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Abstract—In the dynamics of open quantum systems, the ability of manipulation on the system, since many transitions
interaction with the external environment usually leads to a pecome forbidden. The extremal case is represented by the
contraction of the set of reachable states for the system as time so-called uniquely relaxing semigroupswhere there is a

increases, eventually shrinking to a single stationary point. In . : .
this contribution we describe to what extent it is possible to unique asymptotic state for every initial state of the system.

modify this asymptotic state by means of indirect control, that  Therefore, in order to fully make use of the potentialities
is by using an auxiliary system coupled to the target system in of quantum systems, it is fundamental to understand the
order to affect its dynamics, when there is a purely dissipative mechanisms leading to dissipation and to conceive methods

coupling between the two systems. We prove that, also in v, coynteract them, and, more in general, to control the
this restrictive case, it is possible to modify the asymptotic . ' ' '
dynamics of the system.

state of the relevant system, give necessary conditions for that . h . . .
and provide physical examples. Therefore, in indirect control With these motivations in mind, several solutions to the

schemes, the environmental action has not only a negative problem have been proposed. The study of the symmetries
impact on the dynamics of a system, it is rather possible to of the system-environment coupling has lead to the no-
make use of it for control purposes. tion of decoherence-free subspaces or subsystéias are
INTRODUCTION quiet places, unaffected by decoherence, where to encode
the relevant information (for a review on the topic, see

g . [f]). From a more active perspective, a theory of quantum
only for a deep understanding of the fundamental physic ntrol has developed, dealing with the effect of external

laws, but also for its potential applications [1]. In particular, itmanipulations that can be performed on the system. In the
has been proved that the use of quantum-based technologé?gndard settingcbherent contrgl the control parameters

would highly increase the performance of a computatlonainter the Hamiltonian of the system, for example through

device [2]. This is due to the mathematical structure O&xternal fields coupled to the system (for a geometric control

the theory, leading to peculiar features for the microscopl erspective, in line with that developed in this work, refer
systems, absent in the macroscopic, classical world. Amo g 8], [9] ’[10] [11], [12], [13], [14]). Although thié is
them, the most relevant (and not completely understood) {fie most natural way to introduce external actions in the

representedl b¥ the quantum correIaur? ns knowaTaanglﬁ— dynamics of a system, its ability to fight the unwished effects
ment typical of quantum systems, whose complete charags o jreversible dynamics is limited [14], unless some

terization has been given only in the low dimensional CaS€formation about the state of the system is collected, and

These correlations are the key of many recently proposgﬂen used to update in real time the controls. This information
protocols, as teleportation [3] or quantgm Cryptography [4]is usually obtained via an indirect continuous measurement
However, quantum systems are fragile: their relevant fe%'nd, because of this, the master equation describing the

tures are usually degraded by their interaction with thgystem becomes stochastic. Thisantum feedbackcheme

external environment, leading to irreversibility, dissipatior} r o . . :
. esents a promising approach in many interesting cases
and decoherence. Therefore closed systems, described by R [16] [17]p g app y g

Schibdinger equation, are only approximations of real sys- A different approach to quantum control has been recently

tems, that are necessarily open since they exchange Ene¥cussed, in which the control does not enter through the

Td info:jma(;cign With. thle ex':jerln_al vyorld.bTo accour(ljt for thisHamiltonian of the system, but it is rather obtained by means
the standard dynamical model Is given bguantum dynam- ¢ auxiliary system (ancilla) [18], [19], [20], that can be

ical semigroupthat is a one-parameter family of Markovian manipulated and put in interaction with the relevant system,

(ie., satisfying the semigroup prpperty) completely positi\(%nd finally discarded at the end of the procedure. The ability
maps, transforming pure states into mixtures and destroying driving the target system through the auxiliary one is

?uantﬁm coherencz [5], [6]'| Irrev_er5|b|llty is due to t_hedetermined by the correlations between them. The interest in
act that quantum dynamical semigroups are contractiogis ingirect controlmethod is twofold. It is complementary

in the state space of the system: this highly reduces tI?S the coherent control approach, that is, it can be applied to
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The study of quantum mechanical systems is relevant n



immersed in it via a noisy mechanism, not only destroy theif; = o; @ [ for i =1,2,3 and F; =1® og;_3 for i = 4, 5,6,
existing correlations [21], [22]. This mechanism can be usedheres;, i = 1,2,3 are the Pauli matrices. We consider
to obtain total control of the target system even if there ithe standard representation of these operators in whjdh

not a direct interaction between the two parties [23]. diagonal. Thes x 6 matrix C' has the form
In this contribution we prove that, in the indirect control
: . . A B
scheme, the environment induced correlations can be used C= Bt o4l 3)

to manipulate the asymptotic states of the target system.

This result gives further evidence that, in this frameworkyhere A = At is the Kossakowski matrix for the system

it is possible to engineer the environmental action to get (or A) alone, andB represents the dissipative coupling
controllability. The work is organized as follows: in Section Ipetween the two partiesd and B are 3 x 3 blocks. The

we summarize some standard results about quantum dynagm (3) is not the most general joint Kossakowski matrix,
ical semigroups and their stationary states, in Section Il Wwgs we have assumed that the two parties interact separately
provide necessary conditions for the indirect manipulatiopjith the environment, and that the two local dissipative
of the asymptotic states of the relevant system under @ntributions are equal (homogenous environment). We will
purely dissipative dynamics, in Section Ill we evaluate th@mit our attention to models well described by (3); moreover,
stationary states and describe a concrete physical example@f simplicity, we will further assume3 = Bt. This choice

application, and finally we conclude in Section IV. produces a significative simplification in the treatment and it
I. QUANTUM DYNAMICAL SEMIGROUPS AND THEIR is still of great phenomenological interest.
STATIONARY STATES The first term in the right hand side of (2) represents the

coherent part of the evolution and it generates a group of

In r.nany'snuatlons (usuglly, whgn there IS a Weak.mfeversible, unitary transformations. The second term gener-
teraction with the surrounding environment) it is p055|bleates the irreversible dynamics, according to the maffix
to approximate the reduced dynamics of an open syste '

S using a Markovian one-parameter familv of completel Whose entries depend on the microscopical details of the
using Vi -par Y PetelY teraction between system and environment. It also leads

positive maps{%;-t > 0}, satisf_ying the semigroup property to the appearance of attractors in the state space, @ind

Vets =Y 0 Ys With 2,5 > 0, with consequently relaxation to equilibrium of the states of the
ps(t) = 1lps(0)], (1) open system. A stationary state for the dynamie¥, is

defined by the condition on the generafgp>°] = 0. Since

the dynamics is linear in the state, it is possible to fully

. . : ; characterize the asymptotic fate of the system by studying

the n-dimensional Hilbert space associatedStoComplete the eigenvalues of the dynamical matrix appearing in the

p05|t!V|ty IS _necessary In order to g'uarantee a pr.]y":"c"’.l"goherence vector representation of (2) [24]. Although this

consistent interpretation of the formalism when dealing W'ttﬁreatment is very general, it is not suitable for the purposes of
composite, der}_tanglebd .sys_tengs. The %ef.‘efm“ﬁ thildy' this work. We will rather refer to some necessary conditions

namics Is detined by, = s, and it is possi '€ 10 ¢4 the existence of stationary states, and for the convergence
prove that it has the general form (the so-called Lindbla 5f p.(t) to them, given in terms of the operatofs; i}

Kossakowski form) appearing in the diagonal form of (2),
1
Llp,| = —i[H > cij(FipoFf— S{FIF, 2 1
) = =il pul+ 3 e (FiouF] = 5 {F i) @) Lipd = Y (VieV = 5V Vi pa}). @)

i,j -
K3

where the state of the systefis given by the Hermitian,
positive, unit trace operatgr; (statistical operator), acting on

where H;, = H] is the Hamiltonian ofS, and the set
{F;;i = 1,...,n% — 1}, along with the n-dimensional
identity operator, form a basis for the operators acting o
the Hilbert space associated $ satisfyingTrF; = 0, and
Te(FF)) = 8i;. The (n” — 1) ? (n® —1) matrix ' = [ei;] o4 Defining M = {V;,V';i}', the commutant of the
(KOSS&kQWSkI matn)_()_ fulfillsC = C"andC 2 0, Necessary  yamiltonian plus the dissipative generators, the following
and sufficient condition for the complete positivity of theconditions hold true:

dynamics [5], [6]. 1. If M = span(), thenp, is the unique stationary state.

In the following, S is a bipartite systemS = T + A, M . I g . D
. _ oreover, if {V;;i} is a self-adjoint set with{V;;i} =
where T' is the target system (to be manipulated) a#d ). then f initial diti
the ancilla. We assume th&f and A are two copies of span([), then for every initial conditiorp (0)

the same two-level system, separately interacting with the lim ps(t) = po.

same environment, assumed to be spatially homogeneous, oo

according to the Markovian dynamics (2). We further assume 2. If M # span(I), then there exist a complete family
that H;, = 0, since we want to study a purely dissipative{P,;n} of pairwise orthogonal projectors such that =
dynamics. To model this system, it is sufficient to considem N M' = {P,;n}". If {V;;i}' = M, two extreme cases
the basis{F;;i = 1,...,6}, given by the local operators together with their linear superpositions may occur.

These conditions are expressed by the following theorem

[125], that has been adapted to the present context.
Theorem 1:Given the quantum dynamical semigroup (4),

assume that it admits a stationary statg of maximal



i. If Z= M, then for every initial conditiorp,(0) therefore we can limit our attention to the sdtg;}". We
PopoP, find convenient to consider separately the two kinds of
lim p,(t) = ZTI"(Pnps(O)Pn) contributions defined in (9). To begin with, we consider

t—-+o0 T P7 P, ’ . .
" H(Pupofn) a fixed indexi such that\;” # 0, and assume that the
ii. If Z =M, then for everyp,(0) corresponding; is non-singular. In this case it can be written
as
t—I}Hloo ps(t) = Z Pnps(O)Pn- o; = [LiRiagR;1 (13)

Therefore, the stationary states of a quantum dynamicaiere it is possible to choose; = R; ! and
semigroup can be characterized by means of the algebras

~2 ~%x \2
M, M’, and Z, if a maximal rank stationary state, is Hi = Z(“ij) : (14)
available. These quantities are evaluated in the next section, J
depending on the form of the matriX. Sincel®d; + 6, @1 = KR(IL® o3 + 03 ® )R, with

R; = R; ® R;, it follows that
Il. RELEVANT ALGEBRAIC QUANTITIES

Following Theorem 1, we need to writ€ in diagonal I®d+6;0l} =Ri{ll®os+o3 @I} Ri  (15)

form in order to find the operatorg; appearing in (4). This and then, after the explicit computation,
is achieved by means of the unitary transformatidrsuch

that (ViY =span(I®@ LI® 64,6, ® 1,6, @ 5, 2, A7), (16)
UCU" = diag(\i,i = 1,...,6), (5)  having defined the additional operators
where )\; are the eigenvalues @f. U has the form OFf = 01Q01+02Q09 + 03 03,
- e [ []‘A [:] } ©) A7 = Ri(o1 ®o9 — 02 ®01)R,. a7
Vel -U U Notice that, in general, the operators in the right hand

side of (16) are not self-adjoint, nor orthogonal each other
B B in the Hilbert-Schmidt metric, since the transformatiin
UA+B)U! = diag(\,i=1,2,3), is not unitary (equivalently, self-adjoint). However, if the
UA-B)U" = diag(\;,i=1,2,3). (7) coefficientsu;;, j = 1,2,3, are real,g; is self-adjoint and
_ R; unitary. Consequently, in this case the basis{®f} is
The eigenvalues of are ordered ag; = )\j fori=1,2,3  made of Hermitian, orthogonal operators.

andA; = A;__3 fori = 4,5, 6. Comparing the generator forms  The commutants{V;}' are completely characterized for

andU, U are unitary transformations such that

(2) and (4), and using the notatidh = [u;;], we have i = 1,2,3. Finally, {V;,V;'}" can be found by considering
6 (12)
_ o Vi vly = (18)
Following (6), it is possible to write span(I® I, Q1), otherwise.
I®d+6 @I, i=1,23 The corresponding sets far= 4,5,6 can be found by
Vi= ) ) _ (9)  applying the same procedure &, assuming thaf;” # 0.
I®6;_3 —6i_3®1, i=4,56 The result is
where we have defined (ViY =span(I@ LI ® 64,6, ® 1,6, @ 6,27, AF), (19)
3 3
0; = Zﬁ:ko—ka o = Za:kalﬁ (10) where
k=1 k=1 Q; = Si(tn & o1 —0'2®0'2>Si7
and we used the notatioBl = [u;;], U = [ay]. The Af = Si(o1@02+02®01)S;, (20)

operators in (10) satisffr&; = Tr; = 0 and Tr(5,61) =

oAt L : andS; = S; ® S;, with
Tr(6,6;) = d;5. They are self-adjoint if and only if the

unitary operatorg/ andU are orthogonal. & = fiSiosS; (21)
The commutant of Theorem 1 can be expressed as whereS; = S;', and
M=V, vhin#o0y = () (vl @y 2 =3 (a)?. (22)
i|A: 0

J
where only non-vanishing eigenvalugshave to be consid- Finally, in this case
ered, otherwise the correspondifg do not appear in the / e At
generator (4). Moreover, for a given (1 vy, itf 6; =63

’ Vi.viy = (23)
Vi, VI = {olv e {Vi} ot € {(Vi}'}, (12) span(I®I),  otherwise.



If &; (or 4;) is singular, the previous computations are nothat is by a partial trace over the degrees of freedom of
longer valid. In this case, the commutants must be evaluatélie auxiliary system. We consider two different choices for
by direct computation and it is not possible, in general, tthe initial statep,(0), depending on wether there are initial

express their structure in a compact form.

correlations or not. As the first choice we take into account

We have all the ingredients to evaluate the contributiothe product state

related to the dissipative generatovs in (11). We find
convenient to denote by, and n_ the number of non-
vanishing eigenvalues of the type™ and A\~ respectively.

ps(0) = pr(0) ® pa(0), (29)

where pr(0) and p4(0) are arbitrary states for the two

The non-trivial cases are summarized below, with the cosubsystems, that will be written using a Bloch vector rep-

responding relevant algebras and set of projec{d?si},

described in theorem 1, to be used to construct the set of

stationary states. For further reference, the projectdss
ke{—,+,1,...,4}, are defined as

I, = [ij]a ij =0iljn, k=1,...4

1
n-lgeroon, mooter-m. @

A. Case 1

It is characterized byr, = 1, A = AT, B = A. We
notice thatA = B is equivalent ton_ = 0. The commutant
is given byM = span(I®L,I®d;, 6, ®1L, 6, ®0;, AT, A7),
andZ2 = M’ = Span(H RLo;,®o,Il®c,+06; ® ]I). The
projectors are given by

P = RiILR;, Py = RiII4R;,

P3 = R;(Ily + II3)R,. (25)

B. Case 2
It is characterized by,, = 1, A # AT, B = A, or rather

ny > 1, B = A. In this caseZ = M = span(I® I,Q"),
and there are only two projectors:

PlZH,, P2:H+. (26)

C. Case 3
It is characterized by, =n_ =1, A = AT, B = aA,
a € R~ {-1,+1}. We observe thafA, B] = 0, thus it
is possible to choos& = U. Moreover, B = aA implies
G¢ = o¢ for the index¢ such that\[ # 0 and A, # 0.
Finally, Z = M = span(I® I,5; ® 6;,I ® &;,5; @ I), and
the projectors are given by
Pj =RiILR;,  j=1,...,4. (27)

In all the remaining cases = span(I ® I), part 1 of

Theorem 1 applies and the maximal rank stationary state i
unique (if there is one). Therefore, the aforementioned casgs
are necessary conditions for the indirect manipulation of th

asymptotic state of the target systémvia the auxiliary
systemA.

[1l. STATIONARY STATES

We separately explore the non-trivial cases described in

Section Il. Following Theorem 1, if a stationary statg

whose eigenvalues are all non-vanishing can be found, it

possible to build the whole family of stationary stajes,
by using the projector§ P;;4}. Finally, the corresponding

resentation as

3

pr(0) = % (H +) pf@k>7 (30)

k=1
with real coefficientspl, and analogously fop(0), with
real coefficientsp;l. The choice (30) refers to initially
uncorrelated systems, that will in general couple during their
joint, dissipative evolution, because of the off-diagonal block
B in the Kossakowski matrixC. Alternatively, we consider
the pure initial state

ps(0) = W), [¢) =VP| @[ T)+V1-P| i>®|(3ii,)
where P € R, and| 1), | |) are the+1, respectively—1
eigenvalues of the operater;. This state is entangled if
P # 0,1, and it is maximally entangled iP = % It is
not an arbitrary entangled state, nevertheless it can be used
to test the impact of an initial quantum correlation on the
manipulation of the stationary state bf

Although their algebraic structures are different, Cases 1
and 3 lead to the same results. Sinfe= M/, in Case
1 there is not need ofy, whereas the simplest maximal
rank stationary state in Case 3 is given by the maximally
mixed statepy, = [ @ L. If there is not correlation in the
initial state, it is not possible to manipulate the stationary
state of the systeri’ by means of the ancillal. In fact, the
coefficients of Bloch vector representation @f, denoted
by p°, i =1,2,3, depends only opr(0):

P = uga <P1Tu51 — paues + PgTugs)
p¥ = —ues(pluer - pfues + pfues)  (32)
p3 = ugs (,01TU51 - PQTUEQ + P3TU53)7

Where ¢ € {1,2,3} is such that)\éF # 0 in Case 1,

# 0 and Ae # 0 in Case 3. If we consider the (possibly
entangled) initial state (31), the dependencéd-as apparent:

pi° = (2P —Dugrugs
pgo = —(2P — 1)u52u§3 (33)
pzy = (2P-— 1)“23

'Irsherefore, at different correlated initial states there corre-
spond different stationary stateg®. Manipulations of the
asymptotic states of the target system are possible only when

there is an initial correlation betweéhn and A.

stationary state of the target subsystem can be obtained fron% Case 2, since the expression of the stationary stite

pr = Traps, (28)

is more involved, we prefer to present a concrete example in



which both uncorrelated and correlated initial states allowe preserved in the large time limit (for the asymptotic
indirect manipulations of the asymptotic states. A simplentanglement in a quantum dynamical semigroup with purely

case is given by the choice

a b 0
A=B=| —ib a 0|, (34)
0 0 a

dissipative evolution, see the results presented in [26]).
Therefore, the ability of varying the stationary state 7of

is a controlled dissipative mechanism. In this sense, in
the indirect control approach the environmental action can
be considered as a resource. This kind of behavior has

with the conditiona? — »* > 0 expressing the complete already been observed when dealing with accessibility and
positivity of the evolution. In this case, the maximal rankcontrollability of a pair of qubits immersed in a bath of

stationary state is found to be

po = 3(11@}14—2(]1@03—&-03@}1)—&- <§)203®03), (35)

and the asymptotic state @ffor the uncorrelated initial state

has components

decoupled harmonic oscillators, in an exactly solvable model
[23]. Therefore, it is not an artifact of the Markovian nature
of the evolution.

Eqg. (37) gives a limited ability of manipulation ¢f®.
However, the case here discussed is intended to represent an
example of explicit dependence, not a complete treatment

P = of the asymptotic reachable set. Moreover, the relevant case
e = (36) A = B is important in concrete experimental situations, for
3 example in the study of the resonance fluorescence [27], [28],
T = T<3 + szpﬁ) or in the analysis qf the weak coupling of two atoms to an
1 external quantum field [29].
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