COPRIME FACTORIZATION OF THE TRANSFER MATRIX OF A SINGULAR LINEAR SYSTEM

M. I. García-Planas Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya, Spain maria.isabel.garcia@upc.edu

Abstract

Given a linear dynamic time invariant represented by $x^+(t) = Ax(t)Bu(t)$, y(t) = Cx(t), we analyze conditions for obtention of a coprime factorization of transfer matrices of singular linear systems defined over commutative rings R with element unit. The problem presented is related to the existence of solutions of a matrix equation XE - NXA = Z.

Key words

Singular systems, feedback, output injection, coprime factorizations.

1 Introduction

Let R be a commutative ring with unity and $Ex^+(t) = Ax(t) + Bu(t), y(t) = Cx(t))$ be a singular system over R, that we represent by (E, A, B, C). Then, the transfer matrix of the system (E, A, B, C) is given by $H(s) = C(sE - A)^{-1}B$.

This systems appear in literature when for example, one studies linear systems depending on a parameter or linear systems with delays.

Let (E, A, B, C) be a singular system with $E = I_4$, $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, C = (1 & 0 & 0 & 0)$, clearly $(sI_4 - A)^{-1}$ is a rational matrix. Considering $F_E^B = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}, F_A^B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}, F_E^C = 0, F_A^C = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix},$ it is easy to compute det $(s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B)) = 1 \neq 0, \forall s \in R$, consequently $(s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B))^{-1}$ is polynomial.

We are interested in classify the singular systems (E, A, B, C) for which there exist feedbacks F_E^B, F_A^B , and output injections F_E^C, F_A^C , such that $(s(E+F_E^CC+BF_E^B)-(A+F_A^CC+BF_A^B))^{-1}$ is polynomial. We will call systems with polynomial transfer matrix by feedback (proportional and derivative) and output injection (proportional and derivative) and we will write simply

M. M. López-Cabeceira

Departamento de Matemáticas Universidad de León Spain mmlopc@unileon.es

as pbfoi-systems, the systems verifying this property .

Notice that if this property holds the the system is regularisable, remember that a system (E, A, B, C) is regularisable if and only if there exist feedbacks F_E^B , F_A^B , and output injections F_E^C, F_A^C , such that $det(s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B)) \neq 0$ for some $s \in R$.

Remark 1.1. Converse is not true as we can see in this example: let (E, A, B, C) with $E = I_4$, $A = \begin{pmatrix} 0 & \\ & 0 & \\ & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & \\ 0 & \\ 0 & \\ 0 & \end{pmatrix}$, $C = (0 \ 1 \ 0 \ 0)$, considering all possible feedbacks F_E^B , F_A^B , and output injections F_E^C, F_A^C matrix $s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B)$ is

s(1+a) +	$a_1 s(b+e) + (b_1 + e_1)$	$sc + c_1$	$sd + d_1$
0	$s(1+f) + f_1$	0	0
0	$s(1+g) + g_1$	s	1
(0	$s(1+h) + h_1$	0	s)

is easy to compute $det(s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B)) = (s(1+a) + a_1)(s(1+f) + f_1)s^2 \neq 0$ for almost all $s \in R$ and 0 for s = 0. Then (E, A, B, C) is regularisable but not pbfoi.

In order to use a simple reduced system preserving these properties we consider the following equivalence relation deduced of to apply the standard transformations in state, input and output spaces $x(t) = Px_1(t)$, $u(t) = Ru_1(t), y_1(t) = Sy(t)$, premultiplication by an invertible matrix $QE\dot{x}(t) = QAx(t) + Qu(t)$ making feedback $u(t) = u_1(t) - Vx(t)$ and derivative feedback $u(t) = u_1(t) - U\dot{x}(t)$ as well as output injection $u(t) = u_1(t) - Wy(t)$ and derivative output injection $u(t) = u_1(t) - Z\dot{y}(t)$. Considering this equivalence relation and restricting out to the regularisable systems and for $R = \mathbb{C}$, it is possible to reduce the system to (E_c, A_c, B_c, C_c) where

$$E_{c} = \begin{pmatrix} I_{1} & & \\ & I_{2} & \\ & & I_{3} & \\ & & & I_{4} & \\ & & & & N_{1} \end{pmatrix}$$

$$A_{c} = \begin{pmatrix} N_{2} & & \\ & N_{3} & \\ & & N_{4} & \\ & & J & \\ & & & I_{5} \end{pmatrix}$$

$$B_c = \begin{pmatrix} B_1 & 0 & 0\\ 0 & B_2 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

$$C_c = \begin{pmatrix} C_1 & 0 & 0 & 0 \\ 0 & 0 & C_2 & 0 & 0 \end{pmatrix}$$

and N_i denotes a nilpotent matrix in its reduced form $N_i = \operatorname{diag}(N_{i_1}, \dots, N_{i_t}), N_{i_j} = \begin{pmatrix} 0 & I_{n_{i_j}-1} \\ 0 & 0 \end{pmatrix} \in M_{n_{i_j}}(C),$ J denotes the Jordan matrix $J = \operatorname{diag}(J_1(\lambda_1), \dots, J_m(\lambda_m)), J_i(\lambda_i) = \operatorname{diag}(J_i_1(\lambda_i, \dots, J_{i_t}(\lambda_i)), J_{i_j}(\lambda_i) = \lambda_i I + N.$

Notice that not all subsystems must appears in canonical reduced form.

Remark 1.2. *Canonical reduced form can be obtained directly using the complete set of invariants (see [6]).*

2 Coprime factorization

Two polynomial matrices $N(s) \in M_{p \times m}(R[s])$ and $D(s) \in M_m(R[s])$ are called (Bézout) right coprime if $\binom{N(s)}{D(s)}$ is left-invertible, that is to say, if there exist $X(s) \in M_{m \times p}(R[s]), Y(s) \in M_m(R[s])$ satisfying the "Bézout identity"

$$X(s)N(s) + Y(s)D(s) = I_m$$

The polynomial matrices X(s) and Y(s) are called left Bézout factors for the pair (N(s), D(s)).

Let H(s) be a rational matrix admitting a factorization $H(s) = N(s)D^{-1}(s)$, we will call this factorization a r.c.f. (right coprime factorization) of H(s).

Theorem 2.1. Let (E, A, B, C) a pbfoi system. Then there exist a coprime factorization of the transfer matrix associated to the system.

Proof. Taking into account that (E, A, B, C) is a pbfoi system $(s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B))^{-1} = Q(s)$ is polynomial. The matrix pair (N(s), D(s)) with N(s) = Q(s) and $D(s) = I - (s(BF_E^B + F_E^C C) + (BF_A^B + F_A^C C))Q(s)$ is coprime: X(s)N(s) + Y(s)D(s) = I with $X(s) = s(BF_E^B + F_E^C C) + (BF_A^B + F_A^C C)$ and Y(s) = I. D(s) = I - X(s)Q(s) + (sE + A)Q(s) - (sE + A)Q(s) = (sE + A)Q(s),consequently det $D(s) = \gamma \det(sE + A)$ for all $s \in R$ and $N(s)D^{-1}(s) = Q(s)((sE + A)Q(s))^{-1} = (sE + A)^{-1}$

$$H(s) = C(sE + A)^{-1}B = CN(s)D^{-1}(s)B.$$

Proposition 2.1. Let (E, A, B, C) a pbfoi linear system, then there exist F_A^B, F_A^C , F_E^B, F_E^C , such that $A + BF_A^B + F_A^C C$ is invertible and $(E + BF_E^B + F_E^C C)(-A + BF_A^B + F_A^C C)^{-1}$ is nilpotent.

Proof. If (E, A, B, C) is a pbfoi linear system, then there exist $F_A^B, F_A^C, F_E^B, F_E^C$, such that $P(s) = s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B)$ is invertible, so there exist $Q(s) = s^\ell Q_\ell + \ldots + sQ_1 + Q_0$ such that $P(s)Q(s) = I_n$. Consequently:

$$\begin{array}{l} (A+BF^B_A+F^C_AC)Q_0=I_n\\ (E+BF^B_E+F^C_EC)Q_0-\\ (A+BF^B_A+F^C_AC)Q_1=0\\ (E+BF^B_E+F^C_EC)Q_1-\\ (A+BF^B_A+F^C_AC)Q_2=0\\ \vdots\\ (E+BF^B_E+F^C_EC)Q_{\ell-1}-\\ (A+BF^B_A+F^C_AC)Q_\ell=0\\ (E+BF^B_E+F^C_EC)Q_\ell=0\\ \end{array}$$

First equality says that $-(A+BF_A^B+F_A^CC)^{-1} = Q_0$. Since $-(A+BF_A^B+F_A^CC)$ is invertible we can obtain $Q_i, \ell \ge i \ge 1$.

$$Q_i = -(\mathbb{A}^{-1}\mathbb{E})^i \mathbb{A}^{-1}$$

where
$$\mathbb{A} = (A + BF_A^B + F_A^C C)$$
$$\mathbb{E} = (E + BF_E^B + F_E^C C)$$

The last equation

$$\begin{array}{l} 0 = (E + BF_E^B + F_E^C C) Q_\ell = \\ -((E + BF_E^B + F_E^C C) (A + BF_A^B + F_A^C C)^{-1})^{\ell+1} \end{array}$$

consequently

$$(E + BF_E^B + F_E^C C)(A + BF_A^B + F_A^C C)^{-1} \quad (1)$$

is a nilpotent matrix and taking into account that $Q_{\ell} \neq 0$, the nilpotency order is $\ell + 1$.

Corollary 2.1. If a system (E, A, B, C) is pbfoi then it is repairable

Remember that a system (E, A, B, C) is repairable if and only if there exist F_A^B and F_A^C such that $A + BF_A^B + F_A^C C$ is invertible, (for more information about repairable systems see [7]).

Notice that the system in remark 1.1 is not repairable.

Remark 2.1. Converse is not true as we can see in the following example: let (E, A, B, C) with $E = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $A = I_3$, $B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, C = (0 & 1 & 0), considering all possible feedbacks F_E^B , F_A^B , and output injections F_E^C , F_A^C matrix $s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B)$ is

$$\begin{pmatrix} 1+c_1+sa_1\ c_2+d_1+s(a_2+b_1)\ c_3+sa_3\\ 0 & 1+d_2+sb_2 & 0\\ 0 & d_3+sb_3 & 1+s \end{pmatrix}$$

which inverse is not polynomial because of $det(s(E + F_E^C C + BF_E^B) - (A + F_A^C C + BF_A^B)) \notin \mathbb{C}_0.$

Proposition 2.2. Let (E, A, B, C) be a pbfoi system. Then the equation XE-NXA = Z with N a nilpotent has a solution (X, Z) with X invertible.

Proof. Matrix 1 in proposition 2.1 is equivalent to a nilpotent matrix N in its reduced Jordan form

$$(E\!+\!BF_{E}^{B}\!+\!F_{E}^{C}C)(A\!+\!BF_{A}^{B}\!+\!F_{A}^{C}C)^{-1}=X^{-1}NX,$$

equivalently

$$X(E + BF_E^B + F_E^C C) = NX(A + BF_A^B + F_A^C C),$$

$$\begin{split} XE - NXA = \\ -X(F_E^C C + BF_E^B) + NX(F_A^C C + BF_A^B) = Z \end{split}$$

The existence of F_E^B , F_E^C , F_A^B , F_A^C , verifying proposition 2.1 implies that the equation XE - NXA = Z has a solution with X invertible and $Z = -X(F_E^C C + BF_E^B) + NX(F_A^C C + BF_A^B)$.

Suppose now, that the system (E, A, B, C) is repairable and let F_A^B and F_A^C be such that $A + BF_A^B + F_A^C C$ is invertible. If the equation XE - NXA = Z with N a nilpotent matrix, has a solution X, Z with X invertible, we can consider the matrix $M = -X^{-1}Z + X^{-1}NX(F_A^C C + BF_A^B)$. If the equation $F_E^C C + BF_E^B = M$ has a solution then

If the equation $F_E C + BF_E = M$ has a solution then the system is pbfoi, and

$$Q_i = -(A + BF_A^B + F_A^C C)^{-1} X N X^{-1}$$

3 Characterization of systems pbfoi

In this section we will try to characterize pbfoisystems.

Proof.

$$E_1 = QEP + \bar{F}_E^C CP + QB\bar{F}_E^B,$$

$$A_1 = QAP + \bar{F}_A^C CP + QB\bar{F}_A^B,$$

$$B_1 = QBR,$$

$$C_1 = SCP,$$

$$\begin{split} &(s(E_1+F_{E_1}^{C_1}C_1+B_1F_{E_1}^{B_1})-(A_1+F_{A_1}^{C_1}C_1+B_1F_{A_1}^{B_1}))^{-1}=\\ &(s(QEP+\bar{F}_E^CCP+QB\bar{F}_E^B+F_{E_1}^{C_1}SCP+QBRF_{E_1}^{B_1})-\\ &(QAP+\bar{F}_A^CCP+QB\bar{F}_B^B+F_{A_1}^{C_1}SCP+QBRF_{A_1}^{B_1})^{-1}=\\ &(sQ(E+Q^{-1}\bar{F}_E^CC+B\bar{F}_E^BP^{-1}+Q^{-1}F_{E_1}^{C_1}SC+BRF_{E_1}^{B_1}P^{-1})P-\\ &Q(A+Q^{-1}\bar{F}_A^CC+B\bar{F}_A^BP^{-1}+Q^{-1}F_{A_1}^{C_1}SC+BRF_{A_1}^{B_1}P^{-1})P)^{-1}=\\ &P^{-1}(s(E+Q^{-1}\bar{F}_E^CC+B\bar{F}_B^BP^{-1}+Q^{-1}F_{A_1}^{C_1}SC+BRF_{A_1}^{B_1}P^{-1})-\\ &(A+Q^{-1}\bar{F}_A^CC+B\bar{F}_A^BP^{-1}+Q^{-1}F_{A_1}^{C_1}SC+BRF_{A_1}^{B_1}P^{-1})^{-1}Q^{-1}=\\ &P^{-1}(s(E+(Q^{-1}\bar{F}_E^C+Q^{-1}F_{E_1}^{C_1}SC)+B(\bar{F}_B^BP^{-1}+RF_{E_1}^{B_1}P^{-1}))-\\ &(A+(Q^{-1}\bar{F}_A^C+Q^{-1}F_{A_1}^{C_1}S)C+B(\bar{F}_B^BP^{-1}+RF_{A_1}^{B_1}P^{-1})))^{-1}Q^{-1} \end{split}$$

$$\begin{array}{rcl} F^{C}_{E} &=& Q^{-1}\bar{F}^{C}_{E} + Q^{-1}F^{C_{1}}_{E_{1}}S, \ F^{C}_{E} &=& \bar{F}^{B}_{E}P^{-1} + \\ RF^{B_{1}}_{E_{1}}P^{-1}, \ F^{C}_{A} &=& Q^{-1}\bar{F}^{C}_{A} + Q^{-1}F^{C_{1}}_{A_{1}}S, \ F^{B}_{A} &= \\ \bar{F}^{A}_{A}P^{-1} + RF^{B_{1}}_{A_{1}}P^{-1} & \Box \end{array}$$

3.1 Cas $R = \mathbb{C}$ Proposition 3.1 permit us to characterize the systems pbfoi.

Lemma 3.1. Let (E, A, B, C) be a system equivalent to (E_r, A_r, B_r, C_r) with $E_r = \begin{pmatrix} I_2 \\ I_3 \\ N_1 \end{pmatrix}$, $A_r = \begin{pmatrix} N_3 \\ N_4 \\ I_5 \end{pmatrix}$, $B = \begin{pmatrix} B_2 \\ 0 \\ 0 \end{pmatrix}$, $C_r = (0 \ C_2 \ 0)$. Then, the system is pbfoi.

Proof. It is easy to prove that the system is equivalent (see [7]) to $(\bar{E}, \bar{A}, \bar{B}, \bar{C})$ with $\bar{E} = \begin{pmatrix} N_3 \\ N_4 \\ N_1 \end{pmatrix}$, $\bar{A} = \begin{pmatrix} I_2 \\ I_3 \\ I_5 \end{pmatrix} \bar{B} = B_r$, and $\bar{C} = C_r$. Then, taking $F_{\bar{E}}^{\bar{B}} = F_{\bar{A}}^{\bar{B}'} = 0$ and $F_{\bar{E}}^{\bar{C}} = F_{\bar{A}}^{\bar{C}} = 0$ we have that $(s(\bar{E} + F_{\bar{E}}^{\bar{C}}\bar{C} + \bar{B}F_{\bar{E}}^{\bar{B}}) - (\bar{A} + F_{\bar{A}}^{\bar{C}}\bar{C} + \bar{B}F_{\bar{A}}^{\bar{B}}))$ is invertible.

Lemma 3.2. Let (E, A, B, C) be a system equivalent to (E_r, A_r, B_r, C_r) with $E_r = \begin{pmatrix} I_2 & & \\ & I_3 & \\ & & I_4 & \\ & & N_r \end{pmatrix}$, $A_r = \begin{pmatrix} I_2 & & \\ & I_3 & \\ & & I_4 & \\ & & N_r \end{pmatrix}$ $\begin{pmatrix} N_3 \\ N_4 \\ J \\ I_5 \end{pmatrix}, B = \begin{pmatrix} B_2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, C_r = (0 C_2 0 0).$ Then, the system can be not pbfoi.

Proof. It is easy to prove that the system is equivalent $\binom{N_3}{N_1}$

(see [7]) to
$$(\bar{E}, \bar{A}, \bar{B}, \bar{C})$$
 with $\bar{E} = \begin{pmatrix} I_{4} \\ I_{4} \\ N_{1} \end{pmatrix}$,
 $\bar{A} = \begin{pmatrix} I_{2} \\ I_{3} \\ I_{5} \end{pmatrix}$, $\bar{B} = B_{r}$, and $\bar{C} = C_{r}$. Then, for all $F_{\bar{E}}^{\bar{B}}, F_{\bar{A}}^{\bar{B}}, F_{\bar{E}}^{\bar{C}}$ and $F_{\bar{A}}^{\bar{C}}$

$$\begin{split} \det(s(\bar{E}+F_{\bar{E}}^{\bar{C}}\bar{C}+\bar{B}F_{\bar{E}}^{\bar{B}})-(\bar{A}+F_{\bar{A}}^{\bar{C}}\bar{C}+\bar{B}F_{\bar{A}}^{\bar{B}})) = \\ \det\left(\begin{pmatrix} I_2+B_2F_{1_A}\ B_2F_{2_A}+G_{1_A}C_2\ B_2F_{3_A}\ B_2F_{4_A}\\ 0 & I_3+G_{2_A}C_2 & 0 & 0\\ 0 & G_{3_A}C_2 & J & 0\\ 0 & G_{4_A}C_2 & 0 & I_5 \end{pmatrix} \right) \\ s \begin{pmatrix} N_3+B_2F_{1_E}\ B_2F_{2_E}+G_{1_E}C_2\ B_2F_{3_E}\ B_2F_{4_E}\\ 0 & N_4+G_{2_E}C_2 & 0 & 0\\ 0 & G_{3_E}C_2 & I_4 & 0\\ 0 & G_{4_E}C_2 & 0 & N_1 \end{pmatrix} \end{pmatrix} = \\ = p(s) \cdot \det(sI_4+J) \notin \mathbb{C}_0 \end{split}$$

Theorem 3.1. Let (E, A, B, C) be a repairable system verifying one of the following conditions

- 1. the system has not finite zeros
- 2. the number t of Jordan blocks is is less or equal than $r = \operatorname{rank} B_1 = \operatorname{rank} C_1$.

Then, the systems is pbfoi.

Proof. If the system (E, A, B, C) is pbfoi it is repairable. So the system is equivalent (see [7]) to (E_1, A_1, B_1, C_1) with

$$E_1 = \begin{pmatrix} \bar{E} & & \\ & N_1 & \\ & & N_2 & \\ & & \bar{J} \end{pmatrix}, A_1 = \begin{pmatrix} \bar{A} & & \\ & I_1 & \\ & & I_2 & \\ & & & I \end{pmatrix},$$

with $\overline{E} = \begin{pmatrix} 0 \\ I \end{pmatrix}$, $\overline{J} = \begin{pmatrix} J \\ N_3 \end{pmatrix}$, $\overline{A} = \begin{pmatrix} 0 \\ N \end{pmatrix}$ $B_1 = \begin{pmatrix} I \\ 0 \end{pmatrix}$, $C_1 = (I \ 0)$ and $J = \text{diag}(J_1, \dots, J_\ell)$ J_i non derogatory with simple non-zero eigenvalue (different J_i may be the same eigenvalue). After lemmas it suffices to consider systems in the form $\begin{bmatrix} I \\ I \end{bmatrix}, \begin{bmatrix} I \\ 0 \end{bmatrix}, \begin{bmatrix} I \\ 0 \end{bmatrix}, \begin{bmatrix} I \\ 0 \end{bmatrix}$ which are equivalent $\left(\begin{pmatrix}0\\I\end{pmatrix},\begin{pmatrix}I\\J^{-1}\end{pmatrix},\begin{pmatrix}I\\0\end{pmatrix},(I\ 0)\right)$ Suppose now t = 1, that is to say $J^{-1} = \begin{pmatrix} a & 1 \\ a \\ & \ddots \\ & a & 1 \end{pmatrix}$, and taking $F_A^B =$ Suppose now t $1 \ 0 \dots \ 0 \ 0 \ 0 \dots \ 0$ $\begin{pmatrix} 1 & 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & & \ddots & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 & 0 & \dots & 0 \end{pmatrix},$ = $\begin{pmatrix} 0 & 0 & \dots & 0 \\ \vdots & & \vdots \\ 1 & 0 & \dots & 0 \end{pmatrix}$, and $F_E^C = 0$, $F_E^B = 0$. $\dot{\det}(s(E + BF_E^B + F_E^C) + A + BF_A^B + F_A^C) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$ $\det \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & \ddots & \ddots \\ 0 & 0 & 1 & 0 \\ 0 & 0 & a+s & 1 \\ 0 & 0 & a+s & 1 \\ \vdots & & \ddots & \\ 0 & 0 & 0 & \dots & a+s & 1 \\ 1 & 0 & 0 & \dots & a+s & 1 \\ 1 & 0 & 0 & \dots & a+s & 1 \end{pmatrix} = 1.$ $0 \ 0 \ 1 \ 0$ $\begin{array}{c} \vdots \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{array}$ $10 \ 0$ For $1 < t \leq r = \operatorname{rank} B_1 = \operatorname{rank} C_1$, the system (E, A, B, C) with $E = \begin{pmatrix} 0 & & \\ & J_1 & \\ & \ddots & \\ & & \ddots & \\ & & & - \end{pmatrix}$,

For t > r the result is not true, as we can see in the following example.

 $Let\left(\begin{pmatrix}0\\1\\1\end{pmatrix},\begin{pmatrix}0\\0\\0\end{pmatrix},\begin{pmatrix}1\\0\\0\end{pmatrix},(1\ 0\ 0)\right)$

a repairable system,

$$\det \begin{pmatrix} s(a_1+b_1)+(c_1+d_1\ sa_2+c_2\ sa_3+c_3\\ sb_2+d_2 & s & 0\\ sb_3+d_3 & 0 & s \end{pmatrix} \notin \mathbb{C}.$$

So, the system is not pbfoi.

3.2 Case *R* a principal ideal domain

On one hand, by proposition 3.1, it is clear that if we have an equivalent system to a system in the previous form, then we can construct a coprime factorization of the transfer matrix of the system. On the other hand, in principal ideal domains, it is no possible to reduce a system to a form like \mathbb{C} . So, in order to realize a first study over principal ideal domains, we consider systems $x^+(t) = Ax(t) + Bu(t)$, it is, we consider C = 0.

Proposition 3.2. Let (A, B) be a system over a principal ideal domain. Then are equivalent conditions:

1. There exist F_E and F_A such that $P(s) = (sI_n - sI_n)$ $A + sBF_E + BF_A$) is an unimodular matrix.

2. The system is repairable, it is, there exist F_A such that $A - BF_A$ is invertible. The equation XE +NXA = BY, with N nilpotent, has a solution (X, Y) with X invertible.

Proof. First implication is direct by corollary ?? and proposition ??. Reciprocally, we consider F_E = $(F_A X N - Y) X^{-1} \in M_{m \times n}(R)$, then $(I_n + I_n) = (I_n + I_n) X^{-1}$ $BF_E(-A + BF_A)^{-1}$ is nilpotent of order r: $((I_n + BF_A)^{-1})^{-1}$ $BF_E(-A + BF_A)^{-1})^r = TN^rT^{-1} = 0$, where $T = ((-A + BF_A))X$. Furthermore, since $((I_n + BF_A))X$. $BF_E(-A+BF_A))^{r-1} \neq 0$, we define

$$Q_i = (-1)^i ((-A + BF_A)^{-1} (I_n + BF_E))^i (-A + BF_A)^{-1}$$

for all $i = 0, 1, \ldots, r - 1$. So, we have $(I_n + I_n)$ $BF_E)Q_{r-1} = 0$ and $Q_{r-1} \neq 0$. Finally, we consider polynomial matrix $Q(s) = \sum_{i=0}^{r-1} Q_i s^i$ verifying $P(s)Q(s) = I_n$. Note that $r = \ell + 1$. \square

Corollary 3.1. Let (A, B) be a repairable system. If equation XE + NXA = BY, with N nilpotent, has a solution (X, Y) with X invertible, then there exist a coprime factorization of the transfer matrix associated to the system.

Proof. By theorem ?? and proposition 3.2, (N(s) = $\sum_{i=0}^{l} N_i s^i, D(s) = \sum_{i=0}^{l} N_i s^i) \text{ with } N_0 = XC,$ $N_i = (-1)^i X N^i C \text{ for all } i = 1, \dots, \ell, D_0 =$ $I_m - F_A(-A + BF_A)^{-1}B, D_1 = -YC$ and $D_{i+1} =$ $(-1)^{i+1}YN^iC$ for all $i = 1, \dots, \ell$, where C = $X^{-1}(-A + BF_A)^{-1}B$, is a coprime factorization of the transfer matrix associated to the system (A, B). \Box

Remark 3.1. We can write a procedure with Input (A, B) n-dimensional m-input reachable system, and *Output* (N(s), D(s)) *coprime matrix fraction descrip*tion of the transfer matrix of the system. In particular, $H(s) = (sI_n - A + sBF_E + BF_A)^{-1}B$ is a polynomial transfer matrix.

- Step 1. Give canonical form $(A_1, B_1) = (P^{-1}AP + P^{-1}BF, P^{-1}BQ).$
- Step 2. Find F' such that $A_1 + B_1F'$ is invertible.
- Step 3. Solve equation $A_1X_1N + X_1 = B_1Y_1$.
- Step 4.- Calculate

$$X = PX_1 \text{ and } Y = QY_1 - FX_1N.$$

Step 5. - Calculate

 $F_A = (F + QF')P^{-1}$ and $F_E = (F_A X N -)X^{-1}$. Step 6. – Return polynomial coeff. of N(s) and D(s)

> $D_0 = I_m - F_A (-A + BF_A)^{-1}B, \quad D_1 = -YC,$ $D_{i+1} = (-1)^{i+1} Y N^i C$

3.2.1 Single input reachable system

Theorem 3.2. Let (A, B) be a single input reachable system. If N is nilpotent of order n, then there exist Y such that AXN + X = BY equation has a solution (X, Y) with X invertible.

Proof. First, by proposition 3.1, we can consider an equivalent canonical system.

$$(A_R, B_R) = \left(\begin{pmatrix} \underline{0}^t & 0\\ I_{n-1} & \underline{0} \end{pmatrix}, \begin{pmatrix} 1\\ \underline{0} \end{pmatrix} \right)$$

Second, if N has nilpotent order r < n then X is no invertible: $X = (B \dots (-1)^{r-1}A^{r-1}B \ (-1)^r A^r B \ \dots \ (-1)^{n-1}A^{n-1}B) \ (Y \dots \ YN^{r-1} \ 0 \ \dots \ 0)^t = (B \dots \ (-1)^{r-1}A^{r-1}B) \ (Y \dots \ YN^{r-1})^t$, so

$$X = \begin{pmatrix} 1 \dots & 0 \\ \ddots \\ 0 \dots & (-1)^{r-1} \\ \underline{0} \dots & \underline{0} \end{pmatrix} \begin{pmatrix} Y \\ \vdots \\ YN^{r-1} \end{pmatrix}$$

is no invertible. Hence, we suppose N of order n and reduced triangular form (see [?]), $N = (a_{ij})$ with $a_{ij} = 0 \forall j \leq i$. In this case

$$X = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & -1 & & \\ & \ddots & \\ & & (-1)^{n-1} \end{pmatrix}$$

$$\begin{pmatrix} y_1 & y_2 & y_3 & \dots & y_n \\ 0 & a_{12}y_1 & a_{13}y_1 + a_{23}y_2 & \dots & \sum_{i=1}^{n-1} a_{in}y_i \\ & \ddots & \ddots & & \vdots \\ 0 & 0 & 0 & \dots & \prod_{i=1}^{n-1} a_{ii+1}y_1 \end{pmatrix}$$

Since N is of order $n, a_{ii+1} \neq 0$ for all i = 1, ..., n-1. so, we can consider Y such that $y_1 \neq 0$.

Corollary 3.2. Let (A, B) be a single input reachable system. Then (A, B) is a pfboi-system.

Proof. We suppose (A, B) reduced canonical system. If we consider $F_A = (0 \dots 0 1)$ and $F_E = (F_A X N - Y) X^{-1}$, then $A + BF_A$ and $P(s) = (sI_n - A + sBF_E + BF_A)$ are invertible matrices.

4 Conclusions

The goal of this paper is the study of the coprime factorization of the transfer matrix of a singular linear system (E, A, B), throughout repairable property and solutions of a particular equation XE - NXA = Z. In particular, repairable property has been study over principal ideal domains (see [M. Carriegos, 1999]) and stable rings (see [J.A. Hermida-Alonso, M.M. López-Cabeceira and M.T. Trobajo, 2005]). Currently, we are developing our study over no single input systems over principal ideal domains.

References

J. W. Brewer, J. W. Bunce and F. S. VanVleck, (1986) *Linear systems over commutative rings*, Marcel Dekker, New York.

J.Brewer, D.Katz and W.Ullery, (1987) Pole Assignability in Polynomial Rings, Power Series rings and Prüfer Domains, *J. of Algebra*, **106**, pp. 265–286.

M. Carriegos, (1999) Equivalence Feedback en Sistemas Dinmicos lineales. Tesis Doctoral, Valladolid, España.

M.V. Carriegos and I. García-Planas, (2004) On matrix inverses modulo a subspace, *Linear Algebra Appl.*, **379**, pp. 229-237.

D. Estes and J. Ohm, (1967) *Stable range in commutative rings*, J. Algebra **7(3)**, 343-362.

M^a I. García-Planas, (2009) A Complete system of structural invariants for singular systems under proportional and derivative feedback Int. J. Contemp. Math. Scinces. **4** (21-2), pp. 1049-1057.

M^ª I. García-Planas, A. Díaz, (2007) *Canonical forms* for multi-input repairable singular systems. Wseas Transactions on Mathematics. **6** (4), pp. 601-608.

M^a I. García-Planas, M.M. López-Cabeceira, (2010) A Stein matrix equation related to transfer matrix of linear dynamic systems over commutative rings. Matrix .Analysis and Applications. ISBN: 978-84-8363-544-5, D.L.: V-1996-2010, Ref. Editorial: 2355.

I. Gohberg, P. Lancaster and L. Rodman, (1982) *Matrix Polynomials*, Computer science and applied mathematics series, Academic Press, London.

J. A Hermida-Alonso, M.M. López-Cabeceira and M.T. Trobajo, (2005) *When are dynamic and static feedback equivalent? Linear Algebra Appl.*, **405**, pp. 74–82.

C.C.MacFuffee, The theory of matrices, Chelsea Publ. Com. New York, Corrected reprint of firts edition.

B. Zhou, G.R. Duan and Z.Y. Li, (2009) *A Stein matrix equation approach for computing coprime matrix fraction description, IET Control Theory Appl.*, **3** 6, pp. 691-700.