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Abstract
Given a linear dynamic time invariant represented by

x+(t) = Ax(t)Bu(t), y(t) = Cx(t), we analyze con-
ditions for obtention of a coprime factorization of trans-
fer matrices of singular linear systems defined over
commutative rings R with element unit. The problem
presented is related to the existence of solutions of a
matrix equation XE −NXA = Z.
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1 Introduction
Let R be a commutative ring with unity and

Ex+(t) = Ax(t) + Bu(t), y(t) = Cx(t)) be a singu-
lar system over R, that we represent by (E,A, B, C).
Then, the transfer matrix of the system (E, A,B, C) is
given by H(s) = C(sE −A)−1B.
This systems appear in literature when for example,

one studies linear systems depending on a parameter or
linear systems with delays.
Let (E, A,B,C) be a singular system with E = I4,

A =
(

0
0

0 1
0 0

)
, B =

(
1 0
0 1
0 0
0 0

)
, C = ( 1 0 0 0 ), clearly

(sI4 − A)−1 is a rational matrix. Considering FB
E =

(−1 0 0 0
0 −1 0 0

)
, FB

A = ( 0 0 1 0
0 1 0 0 ), FC

E = 0, FC
A =

(
0
0
0
1

)
,

it is easy to compute det(s(E +FC
E C +BFB

E )− (A+
FC

A C + BFB
A )) = 1 6= 0, ∀s ∈ R, consequently

(s(E + FC
E C + BFB

E ) − (A + FC
A C + BFB

A ))−1 is
polynomial.
We are interested in classify the singular systems

(E,A, B, C) for which there exist feedbacks FB
E , FB

A ,
and output injections FC

E ,FC
A , such that (s(E+FC

E C+
BFB

E )−(A+FC
A C+BFB

A ))−1 is polynomial. We will
call systems with polynomial transfer matrix by feed-
back (proportional and derivative) and output injection
(proportional and derivative) and we will write simply

as pbfoi-systems, the systems verifying this property .
Notice that if this property holds the the system is reg-

ularisable, remember that a system (E, A, B, C) is reg-
ularisable if and only if there exist feedbacks FB

E , FB
A ,

and output injections FC
E ,FC

A , such that det(s(E +
FC

E C + BFB
E )− (A + FC

A C + BFB
A )) 6= 0 for some

s ∈ R.

Remark 1.1. Converse is not true as we can see in
this example: let (E,A, B, C) with E = I4, A =(

0
0

0 1
0 0

)
, B =

(
1
0
0
0

)
, C = ( 0 1 0 0 ), considering

all possible feedbacks FB
E , FB

A , and output injections
FC

E ,FC
A matrix s(E + FC

E C + BFB
E )− (A + FC

A C +
BFB

A ) is




s(1 + a) + a1 s(b + e) + (b1 + e1) sc + c1 sd + d1

0 s(1 + f) + f1 0 0
0 s(1 + g) + g1 s 1
0 s(1 + h) + h1 0 s




is easy to compute det(s(E + FC
E C + BFB

E ) − (A +
FC

A C +BFB
A )) = (s(1+a)+a1)(s(1+f)+f1)s2 6=

0 for almost all s ∈ R and 0 for s = 0. Then
(E,A, B, C) is regularisable but not pbfoi.

In order to use a simple reduced system preserving
these properties we consider the following equivalence
relation deduced of to apply the standard transforma-
tions in state, input and output spaces x(t) = Px1(t),
u(t) = Ru1(t), y1(t) = Sy(t), premultiplication by an
invertible matrix QEẋ(t) = QAx(t) + Qu(t) making
feedback u(t) = u1(t) − V x(t) and derivative feed-
back u(t) = u1(t)− Uẋ(t) as well as output injection
u(t) = u1(t) −Wy(t) and derivative output injection
u(t) = u1(t) − Zẏ(t). Considering this equivalence
relation and restricting out to the regularisable systems
and for R = C, it is possible to reduce the system to



(Ec, Ac, Bc, Cc) where

Ec =




I1

I2

I3

I4

N1




Ac =




N2

N3

N4

J
I5




Bc =




B1 0 0
0 B2 0
0 0 0
0 0 0
0 0 0




Cc =
(
C1 0 0 0 0
0 0 C2 0 0

)

and Ni denotes a nilpotent matrix in its reduced form

Ni = diag (Ni1 , . . . , Nit), Nij =
(

0 Inij
−1

0 0

)
∈

Mnij
(C),

J denotes the Jordan matrix J =
diag (J1(λ1), . . . , Jm(λm)), Ji(λi) =
diag(Ji1(λi, . . . , Jit(λi)), Jij (λi) = λiI + N .
Notice that not all subsystems must appears in canon-

ical reduced form.

Remark 1.2. Canonical reduced form can be obtained
directly using the complete set of invariants (see [6]).

2 Coprime factorization
Two polynomial matrices N(s) ∈ Mp×m(R[s]) and

D(s) ∈ Mm(R[s]) are called (Bézout) right coprime
if

(
N(s)
D(s)

)
is left-invertible, that is to say, if there exist

X(s) ∈ Mm×p(R[s]), Y (s) ∈ Mm(R[s]) satisfying
the “Bézout identity”

X(s)N(s) + Y (s)D(s) = Im

The polynomial matrices X(s) and Y (s) are called
left Bézout factors for the pair (N(s), D(s)).
Let H(s) be a rational matrix admitting a factorization

H(s) = N(s)D−1(s), we will call this factorization a
r.c.f. (right coprime factorization) of H(s).

Theorem 2.1. Let (E,A, B, C) a pbfoi system. Then
there exist a coprime factorization of the transfer ma-
trix associated to the system.

Proof. Taking into account that (E,A, B, C) is a pb-
foi system (s(E + FC

E C + BFB
E ) − (A + FC

A C +
BFB

A ))−1 = Q(s) is polynomial. The matrix pair
(N(s), D(s)) with N(s) = Q(s) and D(s) = I −
(s(BFB

E + FC
E C) + (BFB

A + FC
A C))Q(s) is coprime:

X(s)N(s) + Y (s)D(s) = I with X(s) = s(BFB
E +

FC
E C) + (BFB

A + FC
A C) and Y (s) = I .

D(s) =
I −X(s)Q(s) + (sE + A)Q(s)− (sE + A)Q(s) =
I − (X(s) + (sE + A))Q(s) + (sE + A)Q(s) =
(sE + A)Q(s),

consequently detD(s) = γ det(sE + A) for all s ∈ R
and N(s)D−1(s) = Q(s)((sE+A)Q(s))−1 = (sE+
A)−1

H(s) = C(sE + A)−1B = CN(s)D−1(s)B.

¤

Proposition 2.1. Let (E,A, B, C) a pbfoi linear sys-
tem, then there exist FB

A ,FC
A , FB

E ,FC
E , such that

A + BFB
A + FC

A C is invertible and (E + BFB
E +

FC
E C)(−A + BFB

A + FC
A C)−1 is nilpotent.

Proof. If (E,A, B, C) is a pbfoi linear system, then
there exist FB

A ,FC
A , FB

E ,FC
E , such that P (s) = s(E +

FC
E C + BFB

E )− (A + FC
A C + BFB

A ) is invertible, so
there exist Q(s) = s`Q` + . . . + sQ1 + Q0 such that
P (s)Q(s) = In.
Consequently:

(A + BFB
A + FC

A C)Q0 = In

(E + BFB
E + FC

E C)Q0−
(A + BFB

A + FC
A C)Q1 = 0

(E + BFB
E + FC

E C)Q1−
(A + BFB

A + FC
A C)Q2 = 0

...
(E + BFB

E + FC
E C)Q`−1−

(A + BFB
A + FC

A C)Q` = 0
(E + BFB

E + FC
E C)Q` = 0

First equality says that−(A+BFB
A +FC

A C)−1 = Q0.
Since−(A+BFB

A +FC
A C) is invertible we can obtain

Qi, ` ≥ i ≥ 1.

Qi = −(A−1E)iA−1

where
A = (A + BFB

A + FC
A C)

E = (E + BFB
E + FC

E C)



The last equation

0 = (E + BFB
E + FC

E C)Q` =
−((E + BFB

E + FC
E C)(A + BFB

A + FC
A C)−1)`+1

consequently

(E + BFB
E + FC

E C)(A + BFB
A + FC

A C)−1 (1)

is a nilpotent matrix and taking into account that Q` 6=
0, the nilpotency order is ` + 1. ¤

Corollary 2.1. If a system (E, A, B,C) is pbfoi then
it is repairable

Remember that a system (E,A, B, C) is repairable if
and only if there exist FB

A and FC
A such that A +

BFB
A +FC

A C is invertible, (for more information about
repairable systems see [7]).
Notice that the system in remark 1.1 is not repairable.

Remark 2.1. Converse is not true as we can see in
the following example: let (E, A, B, C) with E =(

0 0 0
0 0 0
0 0 1

)
, A = I3, B =

(
1
0
0

)
, C = ( 0 1 0 ), considering

all possible feedbacks FB
E , FB

A , and output injections
FC

E , FC
A matrix s(E + FC

E C + BFB
E )− (A + FC

A C +
BFB

A ) is




1 + c1 + sa1 c2 + d1 + s(a2 + b1) c3 + sa3

0 1 + d2 + sb2 0
0 d3 + sb3 1 + s




which inverse is not polynomial because of det(s(E +
FC

E C + BFB
E )− (A + FC

A C + BFB
A )) /∈ C0.

Proposition 2.2. Let (E,A, B, C) be a pbfoi system.
Then the equation XE−NXA = Z with N a nilpotent
has a solution (X,Z) with X invertible.

Proof. Matrix 1 in proposition 2.1 is equivalent to a
nilpotent matrix N in its reduced Jordan form

(E+BFB
E +FC

E C)(A+BFB
A +FC

A C)−1 = X−1NX,

equivalently

X(E + BFB
E + FC

E C) = NX(A + BFB
A + FC

A C),

XE −NXA =
−X(FC

E C + BFB
E ) + NX(FC

A C + BFB
A ) = Z.

The existence of FB
E , FC

E , FB
A , FC

A , verifying propo-
sition 2.1 implies that the equation XE −NXA = Z
has a solution with X invertible and Z = −X(FC

E C +
BFB

E ) + NX(FC
A C + BFB

A ). ¤

Suppose now, that the system (E,A, B, C) is re-
pairable and let FB

A and FC
A be such that A + BFB

A +
FC

A C is invertible. If the equation XE − NXA = Z
with N a nilpotent matrix, has a solution X,Z with X
invertible, we can consider the matrix M = −X−1Z +
X−1NX(FC

A C + BFB
A ).

If the equation FC
E C +BFB

E = M has a solution then
the system is pbfoi, and

Qi = −(A + BFB
A + FC

A C)−1XNX−1.

3 Characterization of systems pbfoi
In this section we will try to characterize pbfoi-

systems.

Proposition 3.1. Let (E, A,B,C) and
(E1, A1, B1, C1) be equivalent systems.
There exist FB

E , FB
A , FC

E ,FC
A , such that

(s(E + FC
E C + BFB

E ) − (A + FC
A C + BFB

A ))−1 is
polynomial if and only if and There exist FB1

E1
, FB1

A1
,

FC1
E1

, FC1
A1

, such that (s(E1 + FC1
E1

C1 + B1F
B1
E1

) −
(A1 + FC1

A1
C1 + B1F

B1
A1

))−1 is polynomial.

Proof.

E1 = QEP + F̄C
E CP + QBF̄B

E ,
A1 = QAP + F̄C

A CP + QBF̄B
A ,

B1 = QBR,
C1 = SCP,

(s(E1 + F
C1
E1

C1 + B1F
B1
E1

)− (A1 + F
C1
A1

C1 + B1F
B1
A1

))−1 =

(s(QEP + F̄ C
E CP + QBF̄ B

E + F
C1
E1

SCP + QBRF
B1
E1

)−
(QAP + F̄ C

A CP + QBF̄ B
A + F

C1
A1

SCP + QBRF
B1
A1

)−1 =

(sQ(E + Q−1F̄ C
E C + BF̄ B

E P−1 + Q−1F
C1
E1

SC + BRF
B1
E1

P−1)P−
Q(A + Q−1F̄ C

A C + BF̄ B
A P−1 + Q−1F

C1
A1

SC + BRF
B1
A1

P−1)P )−1 =

P−1(s(E + Q−1F̄ C
E C + BF̄ B

E P−1 + Q−1F
C1
E1

SC + BRF
B1
E1

P−1)−
(A + Q−1F̄ C

A C + BF̄ B
A P−1 + Q−1F

C1
A1

SC + BRF
B1
A1

P−1)−1Q−1 =

P−1(s(E + (Q−1F̄ C
E + Q−1F

C1
E1

S)C + B(F̄ B
E P−1 + RF

B1
E1

P−1))−
(A + (Q−1F̄ C

A + Q−1F
C1
A1

S)C + B(F̄ B
A P−1 + RF

B1
A1

P−1)))−1Q−1

FC
E = Q−1F̄C

E + Q−1FC1
E1

S, FC
E = F̄B

E P−1 +
RFB1

E1
P−1, FC

A = Q−1F̄C
A + Q−1FC1

A1
S, FB

A =
F̄B

A P−1 + RFB1
A1

P−1 ¤

3.1 Cas R = C
Proposition 3.1 permit us to characterize the systems

pbfoi.

Lemma 3.1. Let (E, A, B,C) be a system equivalent

to (Er, Ar, Br, Cr) with Er =




I2

I3

N1


, Ar =




N3

N4

I5


, B =




B2

0
0


, Cr =

(
0 C2 0

)
. Then,

the system is pbfoi.



Proof. It is easy to prove that the system is equivalent

(see [7]) to (Ē, Ā, B̄, C̄) with Ē =




N3

N4

N1


,

Ā =




I2

I3

I5


 B̄ = Br, and C̄ = Cr. Then, tak-

ing F B̄
Ē

= F B̄
Ā

= 0 and F C̄
Ē

= F C̄
Ā

= 0 we have that
(s(Ē + F C̄

Ē
C̄ + B̄F B̄

Ē
)− (Ā + F C̄

Ā
C̄ + B̄F B̄

Ā
)) is in-

vertible. ¤

Lemma 3.2. Let (E, A, B, C) be a system equivalent

to (Er, Ar, Br, Cr) with Er =




I2

I3

I4

N1


, Ar =




N3

N4

J
I5


, B =




B2

0
0
0


, Cr =

(
0 C2 0 0

)
.

Then, the system can be not pbfoi.

Proof. It is easy to prove that the system is equivalent

(see [7]) to (Ē, Ā, B̄, C̄) with Ē =




N3

N4

I4

N1


,

Ā =




I2

I3

J
I5


 B̄ = Br, and C̄ = Cr. Then, for

all F B̄
Ē

, F B̄
Ā

, F C̄
Ē

and F C̄
Ā

det(s(Ē + F C̄
Ē

C̄ + B̄F B̄
Ē

)− (Ā + F C̄
Ā

C̄ + B̄F B̄
Ā

)) =

det







I2 + B2F1A B2F2A + G1AC2 B2F3A B2F4A

0 I3 + G2AC2 0 0
0 G3A

C2 J 0
0 G4A

C2 0 I5


+

s




N3 + B2F1E
B2F2E

+ G1E
C2 B2F3E

B2F4E

0 N4 + G2E C2 0 0
0 G3E C2 I4 0
0 G4E

C2 0 N1





=

= p(s) · det(sI4 + J) /∈ C0

¤

Theorem 3.1. Let (E, A,B,C) be a repairable system
verifying one of the following conditions

1. the system has not finite zeros
2. the number t of Jordan blocks is is less or equal

than r = rank B1 = rank C1.

Then, the systems is pbfoi.

Proof. If the system (E, A, B,C) is pbfoi it is re-
pairable. So the system is equivalent (see [7]) to

(E1, A1, B1, C1) with

E1 =




Ē
N1

N2

J̄


 , A1 =




Ā
I1

I2

I


 ,

Br =




B1 0 0 0
0 B2 0 0
0 0 0 0
0 0 0 0


 , C1 =




C1 0 0 0
0 0 C2 0
0 0 0 0




with Ē =
(

0
I

)
, J̄ =

(
J

N3

)
, Ā =

(
0

N

)

B1 =
(

I
0

)
, C1 =

(
I 0

)
and J = diag (J1, . . . , J`)

Ji non derogatory with simple non-zero eigenvalue
(different Ji may be the same eigenvalue). After
lemmas it suffices to consider systems in the form((

0
J

)
,

(
I

I

)
,

(
I
0

)
,
(
I 0

))
which are equivalent

to
((

0
I

)
,

(
I

J−1

)
,

(
I
0

)
,
(
I 0

))

Suppose now t = 1, that is to say

J−1 =




a 1
a

. . .
a 1

a




, and taking FB
A =




−1 1 0 . . . 0 0 0 . . . 0
0 −1 1 . . . 0 0 0 . . . 0
...

. . . . . .
...

0 0 0 . . . −1 1 0 . . . 0


, FC

A =




0 0 . . . 0
...

...
1 0 . . . 0


, and FC

E = 0, FB
E = 0. So

det(s(E + BFB
E + FC

E ) + A + BFB
A + FC

A ) =

det




0 1 0 0
0 0 1 0

0
. . . . . .

0 0 1 0
0 0 a + s 1
0 0 a + s 1
...

. . .
0 0 0 . . . a + s 1
1 0 0 . . . a + s




= 1.

For 1 < t ≤ r = rank B1 = rank C1, the

system (E, A, B, C) with E =




0
J1

. . .
Js


,



A =




0
I1

. . .
Is


 (0 ∈ Mr(C), is equivalent to

(E1, A1, B1, C1) with

E1 =




01

I
. . .

01

I
0r−s




(0i ∈ Mi(C), A1 =




0
J−1

1

. . .
0

J−1
s

Ir−s




, B1 =




1
0
...
0

...
1
0
...
0

0




, C1 =




1 0 . . . 0
. . .

1 0 . . . 0
0


. Then, it suffices to apply

the case s = 1 ¤

For t > r the result is not true, as we can see in the
following example.

Example 3.1. Let






0
1

1


,




0
0

0


,




1
0
0


,

(
1 0 0

)



a repairable system,

det




s(a1 + b1) + (c1 + d1 sa2 + c2 sa3 + c3

sb2 + d2 s 0
sb3 + d3 0 s


 /∈ C.

So, the system is not pbfoi.

3.2 Case R a principal ideal domain
On one hand, by proposition 3.1, it is clear that if we

have an equivalent system to a system in the previous
form, then we can construct a coprime factorization of
the transfer matrix of the system. On the other hand,
in principal ideal domains, it is no possible to reduce
a system to a form like C. So, in order to realize a
first study over principal ideal domains, we consider
systems x+(t) = Ax(t) + Bu(t), it is, we consider
C = 0.

Proposition 3.2. Let (A,B) be a system over a princi-
pal ideal domain. Then are equivalent conditions:

1. There exist FE and FA such that P (s) = (sIn −
A + sBFE + BFA) is an unimodular matrix.

2. The system is repairable, it is, there exist FA such
that A − BFA is invertible. The equation XE +
NXA = BY , with N nilpotent, has a solution
(X, Y ) with X invertible.

Proof. First implication is direct by corollary ?? and
proposition ??. Reciprocally, we consider FE =
(FAXN − Y )X−1 ∈ Mm×n(R), then (In +
BFE)(−A + BFA)−1 is nilpotent of order r: ((In +
BFE)(−A + BFA)−1)r = TNrT−1 = 0, where
T = ((−A + BFA))X . Furthermore, since ((In +
BFE)(−A + BFA))r−1 6= 0, we define

Qi = (−1)i((−A+BFA)−1(In+BFE))i(−A+BFA)−1,

for all i = 0, 1, . . . , r − 1. So, we have (In +
BFE)Qr−1 = 0 and Qr−1 6= 0. Finally, we con-
sider polynomial matrix Q(s) =

∑r−1
i=0 Qis

i verifying
P (s)Q(s) = In. Note that r = ` + 1. ¤

Corollary 3.1. Let (A,B) be a repairable system. If
equation XE + NXA = BY , with N nilpotent, has
a solution (X, Y ) with X invertible, then there exist a
coprime factorization of the transfer matrix associated
to the system.

Proof. By theorem ?? and proposition 3.2, (N(s) =∑l
i=0 Nis

i, D(s) =
∑l

i=0 Nis
i) with N0 = XC,

Ni = (−1)iXN iC for all i = 1, . . . , `, D0 =
Im − FA(−A + BFA)−1B, D1 = −Y C and Di+1 =
(−1)i+1Y N iC for all i = 1, . . . , `, where C =
X−1(−A + BFA)−1B, is a coprime factorization of
the transfer matrix associated to the system (A,B). ¤

Remark 3.1. We can write a procedure with Input
(A, B) n-dimensional m-input reachable system, and
Output (N(s), D(s)) coprime matrix fraction descrip-
tion of the transfer matrix of the system. In particular,
H(s) = (sIn−A+sBFE+BFA)−1B is a polynomial
transfer matrix.

Step 1.- Give canonical form
(A1, B1) = (P−1AP + P−1BF, P−1BQ).

Step 2.- Find F ′ such that A1 + B1F
′ is invertible.

Step 3.- Solve equation A1X1N + X1 = B1Y1.

Step 4.- Calculate

X = PX1 and Y = QY1 − FX1N .
Step 5.- Calculate

FA = (F + QF ′)P−1 and FE = (FAXN−)X−1.
Step 6.- Return polynomial coeff. of N(s) and D(s)

N0 = XC, Ni = (−1)iXN iC,
C = X−1(−A + BFA)−1B
D0 = Im − FA(−A + BFA)−1B, D1 = −Y C,
Di+1 = (−1)i+1Y N iC



3.2.1 Single input reachable system

Theorem 3.2. Let (A,B) be a single input reachable
system. If N is nilpotent of order n, then there exist Y
such that AXN + X = BY equation has a solution
(X, Y ) with X invertible.

Proof. First, by proposition 3.1, we can consider an
equivalent canonical system.

(AR, BR) =
((

0t 0
In−1 0

)
,

(
1
0

))

Second, if N has nilpotent order r < n then X is no
invertible: X = (B . . . (−1)r−1Ar−1B (−1)rArB
. . . (−1)n−1An−1B) (Y . . . Y Nr−1 0 . . . 0)t =
(B . . . (−1)r−1Ar−1B) (Y . . . Y Nr−1)t, so

X =




1 . . . 0
. . .

0 . . . (−1)r−1

0 . . . 0







Y
...

Y Nr−1




is no invertible. Hence, we suppose N of order n
and reduced triangular form (see [?]), N = (aij) with
aij = 0 ∀j ≤ i. In this case

X =




1 0 . . . 0
0 −1

. . .
(−1)n−1


 ·




y1 y2 y3 . . . yn

0 a12y1 a13y1 + a23y2 . . .
∑n−1

i=1 ainyi

. . .
. . .

...
0 0 0 . . .

∏n−1
i=1 aii+1y1


 .

Since N is of order n, aii+1 6= 0 for all i = 1, . . . n−1.
so, we can consider Y such that y1 6= 0. ¤

Corollary 3.2. Let (A,B) be a single input reachable
system. Then (A,B) is a pfboi-system.

Proof. We suppose (A,B) reduced canonical system.
If we consider FA =

(
0 . . . 0 1

)
and FE = (FAXN−

Y )X−1, then A+BFA and P (s) = (sIn−A+sBFE+
BFA) are invertible matrices. ¤

¤

4 Conclusions
The goal of this paper is the study of the coprime fac-

torization of the transfer matrix of a singular linear sys-
tem (E, A,B), throughout repairable property and so-
lutions of a particular equation XE − NXA = Z.
In particular, repairable property has been study over

principal ideal domains (see [M. Carriegos, 1999]) and
stable rings (see [J.A. Hermida-Alonso, M.M. López-
Cabeceira and M.T. Trobajo, 2005]). Currently, we are
developing our study over no single input systems over
principal ideal domains.
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M.T. Trobajo, (2005) When are dynamic and static
feedback equivalent? Linear Algebra Appl., 405,
pp. 74–82.
C.C.MacFuffee, The theory of matrices, Chelsea
Publ. Com. New York, Corrected reprint of firts edi-
tion.
B. Zhou, G.R. Duan and Z.Y. Li, (2009) A Stein ma-
trix equation approach for computing coprime matrix
fraction description, IET Control Theory Appl., 3 6,
pp. 691-700.


