COPRIME FACTORIZATION OF THE TRANSFER MATRIX OF A SINGULAR LINEAR SYSTEM

M. I. García-Planas
Departament de Matemàtica Aplicada I
Universitat Politècnica de Catalunya, Spain
maria.isabel.garcia@upc.edu

M. M. López-Cabeceira
Departamento de Matemáticas
Universidad de León
Spain
mmlopc@unileon.es

Abstract

Given a linear dynamic time invariant represented by $x^{+}(t)=A x(t) B u(t), y(t)=C x(t)$, we analyze conditions for obtention of a coprime factorization of transfer matrices of singular linear systems defined over commutative rings R with element unit. The problem presented is related to the existence of solutions of a matrix equation $X E-N X A=Z$.

Key words

Singular systems, feedback, output injection, coprime factorizations.

1 Introduction

Let R be a commutative ring with unity and $\left.E x^{+}(t)=A x(t)+B u(t), y(t)=C x(t)\right)$ be a singular system over R, that we represent by (E, A, B, C). Then, the transfer matrix of the system (E, A, B, C) is given by $H(s)=C(s E-A)^{-1} B$.
This systems appear in literature when for example, one studies linear systems depending on a parameter or linear systems with delays.
Let (E, A, B, C) be a singular system with $E=I_{4}$, $A=\left(\begin{array}{ccc}0 & & \\ & 0 & 1 \\ & 0 & 1\end{array}\right), B=\left(\begin{array}{lll}1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right), C=\left(\begin{array}{lll}1 & 0 & 0\end{array} 0\right)$, clearly $\left(s I_{4}-A\right)^{-1}$ is a rational matrix. Considering $F_{E}^{B}=$ $\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0\end{array}\right), F_{A}^{B}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), F_{E}^{C}=0, F_{A}^{C}=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$, it is easy to compute $\operatorname{det}\left(s\left(E+F_{E}^{C} C+B F_{E}^{B}\right)-(A+\right.$ $\left.\left.F_{A}^{C} C+B F_{A}^{B}\right)\right)=1 \neq 0, \forall s \in R$, consequently $\left(s\left(E+F_{E}^{C} C+B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+B F_{A}^{B}\right)\right)^{-1}$ is polynomial.
We are interested in classify the singular systems (E, A, B, C) for which there exist feedbacks F_{E}^{B}, F_{A}^{B}, and output injections F_{E}^{C}, F_{A}^{C}, such that $\left(s\left(E+F_{E}^{C} C+\right.\right.$ $\left.\left.B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+B F_{A}^{B}\right)\right)^{-1}$ is polynomial. We will call systems with polynomial transfer matrix by feedback (proportional and derivative) and output injection (proportional and derivative) and we will write simply
as pbfoi-systems, the systems verifying this property. Notice that if this property holds the the system is regularisable, remember that a system (E, A, B, C) is regularisable if and only if there exist feedbacks F_{E}^{B}, F_{A}^{B}, and output injections F_{E}^{C}, F_{A}^{C}, such that $\operatorname{det}(s(E+$ $\left.\left.F_{E}^{C} C+B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+B F_{A}^{B}\right)\right) \neq 0$ for some $s \in R$.

Remark 1.1. Converse is not true as we can see in this example: let (E, A, B, C) with $E=I_{4}, A=$ $\left(\begin{array}{ccc}0 & & \\ & 0 & \\ & 0 & 1 \\ & 0 & 0\end{array}\right), B=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right), C=\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)$, considering all possible feedbacks F_{E}^{B}, F_{A}^{B}, and output injections F_{E}^{C}, F_{A}^{C} matrix $s\left(E+F_{E}^{C} C+B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+\right.$ $\left.B F_{A}^{B}\right)$ is
$\left(\begin{array}{cccc}s(1+a)+a_{1} & s(b+e)+\left(b_{1}+e_{1}\right) & s c+c_{1} & s d+d_{1} \\ 0 & s(1+f)+f_{1} & 0 & 0 \\ 0 & s(1+g)+g_{1} & s & 1 \\ 0 & s(1+h)+h_{1} & 0 & s\end{array}\right)$
is easy to compute $\operatorname{det}\left(s\left(E+F_{E}^{C} C+B F_{E}^{B}\right)-(A+\right.$ $\left.\left.F_{A}^{C} C+B F_{A}^{B}\right)\right)=\left(s(1+a)+a_{1}\right)\left(s(1+f)+f_{1}\right) s^{2} \neq$ 0 for almost all $s \in R$ and 0 for $s=0$. Then (E, A, B, C) is regularisable but not pbfoi.

In order to use a simple reduced system preserving these properties we consider the following equivalence relation deduced of to apply the standard transformations in state, input and output spaces $x(t)=P x_{1}(t)$, $u(t)=R u_{1}(t), y_{1}(t)=S y(t)$, premultiplication by an invertible matrix $Q E \dot{x}(t)=Q A x(t)+Q u(t)$ making feedback $u(t)=u_{1}(t)-V x(t)$ and derivative feedback $u(t)=u_{1}(t)-U \dot{x}(t)$ as well as output injection $u(t)=u_{1}(t)-W y(t)$ and derivative output injection $u(t)=u_{1}(t)-Z \dot{y}(t)$. Considering this equivalence relation and restricting out to the regularisable systems and for $R=\mathbb{C}$, it is possible to reduce the system to
$\left(E_{c}, A_{c}, B_{c}, C_{c}\right)$ where

$$
\begin{aligned}
& E_{c}=\left(\begin{array}{lllll}
I_{1} & & & & \\
& I_{2} & & & \\
& & I_{3} & & \\
& & & I_{4} & \\
& & & & N_{1}
\end{array}\right) \\
& A_{c}=\left(\begin{array}{lllll}
N_{2} & & & & \\
& N_{3} & & & \\
& & N_{4} & & \\
& & & J & \\
& & & & I_{5}
\end{array}\right) \\
& B_{c}=\left(\begin{array}{ccc}
B_{1} & 0 & 0 \\
0 & B_{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& C_{c}=\left(\begin{array}{ccccc}
C_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & C_{2} & 0 & 0
\end{array}\right)
\end{aligned}
$$

and N_{i} denotes a nilpotent matrix in its reduced form $N_{i}=\operatorname{diag}\left(N_{i_{1}}, \ldots, N_{i_{t}}\right), N_{i_{j}}=\left(\begin{array}{c}0 I_{n_{i_{j}}}-1 \\ 0\end{array} 0.0\right.$ $M_{n_{i_{j}}}(C)$,
J denotes the Jordan matrix $J=$ $\operatorname{diag}\left(J_{1}\left(\lambda_{1}\right), \ldots, J_{m}\left(\lambda_{m}\right)\right), \quad J_{i}\left(\lambda_{i}\right) \quad=$ $\operatorname{diag}\left(J_{i_{1}}\left(\lambda_{i}, \ldots, J_{i_{t}}\left(\lambda_{i}\right)\right), J_{i_{j}}\left(\lambda_{i}\right)=\lambda_{i} I+N\right.$.
Notice that not all subsystems must appears in canonical reduced form.

Remark 1.2. Canonical reduced form can be obtained directly using the complete set of invariants (see [6]).

2 Coprime factorization

Two polynomial matrices $N(s) \in M_{p \times m}(R[s])$ and $D(s) \in M_{m}(R[s])$ are called (Bézout) right coprime if $\binom{N(s)}{D(s)}$ is left-invertible, that is to say, if there exist $X(s) \in M_{m \times p}(R[s]), Y(s) \in M_{m}(R[s])$ satisfying the "Bézout identity"

$$
X(s) N(s)+Y(s) D(s)=I_{m}
$$

The polynomial matrices $X(s)$ and $Y(s)$ are called left Bézout factors for the pair $(N(s), D(s))$.
Let $H(s)$ be a rational matrix admitting a factorization $H(s)=N(s) D^{-1}(s)$, we will call this factorization a r.c.f. (right coprime factorization) of $H(s)$.

Theorem 2.1. Let (E, A, B, C) a pbfoi system. Then there exist a coprime factorization of the transfer matrix associated to the system.

Proof. Taking into account that (E, A, B, C) is a pbfoi system $\left(s\left(E+F_{E}^{C} C+B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+\right.\right.$ $\left.\left.B F_{A}^{B}\right)\right)^{-1}=Q(s)$ is polynomial. The matrix pair $(N(s), D(s))$ with $N(s)=Q(s)$ and $D(s)=I-$ $\left(s\left(B F_{E}^{B}+F_{E}^{C} C\right)+\left(B F_{A}^{B}+F_{A}^{C} C\right)\right) Q(s)$ is coprime: $X(s) N(s)+Y(s) D(s)=I$ with $X(s)=s\left(B F_{E}^{B}+\right.$ $\left.F_{E}^{C} C\right)+\left(B F_{A}^{B}+F_{A}^{C} C\right)$ and $Y(s)=I$.
$D(s)=$
$I-X(s) Q(s)+(s E+A) Q(s)-(s E+A) Q(s)=$ $I-(X(s)+(s E+A)) Q(s)+(s E+A) Q(s)=$ $(s E+A) Q(s)$,
consequently $\operatorname{det} D(s)=\gamma \operatorname{det}(s E+A)$ for all $s \in R$ and $N(s) D^{-1}(s)=Q(s)((s E+A) Q(s))^{-1}=(s E+$ $A)^{-1}$

$$
H(s)=C(s E+A)^{-1} B=C N(s) D^{-1}(s) B
$$

Proposition 2.1. Let (E, A, B, C) a pbfoi linear system, then there exist $F_{A}^{B}, F_{A}^{C}, F_{E}^{B}, F_{E}^{C}$, such that $A+B F_{A}^{B}+F_{A}^{C} C$ is invertible and $\left(E+B F_{E}^{B}+\right.$ $\left.F_{E}^{C} C\right)\left(-A+B F_{A}^{B}+F_{A}^{C} C\right)^{-1}$ is nilpotent.
Proof. If (E, A, B, C) is a pbfoi linear system, then there exist $F_{A}^{B}, F_{A}^{C}, F_{E}^{B}, F_{E}^{C}$, such that $P(s)=s(E+$ $\left.F_{E}^{C} C+B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+B F_{A}^{B}\right)$ is invertible, so there exist $Q(s)=s^{\ell} Q_{\ell}+\ldots+s Q_{1}+Q_{0}$ such that $P(s) Q(s)=I_{n}$.
Consequently:

$$
\begin{aligned}
&\left(A+B F_{A}^{B}+\right.\left.F_{A}^{C} C\right) Q_{0}=I_{n} \\
&\left(E+B F_{E}^{B}+\right.\left.F_{E}^{C} C\right) Q_{0}- \\
&\left(A+B F_{A}^{B}+F_{A}^{C} C\right) Q_{1}=0 \\
&\left(E+B F_{E}^{B}+\right.\left.F_{E}^{C} C\right) Q_{1}- \\
&\left(A+B F_{A}^{B}+F_{A}^{C} C\right) Q_{2}=0 \\
& \vdots \\
&\left(E+B F_{E}^{B}+\right.\left.F_{E}^{C} C\right) Q_{\ell-1}- \\
&\left(A+B F_{A}^{B}+F_{A}^{C} C\right) Q_{\ell}=0 \\
&\left(E+B F_{E}^{B}+\right.\left.F_{E}^{C} C\right) Q_{\ell}=0
\end{aligned}
$$

First equality says that $-\left(A+B F_{A}^{B}+F_{A}^{C} C\right)^{-1}=Q_{0}$. Since $-\left(A+B F_{A}^{B}+F_{A}^{C} C\right)$ is invertible we can obtain $Q_{i}, \ell \geq i \geq 1$.

$$
\begin{aligned}
& Q_{i}=-\left(\mathbb{A}^{-1} \mathbb{E}\right)^{i} \mathbb{A}^{-1} \\
& \text { where } \\
& \mathbb{A}=\left(A+B F_{A}^{B}+F_{A}^{C} C\right) \\
& \mathbb{E}=\left(E+B F_{E}^{B}+F_{E}^{C} C\right)
\end{aligned}
$$

The last equation

$$
\begin{aligned}
& 0=\left(E+B F_{E}^{B}+F_{E}^{C} C\right) Q_{\ell}= \\
& -\left(\left(E+B F_{E}^{B}+F_{E}^{C} C\right)\left(A+B F_{A}^{B}+F_{A}^{C} C\right)^{-1}\right)^{\ell+1}
\end{aligned}
$$

consequently

$$
\begin{equation*}
\left(E+B F_{E}^{B}+F_{E}^{C} C\right)\left(A+B F_{A}^{B}+F_{A}^{C} C\right)^{-1} \tag{1}
\end{equation*}
$$

is a nilpotent matrix and taking into account that $Q_{\ell} \neq$ 0 , the nilpotency order is $\ell+1$.

Corollary 2.1. If a system (E, A, B, C) is pbfoi then it is repairable

Remember that a system (E, A, B, C) is repairable if and only if there exist F_{A}^{B} and F_{A}^{C} such that $A+$ $B F_{A}^{B}+F_{A}^{C} C$ is invertible, (for more information about repairable systems see [7]).
Notice that the system in remark 1.1 is not repairable.
Remark 2.1. Converse is not true as we can see in the following example: let (E, A, B, C) with $E=$ $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right), A=I_{3}, B=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), C=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$, considering all possible feedbacks F_{E}^{B}, F_{A}^{B}, and output injections F_{E}^{C}, F_{A}^{C} matrix $s\left(E+F_{E}^{C} C+B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+\right.$ $\left.B F_{A}^{B}\right)$ is

$$
\left(\begin{array}{ccc}
1+c_{1}+s a_{1} & c_{2}+d_{1}+s\left(a_{2}+b_{1}\right) & c_{3}+s a_{3} \\
0 & 1+d_{2}+s b_{2} & 0 \\
0 & d_{3}+s b_{3} & 1+s
\end{array}\right)
$$

which inverse is not polynomial because of $\operatorname{det}(s(E+$ $\left.\left.F_{E}^{C} C+B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+B F_{A}^{B}\right)\right) \notin \mathbb{C}_{0}$.

Proposition 2.2. Let (E, A, B, C) be a pbfoi system. Then the equation $X E-N X A=Z$ with N a nilpotent has a solution (X, Z) with X invertible.

Proof. Matrix 1 in proposition 2.1 is equivalent to a nilpotent matrix N in its reduced Jordan form
$\left(E+B F_{E}^{B}+F_{E}^{C} C\right)\left(A+B F_{A}^{B}+F_{A}^{C} C\right)^{-1}=X^{-1} N X$, equivalently
$X\left(E+B F_{E}^{B}+F_{E}^{C} C\right)=N X\left(A+B F_{A}^{B}+F_{A}^{C} C\right)$,

$$
\begin{aligned}
& X E-N X A= \\
& -X\left(F_{E}^{C} C+B F_{E}^{B}\right)+N X\left(F_{A}^{C} C+B F_{A}^{B}\right)=Z
\end{aligned}
$$

The existence of $F_{E}^{B}, F_{E}^{C}, F_{A}^{B}, F_{A}^{C}$, verifying proposition 2.1 implies that the equation $X E-N X A=Z$ has a solution with X invertible and $Z=-X\left(F_{E}^{C} C+\right.$ $\left.B F_{E}^{B}\right)+N X\left(F_{A}^{C} C+B F_{A}^{B}\right)$.

Suppose now, that the system (E, A, B, C) is repairable and let F_{A}^{B} and F_{A}^{C} be such that $A+B F_{A}^{B}+$ $F_{A}^{C} C$ is invertible. If the equation $X E-N X A=Z$ with N a nilpotent matrix, has a solution X, Z with X invertible, we can consider the matrix $M=-X^{-1} Z+$ $X^{-1} N X\left(F_{A}^{C} C+B F_{A}^{B}\right)$.
If the equation $F_{E}^{C} C+B F_{E}^{B}=M$ has a solution then the system is pbfoi, and

$$
Q_{i}=-\left(A+B F_{A}^{B}+F_{A}^{C} C\right)^{-1} X N X^{-1}
$$

3 Characterization of systems pbfoi

In this section we will try to characterize pbfoisystems.
Proposition 3.1. Let $\quad(E, A, B, C) \quad$ and $\left(E_{1}, A_{1}, B_{1}, C_{1}\right)$ be equivalent systems. There exist $F_{E}^{B}, \quad F_{A}^{B}, \quad F_{E}^{C}, F_{A}^{C}, \quad$ such that $\left(s\left(E+F_{E}^{C} C+B F_{E}^{B}\right)-\left(A+F_{A}^{C} C+B F_{A}^{B}\right)\right)^{-1}$ is polynomial if and only if and There exist $F_{E_{1}}^{B_{1}}, F_{A_{1}}^{B_{1}}$, $F_{E_{1}}^{C_{1}}, F_{A_{1}}^{C_{1}}$, such that $\left(s\left(E_{1}+F_{E_{1}}^{C_{1}} C_{1}+B_{1} F_{E_{1}}^{B_{1}}\right)-\right.$ $\left.\left(A_{1}+F_{A_{1}}^{C_{1}} C_{1}+B_{1} F_{A_{1}}^{B_{1}}\right)\right)^{-1}$ is polynomial.

Proof.

$$
\begin{aligned}
& E_{1}=Q E P+\bar{F}_{E}^{C} C P+Q B \bar{F}_{E}^{B}, \\
& A_{1}=Q A P+\bar{F}_{A}^{C} C P+Q B \bar{F}_{A}^{B}, \\
& B_{1}=Q B R, \\
& C_{1}=S C P,
\end{aligned}
$$

```
\(\left(s\left(E_{1}+F_{E_{1}}^{C_{1}} C_{1}+B_{1} F_{E_{1}}^{B_{1}}\right)-\left(A_{1}+F_{A_{1}}^{C_{1}} C_{1}+B_{1} F_{A_{1}}^{B_{1}}\right)\right)^{-1}=\)
\(\left(s\left(Q E P+\bar{F}_{E}^{C} C P+Q B \bar{F}_{E}^{B}+F_{E_{1}}^{C_{1}} S C P+Q B R F_{E_{1}}^{B_{1}}\right)-\right.\)
\(\left(Q A P+\bar{F}_{A}^{C} C P+Q B \bar{F}_{A}^{B}+F_{A_{1}}^{C_{1}} S C P+Q B R F_{A_{1}}^{B_{1}}\right)^{-1}=\)
\(\left(s Q\left(E+Q^{-1} \bar{F}_{E}^{C} C+B \bar{F}_{E}^{B} P^{-1}+Q^{-1} F_{E_{1}}^{C_{1}} S C+B R F_{E_{1}}^{B_{1}} P^{-1}\right) P-\right.\)
\(\left.Q\left(A+Q^{-1} \bar{F}_{A}^{C} C+B \bar{F}_{A}^{B} P^{-1}+Q^{-1} F_{A_{1}}^{C_{1}} S C+B R F_{A_{1}}^{B_{1}} P^{-1}\right) P\right)^{-1}=\)
\(P^{-1}\left(s\left(E+Q^{-1} \bar{F}_{E}^{C} C+B \bar{F}_{E}^{B} P^{-1}+Q^{-1} F_{E_{1}}^{C_{1}} S C+B R F_{E_{1}}^{B_{1}} P^{-1}\right)-\right.\)
\(\left(A+Q^{-1} \bar{F}_{A}^{C} C+B \bar{F}_{A}^{B} P^{-1}+Q^{-1} F_{A_{1}}^{C_{1}} S C+B R F_{A_{1}}^{B_{1}} P^{-1}\right)^{-1} Q^{-1}=\)
\(P^{-1}\left(s\left(E+\left(Q^{-1} \bar{F}_{E}^{C}+Q^{-1} F_{E_{1}}^{C_{1}} S\right) C+B\left(\bar{F}_{E}^{B} P^{-1}+R F_{E_{1}}^{B_{1}} P^{-1}\right)\right)-\right.\)
\(\left.\left(A+\left(Q^{-1} \bar{F}_{A}^{C}+Q^{-1} F_{A_{1}}^{C_{1}} S\right) C+B\left(\bar{F}_{A}^{B} P^{-1}+R F_{A_{1}}^{B_{1}} P^{-1}\right)\right)\right)^{-1} Q^{-1}\)
```

$F_{E}^{C}=Q^{-1} \bar{F}_{E}^{C}+Q^{-1} F_{E_{1}}^{C_{1}} S, F_{E}^{C}=\bar{F}_{E}^{B} P^{-1}+$ $R F_{E_{1}}^{B_{1}} P^{-1}, F_{A}^{C}=Q^{-1} \bar{F}_{A}^{C}+Q^{-1} F_{A_{1}}^{C_{1}} S, F_{A}^{B}=$ $\bar{F}_{A}^{B} P^{-1}+R F_{A_{1}}^{B_{1}} P^{-1}$

3.1 Cas $R=\mathbb{C}$

Proposition 3.1 permit us to characterize the systems pbfoi.

Lemma 3.1. Let (E, A, B, C) be a system equivalent to $\left(E_{r}, A_{r}, B_{r}, C_{r}\right)$ with $E_{r}=\left(\begin{array}{ccc}I_{2} & & \\ & I_{3} & \\ & & N_{1}\end{array}\right), A_{r}=$ $\left(\begin{array}{ccc}N_{3} & & \\ & N_{4} & \\ & & I_{5}\end{array}\right), B=\left(\begin{array}{c}B_{2} \\ 0 \\ 0\end{array}\right), C_{r}=\left(\begin{array}{lll}0 & C_{2} & 0\end{array}\right)$. Then, the system is pbfoi.

Proof. It is easy to prove that the system is equivalent (see [7]) to ($\bar{E}, \bar{A}, \bar{B}, \bar{C})$ with $\bar{E}=\left(\begin{array}{llll}N_{3} & & \\ & N_{4} & \\ & & N_{1}\end{array}\right)$, $\bar{A}=\left(\begin{array}{cccc}I_{2} & & \\ & & & \\ & I_{3} & \\ & & I_{5}\end{array}\right) \bar{B}=B_{r}$, and $\bar{C}=C_{r}$. Then, taking $F_{\bar{B}}^{\bar{B}}=F_{\bar{A}}^{\bar{B}}=0$ and $F_{\bar{E}}^{\bar{C}}=F_{\bar{A}}^{\bar{C}}=0$ we have that $\left(s\left(\bar{E}+F_{\bar{E}}^{\bar{C}} \bar{C}+\bar{B} F_{\bar{B}}^{\bar{B}}\right)-\left(\bar{A}+F_{\bar{A}}^{\bar{C}} \bar{C}+\bar{B} F_{\bar{B}}^{\bar{B}}\right)\right)$ is invertible.

Lemma 3.2. Let (E, A, B, C) be a system equivalent to $\left(E_{r}, A_{r}, B_{r}, C_{r}\right)$ with $E_{r}=\left(\begin{array}{llll}I_{2} & & & \\ & I_{3} & & \\ & & I_{4} & \\ & & & N_{1}\end{array}\right), A_{r}=$ $\left(\begin{array}{cccc}N_{3} & & & \\ & N_{4} & & \\ & & & J \\ & & & I_{5}\end{array}\right), B=\left(\begin{array}{c}B_{2} \\ 0 \\ 0 \\ 0\end{array}\right), C_{r}=\left(\begin{array}{llll}0 & C_{2} & 0 & 0\end{array}\right)$.
Then, the system can be not pbfoi.
Proof. It is easy to prove that the system is equivalent (see [7]) to $(\bar{E}, \bar{A}, \bar{B}, \bar{C})$ with $\bar{E}=\left(\begin{array}{llll}N_{3} & & & \\ & N_{4} & & \\ & & I_{4} & \\ & & & N_{1}\end{array}\right)$, $\bar{A}=\left(\begin{array}{llll}I_{2} & & & \\ & I_{3} & & \\ & & J & \\ & & & I_{5}\end{array}\right) \bar{B}=B_{r}$, and $\bar{C}=C_{r}$. Then, for all $F_{\bar{E}}^{\bar{B}}, F_{\bar{A}}^{\bar{B}}, F_{\bar{E}}^{\bar{C}}$ and $F_{\bar{A}}^{\bar{C}}$
$\operatorname{det}\left(s\left(\bar{E}+F_{\bar{E}}^{\bar{C}} \bar{C}+\bar{B} F_{\bar{E}}^{\bar{B}}\right)-\left(\bar{A}+F_{\bar{A}}^{\bar{C}} \bar{C}+\bar{B} F_{\bar{A}}^{\bar{B}}\right)\right)=$
$\operatorname{det}\left(\left(\begin{array}{cccc}I_{2}+B_{2} F_{1_{A}} & B_{2} F_{2_{A}}+G_{1_{A}} C_{2} & B_{2} F_{3_{A}} & B_{2} F_{4_{A}} \\ 0 & I_{3}+G_{2_{A}} C_{2} & 0 & 0 \\ 0 & G_{3_{A}} C_{2} & J & 0 \\ 0 & G_{4_{A}} C_{2} & 0 & I_{5}\end{array}\right)+\right.$
$\left.s\left(\begin{array}{cccc}N_{3}+B_{2} F_{1_{E}} & B_{2} F_{2_{E}}+G_{1_{E}} C_{2} & B_{2} F_{3_{E}} & B_{2} F_{4_{E}} \\ 0 & N_{4}+G_{2_{E}} C_{2} & 0 & 0 \\ 0 & G_{3_{E}} C_{2} & I_{4} & 0 \\ 0 & G_{4_{E}} C_{2} & 0 & N_{1}\end{array}\right)\right)=$
$=p(s) \cdot \operatorname{det}\left(s I_{4}+J\right) \notin \mathbb{C}_{0}$

Theorem 3.1. Let (E, A, B, C) be a repairable system verifying one of the following conditions

1. the system has not finite zeros
2. the number t of Jordan blocks is is less or equal than $r=\operatorname{rank} B_{1}=\operatorname{rank} C_{1}$.

Then, the systems is pbfoi.
Proof. If the system (E, A, B, C) is pbfoi it is repairable. So the system is equivalent (see [7]) to
$\left(E_{1}, A_{1}, B_{1}, C_{1}\right)$ with

$$
E_{1}=\left(\begin{array}{llll}
\bar{E} & & & \\
& N_{1} & & \\
& & N_{2} & \\
& & & \bar{J}
\end{array}\right), A_{1}=\left(\begin{array}{cccc}
\bar{A} & & & \\
& I_{1} & & \\
& & I_{2} & \\
& & & I
\end{array}\right)
$$

$$
B_{r}=\left(\begin{array}{cccc}
B_{1} & 0 & 0 & 0 \\
0 & B_{2} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), C_{1}=\left(\begin{array}{cccc}
C_{1} & 0 & 0 & 0 \\
0 & 0 & C_{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

with $\bar{E}=\left(\begin{array}{ll}0 & \\ & I\end{array}\right), \bar{J}=\left(\begin{array}{ll}J & \\ & N_{3}\end{array}\right), \bar{A}=\left(\begin{array}{ll}0 & \\ & N\end{array}\right)$ $B_{1}=\binom{I}{0}, C_{1}=\left(\begin{array}{ll}I & 0\end{array}\right)$ and $J=\operatorname{diag}\left(J_{1}, \ldots, J_{\ell}\right)$
J_{i} non derogatory with simple non-zero eigenvalue (different J_{i} may be the same eigenvalue). After lemmas it suffices to consider systems in the form $\left(\left(\begin{array}{cc}0 & \\ & J\end{array}\right),\left(\begin{array}{ll}I & \\ & I\end{array}\right),\binom{I}{0},\left(\begin{array}{ll}I & 0\end{array}\right)\right)$ which are equivalent to $\left(\left(\begin{array}{ll}0 & \\ & I\end{array}\right),\left(\begin{array}{ll}I & \\ & J^{-1}\end{array}\right),\binom{I}{0},\left(\begin{array}{ll}I & 0\end{array}\right)\right)$

$\left(\begin{array}{ccccccccc}-1 & 1 & 0 & \ldots & 0 & 0 & 0 & \ldots & 0 \\ 0 & -1 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 \\ \vdots & & \ddots & \ddots & & & \vdots\end{array}\right), \quad F_{A}^{C} \quad=$

For $1<t \leq r=\operatorname{rank} B_{1}=\operatorname{rank} C_{1}$, the $\operatorname{system}(E, A, B, C)$ with $E=\left(\begin{array}{llll}0 & & & \\ & J_{1} & & \\ & & \ddots & \\ & & & J_{s}\end{array}\right)$,
$A=\left(\begin{array}{llll}0 & & & \\ & I_{1} & & \\ & & \ddots & \\ & & & \\ & & & I_{s}\end{array}\right)\left(0 \in M_{r}(\mathbb{C})\right.$, is equivalent to

$$
\left(E_{1}, A_{1}, B_{1}, C_{1}\right) \text { with }
$$

$$
E_{1}=\left(\begin{array}{ccccc}
0_{1} & & & & \\
& I & & & \\
& & \ddots & & \\
\\
& & & 0_{1} & \\
& & & & \\
& & & & \\
& & 0_{r-s}
\end{array}\right)\left(0_{i} \in M_{i}(\mathbb{C}), A_{1}=\right.
$$

$$
\left(\begin{array}{cccccc}
10 \ldots 0 & & & & & \\
& & \ldots & & & \\
& & & 1 & 0 & \ldots
\end{array}\right) \text {. Then, it suffices to apply }
$$

the case $s=1$
For $t>r$ the result is not true, as we can see in the following example.

Example 3.1. Let $\left(\left(\begin{array}{lll}0 & & \\ & 1 & \\ & & 1\end{array}\right),\left(\begin{array}{ll}0 & \\ & \\ & \\ & \\ & \\ & \end{array}\right),\binom{1}{0},\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)\right)$ a repairable system,
$\operatorname{det}\left(\begin{array}{ccc}s\left(a_{1}+b_{1}\right)+\left(c_{1}+d_{1}\right. & s a_{2}+c_{2} & s a_{3}+c_{3} \\ s b_{2}+d_{2} & s & 0 \\ s b_{3}+d_{3} & 0 & s\end{array}\right) \notin \mathbb{C}$.

So, the system is not pbfoi.

3.2 Case R a principal ideal domain

On one hand, by proposition 3.1, it is clear that if we have an equivalent system to a system in the previous form, then we can construct a coprime factorization of the transfer matrix of the system. On the other hand, in principal ideal domains, it is no possible to reduce a system to a form like \mathbb{C}. So, in order to realize a first study over principal ideal domains, we consider systems $x^{+}(t)=A x(t)+B u(t)$, it is, we consider $C=0$.

Proposition 3.2. Let (A, B) be a system over a principal ideal domain. Then are equivalent conditions:

1. There exist F_{E} and F_{A} such that $P(s)=\left(s I_{n}-\right.$ $\left.A+s B F_{E}+B F_{A}\right)$ is an unimodular matrix.
2. The system is repairable, it is, there exist F_{A} such that $A-B F_{A}$ is invertible. The equation $X E+$ $N X A=B Y$, with N nilpotent, has a solution (X, Y) with X invertible.

Proof. First implication is direct by corollary ?? and proposition ??. Reciprocally, we consider $F_{E}=$ $\left(F_{A} X N-Y\right) X^{-1} \in M_{m \times n}(R)$, then $\left(I_{n}+\right.$ $\left.B F_{E}\right)\left(-A+B F_{A}\right)^{-1}$ is nilpotent of order $r:\left(\left(I_{n}+\right.\right.$ $\left.\left.B F_{E}\right)\left(-A+B F_{A}\right)^{-1}\right)^{r}=T N^{r} T^{-1}=0$, where $T=\left(\left(-A+B F_{A}\right)\right) X$. Furthermore, since $\left(\left(I_{n}+\right.\right.$ $\left.\left.B F_{E}\right)\left(-A+B F_{A}\right)\right)^{r-1} \neq 0$, we define
$Q_{i}=(-1)^{i}\left(\left(-A+B F_{A}\right)^{-1}\left(I_{n}+B F_{E}\right)\right)^{i}\left(-A+B F_{A}\right)^{-1}$,
for all $i=0,1, \ldots, r-1$. So, we have $\left(I_{n}+\right.$ $\left.B F_{E}\right) Q_{r-1}=0$ and $Q_{r-1} \neq 0$. Finally, we consider polynomial matrix $Q(s)=\sum_{i=0}^{r-1} Q_{i} s^{i}$ verifying $P(s) Q(s)=I_{n}$. Note that $r=\ell+1$.

Corollary 3.1. Let (A, B) be a repairable system. If equation $X E+N X A=B Y$, with N nilpotent, has a solution (X, Y) with X invertible, then there exist a coprime factorization of the transfer matrix associated to the system.

Proof. By theorem ?? and proposition 3.2, $(N(s)=$ $\left.\sum_{i=0}^{l} N_{i} s^{i}, D(s)=\sum_{i=0}^{l} N_{i} s^{i}\right)$ with $N_{0}=X C$, $N_{i}=(-1)^{i} X N^{i} C$ for all $i=1, \ldots, \ell, D_{0}=$ $I_{m}-F_{A}\left(-A+B F_{A}\right)^{-1} B, D_{1}=-Y C$ and $D_{i+1}=$ $(-1)^{i+1} Y N^{i} C$ for all $i=1, \ldots, \ell$, where $C=$ $X^{-1}\left(-A+B F_{A}\right)^{-1} B$, is a coprime factorization of the transfer matrix associated to the system (A, B).

Remark 3.1. We can write a procedure with Input $(A, B) n$-dimensional m-input reachable system, and Output ($N(s), D(s)$) coprime matrix fraction description of the transfer matrix of the system. In particular, $H(s)=\left(s I_{n}-A+s B F_{E}+B F_{A}\right)^{-1} B$ is a polynomial transfer matrix.

Step 1.- Give canonical form

$$
\left(A_{1}, B_{1}\right)=\left(P^{-1} A P+P^{-1} B F, P^{-1} B Q\right)
$$

Step 2. - Find F^{\prime} such that $A_{1}+B_{1} F^{\prime}$ is invertible.
Step 3.- Solve equation $A_{1} X_{1} N+X_{1}=B_{1} Y_{1}$.
Step 4.- Calculate
$X=P X_{1}$ and $Y=Q Y_{1}-F X_{1} N$.
Step 5.-Calculate
$F_{A}=\left(F+Q F^{\prime}\right) P^{-1}$ and $F_{E}=\left(F_{A} X N-\right) X^{-1}$.
Step 6.- Return polynomial coeff. of $N(s)$ and $D(s)$
$N_{0}=X C, \quad N_{i}=(-1)^{i} X N^{i} C$,
$C=X^{-1}\left(-A+B F_{A}\right)^{-1} B$
$D_{0}=I_{m}-F_{A}\left(-A+B F_{A}\right)^{-1} B, \quad D_{1}=-Y C$,
$D_{i+1}=(-1)^{i+1} Y N^{i} C$

3.2.1 Single input reachable system

Theorem 3.2. Let (A, B) be a single input reachable system. If N is nilpotent of order n, then there exist Y such that $A X N+X=B Y$ equation has a solution (X, Y) with X invertible.

Proof. First, by proposition 3.1, we can consider an equivalent canonical system.

$$
\left(A_{R}, B_{R}\right)=\left(\left(\begin{array}{cc}
\underline{0}^{t} & 0 \\
\mathrm{I}_{n-1} & \underline{0}
\end{array}\right),\binom{1}{\underline{0}}\right)
$$

Second, if N has nilpotent order $r<n$ then X is no invertible: $X=\left(B \ldots(-1)^{r-1} A^{r-1} B(-1)^{r} A^{r} B\right.$ $\left.\ldots(-1)^{n-1} A^{n-1} B\right)\left(Y \ldots Y N^{r-1} \quad 0 \ldots 0\right)^{t}=$ $\left(B \ldots(-1)^{r-1} A^{r-1} B\right)\left(Y \ldots Y N^{r-1}\right)^{t}$, so

$$
X=\left(\begin{array}{cc}
1 \cdots & 0 \\
\ddots & \\
0 \ldots & (-1)^{r-1} \\
\underline{0} \ldots & \underline{0}
\end{array}\right)\left(\begin{array}{c}
Y \\
\vdots \\
Y N^{r-1}
\end{array}\right)
$$

is no invertible. Hence, we suppose N of order n and reduced triangular form (see [?]), $N=\left(a_{i j}\right)$ with $a_{i j}=0 \forall j \leq i$. In this case

$$
X=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & -1 & & \\
& & \ddots & \\
& & & (-1)^{n-1}
\end{array}\right)
$$

$$
\left(\begin{array}{ccccc}
y_{1} & y_{2} & y_{3} & \cdots & y_{n} \\
0 & a_{12} y_{1} & a_{13} y_{1}+a_{23} y_{2} & \cdots & \sum_{i=1}^{n-1} a_{i n} y_{i} \\
& \ddots & \ddots & & \vdots \\
0 & 0 & 0 & \cdots & \prod_{i=1}^{n-1} a_{i i+1} y_{1}
\end{array}\right)
$$

Since N is of order $n, a_{i i+1} \neq 0$ for all $i=1, \ldots n-1$. so, we can consider Y such that $y_{1} \neq 0$.

Corollary 3.2. Let (A, B) be a single input reachable system. Then (A, B) is a pfboi-system.

Proof. We suppose (A, B) reduced canonical system. If we consider $F_{A}=(0 \ldots 01)$ and $F_{E}=\left(F_{A} X N-\right.$ $Y) X^{-1}$, then $A+B F_{A}$ and $P(s)=\left(s I_{n}-A+s B F_{E}+\right.$ $B F_{A}$) are invertible matrices.

4 Conclusions

The goal of this paper is the study of the coprime factorization of the transfer matrix of a singular linear system (E, A, B), throughout repairable property and solutions of a particular equation $X E-N X A=Z$. In particular, repairable property has been study over
principal ideal domains (see [M. Carriegos, 1999]) and stable rings (see [J.A. Hermida-Alonso, M.M. LópezCabeceira and M.T. Trobajo, 2005]). Currently, we are developing our study over no single input systems over principal ideal domains.

References

J. W. Brewer, J. W. Bunce and F. S. VanVleck, (1986) Linear systems over commutative rings, Marcel Dekker, New York.
J.Brewer, D.Katz and W.Ullery, (1987) Pole Assignability in Polynomial Rings, Power Series rings and Prüfer Domains, J. of Algebra, 106, pp. 265-286.
M. Carriegos, (1999) Equivalence Feedback en Sistemas Dinńicos lineales. Tesis Doctoral, Valladolid, España.
M.V. Carriegos and I. García-Planas, (2004) On matrix inverses modulo a subspace, Linear Algebra Appl., 379, pp. 229-237.
D. Estes and J. Ohm, (1967) Stable range in commutative rings, J. Algebra 7(3), 343-362.
M- I. García-Planas, (2009) A Complete system of structural invariants for singular systems under proportional and derivative feedback Int. J. Contemp. Math. Scinces. 4 (21-2), pp. 1049-1057.
M- I. García-Planas, A. Díaz, (2007) Canonical forms for multi-input repairable singular systems. Wseas Transactions on Mathematics. 6 (4), pp. 601-608.
M- I. García-Planas, M.M. López-Cabeceira, (2010) A Stein matrix equation related to transfer matrix of linear dynamic systems over commutative rings. Matrix .Analysis and Applications. ISBN: 978-84-8363-544-5, D.L.: V-1996-2010, Ref. Editorial: 2355.
I. Gohberg, P. Lancaster and L. Rodman, (1982) Matrix Polynomials, Computer science and applied mathematics series, Academic Press, London.
J. A Hermida-Alonso, M.M. López-Cabeceira and M.T. Trobajo, (2005) When are dynamic and static feedback equivalent? Linear Algebra Appl., 405, pp. 74-82.
C.C.MacFuffee, The theory of matrices, Chelsea Publ. Com. New York, Corrected reprint of firts edition.
B. Zhou, G.R. Duan and Z.Y. Li, (2009) A Stein matrix equation approach for computing coprime matrix fraction description, IET Control Theory Appl., 3 6, pp. 691-700.

