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Abstract
The paper reports the results of a partial-time analysis

of EEG signals from healthy volunteers obtained during
the recording of polysomnography with an expanded ar-
rangement of electrodes (19 leads). An analysis of the
characteristics of frequency patterns (their number, du-
ration, and energy power) was carried out in theta – band
(4 – 6 Hz) in five brain areas (central, occipital, frontal
zones, and left and right hemispheres). A comparison of
the obtained characteristics was carried out according to
the chronotypes of the respondents. Based on the results
of the study, it was possible to demonstrate chronobio-
logical patterns of nocturnal EEG activity in healthy vol-
unteers. REM sleep stage in groups of participants with
morning and evening chronotypes demonstrates statisti-
cally significant differences in the number and duration
of EEG oscillatory patterns for different areas of brain
activity. The report was presented at PhysCon 2024 “Lo-
cal nocturnal EEG activity of healthy people depending
on chronotype”.
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1 Introduction
Research in the field of sleep neurophysiology has at-

tracted the attention of the scientific community and clin-

icians for a long time. Interest in this issue is also ex-
plained by the fact that disturbances in the processes
of initiation, prolongation, and suppression of sleep are
closely related to the general physical and mental state
of the human health [Kostenko et al., 2013].

Currently, sleep disturbance is a stable scenario of ev-
eryday life for many thousands of people. Today, sleep
timing shifts, sleep deficits and their irregular charac-
teristics are often caused by an unstable schedule, a
break with a continuous production/control cycle. At
the same time, a number of studies have shown that
regular sleep disturbance correlates with an increased
risk of metabolic disorders, obesity, high blood pres-
sure [Huang et al., 2019], etc., as well as, for exam-
ple, with changes in intestinal microbiota [Maki et al.,
2020] or an increased risk of early cognitive dysfunc-
tion, as well as manifestations of Alzheimer’s dis-
ease [D’Rozario et al., 2020]. Moreover, there are stud-
ies demonstrating a long-term decline in memory, atten-
tion, and other cognitive functions that accompany sleep
deprivation and/or insomniacite [Shokri-Kojori et al.,
2018].

Research into human chronotype and circadian
rhythms of various conditions has intensified in recent
years in a variety of areas, for example, from studies
of immunity [Collins et al., 2021] to neuropsychologi-
cal assessments of sleep problems, mood, etc. [Holler
et al., 2021]. In addition to the fundamental interest in
human self-knowledge, such studies of sleep disorders
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have significant practical importance, directly related to
the social burden of increasing the risk of developing a
spectrum of extremely severe disabling diseases and the
search for ways to reduce such threats.

According to the literature, EEG activity of the brain
has its own characteristics depending on the daily type
of initiation of sleep and wakefulness processes (in other
words, chronotypes). It is already known that morning
types have a greater spectral power of EEG signals in the
low band (12 – 14 Hz) compared to evening types, while
the rate of decay of slow-wave activity (1 – 5 Hz) tends to
be greater in morning types compared with evening types
(P = 0.06) [Mongrain et al., 2005]. Studies of EEG ac-
tivity today attract a lot of attention from researchers,
both from the standpoint of experimental study [Gro-
mov, et al., 2024; Maksimenko, et al., 2019] and math-
ematical modeling [Dolinina, et al., 2022]. Among
the methods of mathematical tools, it is necessary to
highlight the methods of frequency-time analysis, which
have a significant history, but do not lose their leading
position due to the clear interpretation of the results ob-
tained and well-developed approaches [Dolinina, et al.,
2022; Grishchenko, et al., 2020].

The aim of this study is to clarify the characteristics
of local EEG activity in 5 brain zones in healthy volun-
teers, depending on the chronotype, in theta – band (4 –
6 Hz). Today, theta activity is directly linked to mem-
ory reconsolidation during sleep during emotional recov-
ery processes [Hutchison, Rathore, 2015]. This type of
theta activity is studied in various neural network mod-
els and is associated with modulation of the generation
of high-frequency activity that correlates with cognitive
activity [Sevasteeva, et al., 2021].

2 Materials and methods
2.1 Materials

A total of 103 volunteers were included in the study
at the Pain Treatment Clinic’s sleep laboratory. Each re-
spondent signed an informed consent to participate in the
study.

Study inclusion criteria:

- age over 18 years;
- body mass index (BMI) within 18.5 – 25 kg/m2;
- volunteer must observe sleep hygiene (no jet lag or

sleep deprivation the night before);
- no sleep disorders: respiratory (snoring, obstruc-

tive/central sleep apnea syndrome, chronic alveolar
hypoventilation);

- motor (restless legs syndrome, periodic limb move-
ments); parasomnia, insomnia, hypersomnia, etc.;

- no acute and chronic somatic, neurological, or psy-
chiatric diseases;

- no heart rhythm or conduction disturbances, no is-
chemic changes on the ECG or in the anamnesis;

- absence of infectious diseases (including acute and
chronic in the acute stage);

- absence of dyshormonal, dyselectrolyte conditions;
- not taking psychotropic drugs and drugs that can

affect the quality of sleep and cognitive func-
tions (hypnotics, anxiolytics, neuroleptics, antide-
pressants, normothymic drugs, etc.).

Exclusion criteria

- the presence of acute and chronic somatic diseases,
including sleep-related breathing disorders, sleep-
related movement disorders, and parasomnias,

- the presence of neurological diseases in the acute
phase,

- the presence of hormonal disorders, electrolyte im-
balance, and circadian rhythm disorders,

- regular intake of psychotropic and other medicines
that can affect sleep.

Each volunteer underwent two sleep studies with
psychophysiological testing before and after each
polysomnographic recording. The polysomnography
recording included extended EEG registration (19 chan-
nels instead of the standard 4 – 6 in PSG); 2 EOG chan-
nels; EMG of the chin, 2 channels of chest excursion and
abdominal respiratory excursion; 2 channels of EMG of
the calf muscles; registration of respiratory flow from
the nose and snoring; registration of the level of blood
saturation from a finger photoplethysmographic sensor;
registration of body position. The clinical characteristics
of the volunteers are presented in Table 1.

Table 1. Clinical characteristics of volunteers (M ± SD – mean ±
standard deviation; Me [25%; 75%] – median [lower quartile; upper
quartile]; AHI – apnea/hypopnea index per hour; BMI – body mass
index, kg/m2; SBP – systolic blood pressure, mmHg; DBP – diastolic
blood pressure, mmHg; HR – heart rate, beats per minute.)

Total, n 103

Male gender, n (%) 40 (38.83 %)

Age, years (M ± SD) 27.6 ± 8.2

BMI, kg/m2 (Me [25 %; 75 %]) 21.4 [19.5; 23]

Rhythms, n (%) 49 (47.57 %)

AHI, no./h, (Me [25 %; 75 %]) 1.65 [1; 2.5]

SBP, mmHg (Me [25 %; 75 %]) 110 [110; 120]

DBP, mmHg (Me [25 %; 75 %]) 70 [70; 80]

HR, bpm (Me [25 %; 75 %]) 76 [73.5; 79]

According to the data in Table 1, 40 men and 63
women participated in the study, the average age of the
study participants was 27.6 ± 8.2 years. It was shown
that, on average, the BMI of the volunteers corresponded
to normal values, and the blood pressure values were in
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Figure 1. Example of a hypnogram of a healthy 22-year-old study
participant

the normotensive range. The heart rate of the partici-
pants was within normal values. More than a third of the
respondents (35 %) were classified as “rhythmics”.

According to the design of the study, all participants
underwent a polysomnogram recording with subsequent
clinical and numerical analysis of the signals obtained.
Each polysomnographic study was processed in accor-
dance with accepted standards of clinical sleep studies,
namely, a hypnogram was constructed with a window
duration of 30 seconds and the identification of five main
states for the patient – light sleep N1, N2, deep sleep N3,
rapid sleep REM and wakefulness AWAKE. The standart
clinical analysis of PSG was supplemented by automatic
construction of a hypnogram based on standart spectral
algorithms. An example of a hypnogram of a healthy
volunteer is shown in Figure 1. The differences between
the clinical assessment of the somnologist and the auto-
matic processing of hypnograms amounted to no more
than 10 % (on average – 7.84 % for the detection time of
each stage and 8.23 % for the assessment of their dura-
tions), which was considered a satisfactory result.

In addition, all study participants were sorted by their
chronotypes: evening, morning, daily. The definition of
chronotypes was based on the Horn-Ostberg Chronotype
Questionnaire.

2.2 Evaluation of oscillatory patterns in EEG activ-
ity

The analysis of EEG activity of the brain was per-
formed using the method of oscillatory patterns based
on the calculation of the continuous wavelet trans-
form [Runnova et al., 2021]. Below we briefly
described the main steps of the performed math-
ematical processing of the recorded EEG signals.
We denoted the array of EEG signals of each
patient as EEG1(tj); ...;EEGe(tj); ...;EEG19(tj),
where EEGe(tj) is the the value of the signal registered
in current EEG channel e-number at the moment of dis-
crete time tj . For each EEG signal EEGe(tj) a con-
tinuous wavelet transform (CWT) with the basic morlet
function of the following form was calculated:

We(fi, tj) =

√
1

f

N∑
j=1

exp

−
[
fi · (tj − 1

fi
)
]2

2

 •

•Ee(tj)

[
− exp

(
ı2πfi(tj −

1

fi
)

)
− e−π

]
∆t

(1)

In equation (1), the following notation was introduced:
fi is the signal frequency, similar to that for the usual
Fourier transform, tj is the discrete recording time, N
is the number of time samples in the signal analyzed,
ı is the imaginary unit, ∆t = (tj+1 − tj) = 0.004 s
is the time step of the signal sampling. We chosen
sampling along the frequency axis equal to 0.01, i. e.
∆f = (fi+1 − fi) = 0.001 Hz.

Next, on the surface line We(fi, t0), all points of max-
ima, extr [We(fi, t0)]t0 , were extracted. At the next
time point, t1 = t0+∆t, all maxima extr [We(fi, t1)]t1
for a given surface line We(fi, t1) were detected again.
For the two generated arrays of maximum points, the op-
eration of controlling their location on the plane (f ; t)
was performed, viz:

∥(fi0 , t0)− (fi1 , t1)∥ ≤ ς, (2)

where ς = 0.01.
Thus, of the two arrays of extreme maximum values

extr [We(fi, t0)]t0 and extr [We(fi, t1)]t1 , only those
that formed continuous lines on the plane (f ; t), referred
to as patterns, P , were retained. This procedure was re-
peated at each time step, ti+1 = ti + ∆t. This step-by-
step processing resulted in a set of patterns that included
only extreme CWT values:
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After the processing of the entire duration of the EEG
time series was completed, all detected patterns were
checked for duration in order to exclude random noise
interference. For each pattern, P , we calculated average
frequency, ⟨fP ⟩

⟨fP ⟩ =
∑LP

i=1 f
i

LP
(4)

and average duration, ⟨TP ⟩

⟨TP ⟩ =
LP∑
i=1

ti. (5)

Next, in each time tj we form an array of all en-
ergy values {E1,j , . . . , Ek,j , . . . }, where k = 1, . . . , r,
and r is the number of frequencies observed for time
tj on the computed pattern surface P . In the array
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Figure 2. Schematic diagram of the electrode placement during
polysomnography recording and the locations of the brain regions for
which averaging of oscillatory pattern characteristics was performed.

{E1,j , . . . , Ek,j , . . . , Er,j} we estimate the maximum
energy value Emax,j , Emax,j > Ek,j , for ∀k. And we
normalize energy values as:

{⟨E1,j⟩ , . . . , ⟨Ek,j⟩ , . . . , ⟨Er,j⟩} =

= { E1,j

Emax,j
, . . . ,

Ek,j

Emax,j
, . . . ,

Er,j

Emax,j
}. (6)

Normalization is performed separately for each moment
j of time, which allows use standard parallel mode for
program realization of this algorithm [Simonyan et al.,
2022].

Next, we again return to the sorting of patterns P , and
for all points (f, t)p, constituting one pattern P with du-
ration m, we calculate the average energy characteristic
E of the pattern as

E =

m∑
p=1

⟨E(f, t)p⟩

m
. (7)

Therefore, each pattern is described by three characteris-
tics: mean frequency fmd, duration or lifetime T , mean

energy E.
The entire EEG recording was divided into ∆30s inter-

vals of 30 seconds duration. Then all patterns detected
during this ∆30s interval were sorted according to the
frequency of oscillatory activity. Each pattern accord-
ing to its mean frequency ⟨fP ⟩ (4) was assigned to the
theta – band: ∆fθ [4, 6] Hz. To study the oscillatory ac-
tivity of the brain, the following local areas of the brain
were examined: area #1 – the central sulcus (Fz, Cz,
Pz, Oz), area #2 – the occipital region (P3, P4, O1, O2,
Pz, Oz), area #3 – the frontal region (Fp1, Fp2, F3, F4,
Fz), area #4 – the left hemisphere region (Fp1, F3, F7,
C3, T3, P3, T5, O1), area #5 – the right hemisphere re-
gion (Fp2, F4, F8, C4, T4, P4, T6, O2) (see Figure 2).

2.3 Statistical data processing
Mean, median, and standard deviation were used in

descriptive statistics of collected data. The Mann-
Whitney U test for independent samples was performed
for the comparison of quantitative data. Calculation
and graphing of distributions of Tr coefficients made in
OriginLab version 6.1. The results with a p-value ≤
0.001 were assumed statistically significant. Statistical
analyses were conducted by SPSS version 22.0 software
for Windows (IBM, Armonk, NY, USA).

3 Results
3.1 Assessment of sleep structure based on hypno-

gram characteristics
When dividing the entire array of information into

three groups – morning, daily and evening chronotypes,
it is possible to identify the following features. Firstly,
the average and median number of moments of wakeful-
ness, as well as stages N1, N2, N3, is higher in the group
of morning chronotype (see Fig. 3, a).

Secondly, the number of REM stages of paradoxical
sleep is the same for all three chronotypes. It is not pos-
sible to distinguish the chronotypes of daily and evening
chronotypes by the number of sleep stages. Thirdly, the
analysis of the duration of various stages of sleep in var-
ious chronotypes demonstrates an increase in the rela-
tive duration of awakening periods in group of morn-
ing chronotype (Fig. 3, b). However, at the same time,
the analysis of the absolute values of the duration of the
stages of wakefulness does not show such changes in
group of morning chronotype (Fig. 3, c).

The early morning chronotype has a reduced duration
of sleep stages N2, N3 and, to a lesser extent, REM.
However, the average duration of stage N1 is somewhat
increased. Note that the relative durations of stages N3
and REM are also somewhat reduced, as can be seen in
Fig. 3, b.

Finally, no such differences in the duration of various
sleep stages can be observed in participants groups with
daily and evening chronotypes. At the same time, note
that, according to Tables 2 and 3, it can be observed that
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Figure 3. Statistical diagrams of the number of sleep stages (a), the percentage of duration of each sleep stage (b), and the average duration of
each sleep stage (c) for nocturnal PSG recordings in subjects with different chronotypes.

Table 2. Average statistical features of hypnograms: % of PSG – total
percentage of time during PSG spent in a given sleep stage; NS – total
number of sleep stages during PSG; AD – average duration of a sleep
stage during PSG

Sleep stage % of PSG NS AD, s

Evening Chronotype

W 16.22 18.50 220.54

N1 5.93 11.44 106.69

N2 42.85 23.00 498.03

N3 22.30 11.56 594.76

REM 10.50 4.44 811.09

Morning Chronotype

W 20.49 34.2 288.18

N1 8.82 14.20 151.16

N2 51.29 48.20 434.42

N3 10.72 23.00 232.66

REM 8.63 4.60 675.03

Daily Chronotype

W 16.78 21.35 176.03

N1 7.61 12.56 118.54

N2 46.37 29.97 429.15

N3 17.72 13.06 493.69

REM 10.19 4.41 789.95

the average number of sleep stages in evening chrono-
type group is less than that in groups of morning and
daily chronotypes. This is especially evident for stage
N2, as well as periods of awakening. However, the dura-
tion of these states in evening chronotype group prevails
over that in groups of morning and daily chronotypes.
For example, for stage N2, test subjects with evening
chronotype demonstrate an average duration of about
498 seconds, while study participants with morning and
daily chronotypes demonstrate 434 and 429 seconds, re-
spectively. Thus, the difference is about 13 – 15%.

Note that the characteristics of transitions between dif-
ferent stages of sleep also differ significantly (see Ta-
ble 3). For example, in evening chronotype group, the
probability of transition from the state of wakefulness to
the state of deep sleep (N3) is three times higher than
in larks. The probability of the onset of stage N2 after
stage N1 in pigeons exceeds that of larks by 20 %. Note
that in general, the organization of sleep in larks demon-
strates the following tendency – the minimum probabil-
ity of awakening at stage N3. Usually, the stage of the
deepest sleep N3 ends with the transition to stage N2
and never to REM sleep. At the same time, considera-
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Table 3. Average percentages of the probability of transition from
one stage of sleep to another during PSG recording in subjects with
different chronotypes

W N1 N2 N3 REM

Evening Chronotype

W 0.00 51.65 38.49 1.61 4.28

N1 34.15 0.00 64.24 0.00 0.42

N2 39.42 7.68 0.00 40.57 11.19

N3 32.95 1.55 57.49 0.00 0.48

REM 52.65 7.29 40.06 0.00 0.00

Morning Chronotype

W 0 49.57 45.58 0.58 2.65

N1 41.98 0 54.27 0 3.75

N2 40.85 6.35 0 44.25 8.55

N3 16.79 10 73.21 0 0

REM 55.33 10 29.67 5 0

Daily Chronotype

W 0 46.84 49.33 1.26 1.2

N1 27.09 0 70.24 1.61 0

N2 44.96 7.91 0 34.83 10.73

N3 27.26 0.68 65.79 0 0.94

REM 51 2.45 42.14 0 0

tion of the transition to wakefulness from all other stages
of sleep indicates an increased probability compared to
other chronotypes.

3.2 Assessment of oscillatory sleep structure based
on CWT patterns

The results of statistical evaluation of the oscillatory
structure of sleep are presented in the Figure 4. First
of all, we note that all the statistically significant dif-
ferences identified are concentrated between the groups
of study participants with evening and morning chrono-
types. Volunteers with an arrhythmic type (daily chrono-
type), as such, show a wide range of oscillatory activity,
which does not allow them to be distinguished from par-
ticipants with evening or morning chronotypes.

Let us discuss the changes in oscillatory EEG activity
observed in study participants with evening and morn-
ing chronotypes. First of all, such changes do not affect
the deep stages of sleep, focusing mainly on the stages
of REM sleep and, less often, light sleep N1, N2. Then,
we note that the stage of REM sleep experiences signif-
icant changes when considering any of the brain activity
zones for analyzing the number N and duration T of os-

cillatory CWT patterns. Finally, the energetic character-
istics of the E patterns do not show any differences for
participants with different chronotypes.

4 Discussion
The study was able to show that clinical analysis of

sleep structure does not reliably differentiate people de-
pending on chronotype, which is consistent with lit-
erature data [Mongrain et al., 2005; Mongrain et al.,
2007]. However, mathematical analysis of EEG activ-
ity allows us to identify a number of patterns associated
with the circadian rhythms of volunteers. It was previ-
ously shown that EEG activity in leads Fz, Cz, Pz, Oz
during slow-wave sleep in morning types demonstrated
a sharper decrease in slow-wave activity (1 – 5 Hz) per
sleep cycle in the fronto-central leads and a sharper in-
crease in activity 13 – 14 Hz in the parieto-occipital leads
than in the evening types. Nonlinear regression analysis
showed that the rate of exponential decline in the rela-
tive values of slow-wave activity during slow-wave sleep
was faster in the morning than in the evening types in
the frontal abduction. In the REM sleep phase, morn-
ing types showed a sharper decrease in the activity of
high sigma (14 – 16 Hz) and beta (16 – 24 Hz) dur-
ing the night in the central-parietal leads than evening
types [Mongrain et al., 2006].

The observed differences in the oscillatory EEG activ-
ity of the brain of the study participants are concentrated
in the REM sleep phase. In addition, these differences
can be identified only by using a special mathematical
apparatus – an assessment of oscillatory patterns based
on continuous wavelet analysis. Moreover, the absence
of differences in the area of energy characteristics for
all three groups with different chronotypes suggests that
the construction of simpler spectral characteristics does
not provide sufficient information about the nature of the
sleep microstructure of patients with different chrono-
types to separate them.

The results of this study complement the literature data
and also allow us to confirm the connection between the
quantitative and qualitative characteristics of EEG activ-
ity in various areas of the brain during all stages of sleep
and the types of daily regulation of the sleep-wake cy-
cle in healthy young people. In addition, the identified
features of the organization of the microstructure of the
oscillatory activity of the EEG of the brain during the
REM stage of sleep may indicate different mechanisms
of reconsolidation of emotional memory in healthy peo-
ple with early morning and late evening chronotypes.
This pilot study requires continuation of experimental
work on the formulation of appropriate psychophysio-
logical experiments.

5 Conclusion
Thus, the sleep structure in healthy volunteer groups

changes weakly for different chronotypes determined
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Figure 4. Statistical diagrams of the numberN (a), the duration or lifetimeT (b) and mean energyE (c) of oscillatory CWT patterns, calculated
for EEG, recorded in different brain areas. The different colors of the diagrams correspond to different groups of study participants according to
their chronotypes, namely: gray color – evening, red color – morning, blue – daily chronotypes. The red line with an asterisk above the diagrams
corresponds to statistically significant differences between the data in the groups with morning and evening chronotypes (p ≤ 0.001)

according to the Horn-Ostberg Chronotype Question-
naire. At the same time, the oscillatory structure changes
quite significantly, at a high level of statistical reliability
(p ≤ 0.001). In addition, the maximum differences oc-
cur in the REM sleep phase, which correlates with mem-
ory consolidation processes and, possibly, dreaming pro-
cesses. This issue requires further, more in-depth study.
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