂†i ;

span(I⊗ I), otherwise.
(23)



If σ̃i (or σ̂i) is singular, the previous computations are not
longer valid. In this case, the commutants must be evaluated
by direct computation and it is not possible, in general, to
express their structure in a compact form.

We have all the ingredients to evaluate the contribution
related to the dissipative generatorsVi in (11). We find
convenient to denote byn+ and n− the number of non-
vanishing eigenvalues of the typeλ+ and λ− respectively.
The non-trivial cases are summarized below, with the cor-
responding relevant algebras and set of projectors{Pi; i},
described in theorem 1, to be used to construct the set of
stationary states. For further reference, the projectorsΠk,
k ∈ {−, +, 1, . . . , 4}, are defined as

Πk = [πk
ij ], πk

ij = δikδjk, k = 1, . . . 4;

Π− =
1
4
(I⊗ I− Ω+), Π+ = I⊗ I−Π−. (24)

A. Case 1

It is characterized byn+ = 1, A = AT , B = A. We
notice thatA = B is equivalent ton− = 0. The commutant
is given byM = span(I⊗I, I⊗ σ̃i, σ̃i⊗I, σ̃i⊗ σ̃i, Ω+, ∆−

i ),
andZ = M′ = span(I ⊗ I, σ̃i ⊗ σ̃i, I ⊗ σ̃i + σ̃i ⊗ I). The
projectors are given by

P1 = RiΠ1Ri, P2 = RiΠ4Ri,

P3 = Ri(Π2 + Π3)Ri. (25)

B. Case 2

It is characterized byn+ = 1, A 6= AT , B = A, or rather
n+ > 1, B = A. In this caseZ = M = span(I ⊗ I, Ω+),
and there are only two projectors:

P1 = Π−, P2 = Π+. (26)

C. Case 3

It is characterized byn+ = n− = 1, A = AT , B = αA,
α ∈ R r {−1, +1}. We observe that[A,B] = 0, thus it
is possible to choosẽU = Û . Moreover,B = αA implies
σ̃ξ = σ̂ξ for the indexξ such thatλ+

ξ 6= 0 and λ−ξ 6= 0.
Finally, Z = M = span(I ⊗ I, σ̃i ⊗ σ̃i, I ⊗ σ̃i, σ̃i ⊗ I), and
the projectors are given by

Pj = RiΠjRi, j = 1, . . . , 4. (27)

In all the remaining casesM = span(I ⊗ I), part 1 of
Theorem 1 applies and the maximal rank stationary state is
unique (if there is one). Therefore, the aforementioned cases
are necessary conditions for the indirect manipulation of the
asymptotic state of the target systemT via the auxiliary
systemA.

III. STATIONARY STATES

We separately explore the non-trivial cases described in
Section II. Following Theorem 1, if a stationary stateρ0

whose eigenvalues are all non-vanishing can be found, it is
possible to build the whole family of stationary statesρ∞s ,
by using the projectors{Pi; i}. Finally, the corresponding
stationary state of the target subsystem can be obtained from

ρ∞T = TrA ρ∞s , (28)

that is by a partial trace over the degrees of freedom of
the auxiliary system. We consider two different choices for
the initial stateρs(0), depending on wether there are initial
correlations or not. As the first choice we take into account
the product state

ρs(0) = ρT (0)⊗ ρA(0), (29)

where ρT (0) and ρA(0) are arbitrary states for the two
subsystems, that will be written using a Bloch vector rep-
resentation as

ρT (0) =
1
2

(
I+

3∑

k=1

ρT
k σk

)
, (30)

with real coefficientsρT
k , and analogously forρA(0), with

real coefficientsρA
k . The choice (30) refers to initially

uncorrelated systems, that will in general couple during their
joint, dissipative evolution, because of the off-diagonal block
B in the Kossakowski matrixC. Alternatively, we consider
the pure initial state

ρs(0) = |ψ〉〈ψ|, |ψ〉 =
√

P | ↑〉⊗ | ↑〉+
√

1− P | ↓〉⊗ | ↓〉,
(31)

where P ∈ R, and | ↑〉, | ↓〉 are the+1, respectively−1
eigenvalues of the operatorσ3. This state is entangled if
P 6= 0, 1, and it is maximally entangled ifP = 1

2 . It is
not an arbitrary entangled state, nevertheless it can be used
to test the impact of an initial quantum correlation on the
manipulation of the stationary state ofT .

Although their algebraic structures are different, Cases 1
and 3 lead to the same results. SinceZ = M′, in Case
1 there is not need ofρ0, whereas the simplest maximal
rank stationary state in Case 3 is given by the maximally
mixed stateρ0 = I ⊗ I. If there is not correlation in the
initial state, it is not possible to manipulate the stationary
state of the systemT by means of the ancillaA. In fact, the
coefficients of Bloch vector representation ofρ∞T , denoted
by ρ∞i , i = 1, 2, 3, depends only onρT (0):

ρ∞1 = uξ1

(
ρT
1 uξ1 − ρT

2 uξ2 + ρT
3 uξ3

)

ρ∞2 = −uξ2

(
ρT
1 uξ1 − ρT

2 uξ2 + ρT
3 uξ3

)
(32)

ρ∞3 = uξ3

(
ρT
1 uξ1 − ρT

2 uξ2 + ρT
3 uξ3

)
,

where ξ ∈ {1, 2, 3} is such thatλ+
ξ 6= 0 in Case 1,

λ+
ξ 6= 0 andλ−ξ 6= 0 in Case 3. If we consider the (possibly

entangled) initial state (31), the dependence onP is apparent:

ρ∞1 = (2P − 1)uξ1uξ3

ρ∞2 = −(2P − 1)uξ2uξ3 (33)

ρ∞3 = (2P − 1)u2
ξ3

Therefore, at different correlated initial states there corre-
spond different stationary statesρ∞T . Manipulations of the
asymptotic states of the target system are possible only when
there is an initial correlation betweenT andA.

In Case 2, since the expression of the stationary stateρ∞T
is more involved, we prefer to present a concrete example in



which both uncorrelated and correlated initial states allow
indirect manipulations of the asymptotic states. A simple
case is given by the choice

A = B =




a ib 0
−ib a 0
0 0 a


 , (34)

with the conditiona2 − b2 > 0 expressing the complete
positivity of the evolution. In this case, the maximal rank
stationary state is found to be

ρ0 =
1
4

(
I⊗ I+ b

a
(I⊗σ3 + σ3⊗ I) +

( b

a

)2

σ3⊗σ3

)
, (35)

and the asymptotic state ofT for the uncorrelated initial state
has components

ρ∞1 = 0
ρ∞2 = 0 (36)

ρ∞3 = τ
(
3 +

3∑

k=1

ρT
k ρA

k

)
,

where
τ =

ab

3a2 + 2b2
. (37)

For the correlated initial states we get

ρ∞1 = 0
ρ∞2 = 0 (38)

ρ∞3 = 4τ
(
1 +

√
P (1− P )

)
.

Therefore, in both cases it is possible to manipulateρ∞T .
We stress that it is possible to drive the asymptotic state of
T through the initial state ofA even if the two system are
initially uncorrelated, and there is not a Hamiltonian coupling
between them.

IV. D ISCUSSION ANDCONCLUSIONS

We have explored the asymptotic performance of the
indirect control method when both target and auxiliary sys-
tems are two-level systems, and they evolve under a purely
dissipative dynamics. We have assumed that the two sys-
tems interact separately with an homogeneous environment,
leading to a particular form of the Kossakowski matrixC
for the composite system. We have found that the conditions
expressed in Case 2 are necessary conditions for the indirect
manipulation of the stationary state ofT through the initial
state of A when the initial state is a product state. We
have given a numerical example in which this dependence is
explicit. We have also proved that, in all the non-trivial cases
considered, an initial entanglement between the two systems
is effective for control purposes.

Initial states with a different correlation between the two
parties produce different stationary states for a reduced sub-
system whenever some correlation survives to the decohering
action of the environment. This is also true for more general
models than the one described in this contribution.

For initially uncorrelated states, the dissipative evolution
has to provide the necessary entanglement, that has to

be preserved in the large time limit (for the asymptotic
entanglement in a quantum dynamical semigroup with purely
dissipative evolution, see the results presented in [26]).
Therefore, the ability of varying the stationary state ofT
is a controlled dissipative mechanism. In this sense, in
the indirect control approach the environmental action can
be considered as a resource. This kind of behavior has
already been observed when dealing with accessibility and
controllability of a pair of qubits immersed in a bath of
decoupled harmonic oscillators, in an exactly solvable model
[23]. Therefore, it is not an artifact of the Markovian nature
of the evolution.

Eq. (37) gives a limited ability of manipulation ofρ∞T .
However, the case here discussed is intended to represent an
example of explicit dependence, not a complete treatment
of the asymptotic reachable set. Moreover, the relevant case
A = B is important in concrete experimental situations, for
example in the study of the resonance fluorescence [27], [28],
or in the analysis of the weak coupling of two atoms to an
external quantum field [29].
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