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Abstract
In this paper, we consider non-stationary distributed

optimization with partially observed parameters with ac-
celeration based on the estimate sequence proposed by
Y. Nesterov. We formulate this partial observability as
time-varying communication matrix defined for each pa-
rameter separately. We propose the new distributed algo-
rithm combining the accelerated Simultaneous Perturba-
tion Stochastic Approximation (SPSA) and the described
communication scheme as well as show its theoretical
properties. The simulation validates the proposed algo-
rithm in multi-sensor multi-target tracking problem over
delayed channels.
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1 Introduction
Nowadays, distributed networks emerge in many

practical areas such as transportation, telecommunica-
tion, logistics, opinion dynamics, flocking behaviour,
multi-vehicle networks [Yu et al., 2010], [Ren et al.,
2007], [Granichin et al., 2012], etc. The problems
arising in network control systems are the subject of
ever-growing research interest. For example, large-scale
systems may be influenced by communication bottle-
necks. In that sense, it is reasonable to impose com-
munication constraints. These constraints can be ac-
counted for through sparsification techniques. In op-
timization, it gained special interest due to the need
for communication-efficient distributed learning. In this
field, the researchers proposed compression operators
that produce sparse vectors to be sent over communica-
tion channels, see, e.g. [Horváth and Richtarik, ] and ref-
erences therein. On the other hand, sparse structure may

reflect a property of a system itself. In multi-area state
estimation, the vector to be optimized is divided into lo-
cal and boundary subsets. The local variables should
stay private while the boundary ones can be exchanged
with neighboring computing nodes. Both approaches
produce a decomposition of parameters and lead to par-
tially observed distributed optimization. In general, dis-
tributed algorithms may be more efficient than central-
ized ones due to their resilience, local communication
and processing. While centralized approaches may pro-
duce communication and computation bottlenecks in
large-scale systems, distributed ones successfully over-
come such difficulties.

Another important problem in optimization is the im-
provement of convergence rate. Acceleration techniques
have been studied for several decades. Heavy ball, which
is the gradient descent with momentum, is asymptoti-
cally optimal among gradient-based methods on quadrat-
ics [Polyak, 1964]. Its stochastic variant, where gradi-
ent is replaced by a stochastic estimator, is widely used
in deep learning. Additionally, momentum and step-
size parameters can be estimated without the knowl-
edge regarding the Hessian’s smallest singular value,
in contrast to classical accelerated methods like Nes-
terov acceleration and Polyak momentum [Pedregosa
and Scieur, 2020]. The heavy ball method with con-
stant step-sizes has a long history. It is known, for exam-
ple, to achieve optimal black-box worst-case complexity
of quadratic convex optimization [Nemirovsky, 1992].
In [Nesterov and Spokoiny, 2017], the authors consider
random derivative-free methods and provide them with
some complexity bounds for different classes of con-
vex optimization problems as well as accelerated meth-
ods for smooth convex derivative-free optimization. In
[Vorontsova et al., 2019], the authors propose an accel-
erated gradient-free method with a non-Euclidean proxi-
mal operator. Paper [Gorbunov et al., 2022] describes an
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accelerated method for smooth stochastic derivative-free
optimization with two-point feedback. The latter paper
considers additionally possibly adversarial noise in the
objective function value and analyze how this noise af-
fects the convergence rate of the estimates. Stochastic
scenarios are typically challenging. In contrast to clas-
sical optimization problems, stochastic ones bring addi-
tional problems with convergence of the algorithms (for
example, gradient descent or Nesterov’s accelerated gra-
dient) [Scieur, 2018]. Moreover, some accelerated meth-
ods like heavy ball or Nesterov’s accelerated gradient
may also exhibit nonmonotonic convergence due to peak
effects [Polyak et al., 2018; Ahiyevich et al., 2018].

In this paper, we combine our research in accelerated
techniques for non-stationary distributed optimization
under unknown-but-bounded disturbances and partially
observed reformulation for the consensus term. This
paper continues the line of research devoted to the im-
proved distributed Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm proposed in [Erofeeva
and Granichin, 2023] and incorporates a new communi-
cation scheme.

The paper is organized as follows. The preliminary
information is given in Section 2. A formal problem set-
ting of non-stationary distributed optimization is given in
Section 3. The partially observed communication matrix
is described in Section 4. The main result is presented in
Section 5. In Section 6, the efficiency of the proposed al-
gorithm is illustrated through the numerical simulation.
Section 7 concludes the paper.

2 Preliminaries
Let (Ω,F , P ) be the underlying probability space cor-

responding to sample space Ω, set of all events F , and
probability measure P . E denotes mathematical expecta-
tion. Let Ft−1 be the σ-algebra of all probabilistic events
which happened up to time instant t = 1, 2, . . ., EFt−1

denotes the conditional mathematical expectation with
respect to σ-algebra Ft−1.

Throughout the paper, we represent d-dimensional col-
umn vectors as lowercase bold symbols (e.g. x =
[x1, . . . , xd]

T), and scalars as non-bold symbols. ⊗ is
the Kronecker product. [·]⊤ is the matrix or vector trans-
pose. | · | is the cardinality of a set or the total number of
unique elements in a set. 1d ∈ Rd is a vector of all ones.
Id ∈ Rd×d is the identity matrix. 0d ∈ Rd is a vector of
all zeros.

3 Problem Statement
3.1 Networked System

Consider a networked system consisting of n nodes.
Nodes are able to communicate with each other through
a network described by undirected graph G = (N , E),
where N = {1, . . . , n} is a set of vertices and E ⊆ N ×
N is a set of edges. The vertices correspond to the areas
while the edges represent the information flows between

them. For node i ∈ N , the set of neighbors is defined
as N i = {j ∈ N : (i, j) ∈ E}. The degree of i ∈ N
equals |N i| and is defined as deg(i). A subgraph of G is
a graph Ḡ = (NḠ , EḠ), where NḠ ⊆ N and EḠ ⊆ E .

Alternatively, we express the communication between
nodes in a matrix form through a communication ma-
trix for which we adopt the following definition from
[Makhdoumi and Ozdaglar, 2017]:

Definition 1 (Communication matrix). Let W be a
m ×m matrix whose entries satisfy the following prop-
erty. For any i ∈ N , Wij = 0 for j /∈ N i. We refer to
W as the communication matrix.

Next, we impose the assumptions on the communica-
tion matrix and graph G.

Assumption 1. The communication matrix W satisfies
null(W) = span(1n), where null(W) denotes the null-
space of W .

Assumption 2. Graph G is connected, i.e., there is a
path between every pair of distinct vertices of G.

Taking into account Assumptions 1 and 2, one of the
available choices for communication matrix is the Lapla-
cian of G, which is L(G) = (lij)i,j∈N :

lij =


−1 if (i, j) ∈ E ,
deg(i) if i = j,

0 otherwise.

3.2 Distributed Non-stationary Mean-risk Opti-
mization

Let θt = [θ1t , . . . , θ
m
t ]T ∈ Rmd be a vector of unknown

parameters θjt ∈ Rd, j = 1, . . . ,m to be estimated at
time instant t = 1, 2, . . .. Each parameter evolves in
accordance with a state-transition model:

θjt = Aj
tθ

j
t−1 + ξjt , (1)

where Aj
t ∈ Rmd×md is a transition matrix, {ξjt }, ξt ∈

Ξ, is a non-controllable deterministic (e.g., Ξ = N and
ξt = t) or random sequence. In the latter case we as-
sume that a probability distribution of ξt exists and may
be known or unknown. This sequence indicates abrupt
changes in the dynamics (e.g., in target tracking prob-
lems, maneuvers of moving objects, or, in power sys-
tems, sudden changes in system operating conditions
due to power injections), a disturbance (e.g., discretiza-
tion and model approximation errors, external signal in-
jection during a cyber-attack).

Remark: model (1) is widely used in the works devoted
to state estimation, e.g., power system dynamic state es-
timation [Zhao et al., 2019].

Each node collects measurements represented by a lin-
ear model:

zit = Hiθt +wi
t, (2)
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where Hi ∈ Rl×md is a measurement matrix, wi
t ∈ Rl is

the noise following Gaussian distribution with zero mean
and standard deviation σw. Then, the problem is to find
estimate θ̂t of unknown parameter θt minimizing func-
tion

fξt(θ̂t, zt) = ||Hθ̄t − zt||2. (3)

based on aggregated measurements zit received by a fu-
sion center. Here, H ∈ Rnl×nmd is a block-diagonal
matrix consisting of Hi on its diagonal, θ̄t = 1n ⊗ θ̂t,
zt = [z1t , . . . , z

n
t ]

T.
In many applications, first-order methods have the bot-

tleneck appearing due to the computation of ∇f . To mo-
tivate this statement, let us mention a few such examples:

Evaluating the gradient of (3) requires O(n2mdl)
arithmetic operations. In large-scale applications, it
becomes unrealistic to calculate the gradient in real-
time.
In some cases, the computation of ∇f involves a
black-box simulation procedure. Then, it’s impossi-
ble to obtain the gradient implicitly.

This work considers zeroth-order optimization, where
we have only measurements of function to be optimized.
We obtain ∇f through stochastic approximation via fi-
nite differences instead of implicit calculations [Kiefer
et al., 1952]. In finite differences, we observe how the
function behaves around a current point. For this pur-
pose, we introduce a sequence of controllable measure-
ment points x1,x2, . . . chosen according to an observa-
tion plan, e.g., xt = θ̂t ± ϵ, ϵ is a random variable drawn
from a known distribution.

Remark: In the example of observation plan, we use θ̂t
with the assumption that θt is observable. In some appli-
cations, we cannot directly measure value of θt. How-
ever, it is possible to make an observation plan consist-
ing of quantities that influence the estimating parameter
and we can indirectly observe how it evolves. One such
example could be found in [Amelina et al., 2015].

The values y1, y2, . . . of the functions fξt(·) are ob-
servable at every time instant t with additive external
unknown-but-bounded noise vt

yt = fξt(xt, zt) + vt. (4)

Equation (4) is called a stochastic zeroth-order oracle
that returns a noisy value of function fξt(·).

Problem (3) requires a centralized optimization proce-
dure. In practice, centralized framework is subject to
performance limitations, such as a single point of failure,
high communication requirement, and substantial com-
putation burden. All of these aspects have influenced
the development of distributed approaches. Thereby, we
consider an optimization problem in which the cost func-
tion F̄t(θ̂t, zt) is expressed as the sum of local contri-
butions F i

t (θ̂
i
t, z

i
t) = EFt−1

f i
ξt
(θ̂it, z

i
t) and all of them

have a common minimizer. Moreover, minimizer θ̂⋆t
of F̄t(θ̂t, zt) may vary over time. Formally, the non-
stationary mean-risk optimization problem is as follows:
estimate the time-varying minimum point θ̂⋆t of the dis-
tributed function

F̄t(θ̂t, zt) =
∑
i∈N

F i
t (θ̂

i
t, z

i
t) (5)

= EFt−1

∑
i∈N

f i
ξt(θ̂

i
t, z

i
t) → min

θ̂t

.

In the distributed setting, the sensors construct se-
quence of measurement points xi

1,x
i
2, . . . and collect

yi1, y
i
2, . . . independently from each other based on their

own measurements zit and current estimate θ̂it.

3.3 Partially Observed Optimization: Motivation
In wide-area estimation problems, the underlying in-

terconnected system is usually partitioned into regions
based on some criteria, e.g., range of sensors. Such prob-
lems occur, for example, in multi-target tracking. The
system states of each region are monitored and managed
by a local control unit referred to as node. The overall
goal is to estimate the states in each region in an opti-
mal way. In general, the nodes can estimate their local
states without communicating with neighboring regions.
However, it may bring some issues: estimated solution
may be sub-optimal; the estimates obtained by differ-
ent nodes for the same target should be consistent, then
there is a need for communication between those regions
in order to utilize the measurements.

Node 1 Node 2 Node 3

- object tracked by a single node

- object tracked by several nodes

Range of Node 2

Range of Node 1 Range of Node 3

Figure 1. Schematic representation of a system

For illustration purposes, consider Figure 1. There are
three regions and nodes corresponding to them. Each
node estimates parameters of the targets detected in their
range. The ranges intersect and some targets are de-
tected by several nodes simultaneously. The parameters
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of these targets form boundary variables for neighbor-
ing nodes. Therefore, towards optimal estimation, the
regions should communicate with each other. This could
be done through information sharing of states related to
boundary variables. Hence, for a partially-observed state
estimation, each region would align shared states with
neighboring regions when performing local estimation.

4 Partially Observed Parameters
The described formulation is a common one for dis-

tributed unconstrained optimization. However, in prac-
tice, we frequently have a decomposition of optimization
variable into private and boundary subsets. The private
part is solely optimized by the node owning this infor-
mation and corresponding measurements. We express
this part as possibly sparse vector θ̂it. The boundary part
can be optimized by several nodes and requires the in-
formation exchange with neighboring nodes. Thus, we
transform the initial distributed problem into partially
observed distributed problem. The process is schemat-
ically represented on Figure 2 and described in subse-
quent steps.

Figure 2. Decomposition and variable exchange. a) Conventional
distributed setting; b) Partially-observed optimization.

4.1 Decomposition
Figure 2a illustrates the common scheme of distributed

optimization between two arbitrary nodes i and j. Both
nodes optimize the whole vector and send it to the neigh-
boring node. Next, we move to Figure 2b. Let X =
{1, . . . , d} be a set of indices corresponding to the en-
tries contained in θ̂it. We divide this set into n subsets
X 1

t , . . . ,Xn
t such as

X i
t ∩ X j

t = X i,j
t , |X i,j

t | ∈ {0, . . . , d}. (6)

The latter means that the intersection between two arbi-
trary sets i and j is set X i,j

t , which has a size ranging
from 0 to d elements.

Consider arbitrarily chosen set of indices St ⊆ X and
vector s ∈ Rd. We denote by BSt

= [eTω1
, . . . , eTω|St|

]
the selection matrix. Here and after, el ∈ Rd is the
canonical basis vector that has a unit entry at the selected

index l and zeros elsewhere and ωl ∈ St. Then, we de-
fine a linear map:

Γ(BSt , s) = BT
St
BSts. (7)

This linear map produces a sub-vector of s taking the
entries which indices are contained in S . Then, it takes
this sub-vector and restores initial vector dimension fill-
ing the rest of the entries by zeros.

Finally, we get a vector to be optimized by node i:

θ̂it = Γ
(
BX i

t
, θt

)
. (8)

4.2 Communication Matrix
Communication matrix for the partially observed pa-

rameters can be adopted from [Erofeeva et al., 2023]:

Wt =
∑
l∈X b

L(Ḡl
t)⊗ ele

⊤
l , (9)

where X b =
⋃

i∈N ,j∈N i X i,j
t , el ∈ Rd is the canonical

basis vector that has a unit entry at the selected index l
and zeros elsewhere, Ḡl

t is a subgraph of G at time in-
stant t associated with the parameter at index l.

The components of canonical vector can be formed in
different ways. When communication constraints should
be accounted for, we can artificially choose these com-
ponents in deterministic or random manner. Also, these
components may reflect the structure of the problem it-
self and appear naturally due to this factor (e.g., multi-
area state estimation, target tracking with limited sensor
range, etc.). The next subsection describes the random-
ized way of generating these components.

4.2.1 Random Components Our previous works
rely on a random sparsification strategy used to satisfy
communication and sensing constraints. Here, we uti-
lize the concept of compression operator, which includes
sparsification as a special case and generalizes our pre-
vious approach.

Definition [Islamov et al., 2021]. A possibly random-
ized map C : Rd → Rd is a compression operator if there
exists a constant ω ≥ 0 such that the following relations
hold for all x ∈ Rd:

E[C(x)] = x (unbiasedness) (10)

E[∥C(x)∥2] ≤ (1− ω)∥x∥2 (variance bound) (11)

In particular, the compression operator has the form
defined below. We use the similar strategy as before, but
enhance our theoretical analysis through generalization
based on the definition of compression operator.

Definition [Stich et al., 2018]. For a parameter 1 ≤
p ≤ d, the compression operator Cp : Rd × Rd → Rd is
defined as

Cp(x, π) =
d

p
diagd(π)x, (12)
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where π ∈ Rd is a random vector uniformly distributed
on discrete set Ωd =

(
[d]
p

)
, which denotes the set of all

p element subsets of [d]. The variance parameter asso-
ciated with this operator is ω = 1 − d

p . We abbrevi-
ate Cp(x) whenever the second argument is chosen uni-
formly at random.

Then, the canonical vectors and the corresponding sub-
graphs can be generated by applying compression oper-
ator Cp(x) to the vector to be optimized/estimated.

The next section combines the new formulation
of communication matrix and accelerated distributed
SPSA-based consensus algorithm.

5 Main Result
This section introduces a new algorithm with partially

observed parameters starting with the distributed SPSA-
based consensus algorithm followed by its accelerated
version. After that, we end this section providing the
convergence analysis.

5.1 Recap of SPSA-based consensus algorithm
(DSPSA)

SPSA-based consensus algorithm is the Simultaneous
Perturbation Stochastic Approximation equipped with a
consensus-based procedure. In sequel, we describe its
main components and steps.

Let ∆i
k, k = 1, 2, . . . , i ∈ N , be an observed se-

quence of independent random vectors in Rd, called the
simultaneous test perturbation, drawn from Bernoulli
distribution. Each component of the vector indepen-
dently takes value ± 1√

d
with probability 1

2 .

Let us take fixed nonrandom initial vectors θ̂i0 ∈ Rd,
positive step-size h, gain coefficient ω, and parameter
β > 0. We consider the algorithm with two observations
of distributed sub-functions f i

ξt
(θ) for each agent i ∈ N

for constructing sequences of measurement points {xi
t}

and estimates {θ̂it}:

xi
2k = θ̂i2k−2 + β∆i

k, x
i
2k−1 = θ̂i2k−2 − β∆i

k,

θ̂i2k−1 = θ̂i2k−2,

θ̂i2k = θ̂i2k−1 − h
(

yi
2k−yi

2k−1

2β ∆i
k+

ω
∑

j∈N i bi,j(θ̂i2k−1 − θ̂j2k−1)
)
.

(13)

5.2 Accelerated DSPSA with Partially Observed
Parameters

We modify the accelerated version of DSPSA pre-
sented in [Erofeeva and Granichin, 2023] by equipping
it with the partially observed communication matrix.

Taking into account the assumptions from [Erofeeva
and Granichin, 2023], where L is Lipschitz constant and
µ is the constant related to strong convexity, we define a
list of variables. At each node, we choose initial estimate
θ̂i0 ∈ Rd, and parameters γi

0 > 0, h > 0, β > 0, η ∈
(0, µ), αi

0 ∈ (0, 1). We also define zi0 = θ̂i0 and H =

h− h2L
2 and pick αi

x ∈ (0, 1). At each k > 0, we find αk

by solving the equation presented in the paper mentioned
above as well as γi

k.
We present an algorithm that requires two measure-

ments of function f i
ξt
(·) taken subsequently. Using

gradient approximation techniques, we produce esti-
mates {θ̂it} at k ≥ 1 and each node:



x̃i
2k−2 = 1

γi
k−1+αi

k(µ−η)

(
αi
kγ

i
k−1z

i
2k−2 + γi

kθ̂
i
2k−2

)
,

xi
2k = x̃i

2k−2 + β∆i
k, x

i
2k−1 = x̃i

2k−2 − β∆i
k,

x̃i
2k−1 = x̃i

2k−2, θ̂
i
2k−1 = θ̂i2k−2,

gi
2k = ∆i

k

yi
2k−yi

2k−1

2β +

ω
∑

j∈N i

∑
l∈X i,j

t
el ⊗ bi,jk,l(x̃

i
2k−1,l − x̃i,j,l

2k−1),

θ̂i2k = x̃i
2k−1 − hgi

2k,

zi2k = 1
γi
k

[
(1− αi

k)γ
i
k−1z

i
2k−2+

αi
k(µ− η)x̃i

2k−1 − αi
kg

i
2k)

]
,

where Bk is an adjacency matrix corresponding to Wk.

5.3 Convergence Analysis
Proposition 1: Let λ̄m be defined as

λ̄m = max
t

max
1≤l≤d

λ
1
2
max(L(Ḡl

t)
TL(Ḡl

t)),

then we obtain the convergence properties similar to
Theorem 1 in [Erofeeva and Granichin, 2023].

Proof: The convergence of the proposed algorithm de-
pends on the spectral properties of the underlying com-
munication matrix. We can obtain the result of Theo-
rem 1 from [Erofeeva and Granichin, 2023] by redefin-
ing the constant related to the graph properties. Hence,
let us analyze λ̄m = λ

1
2
max(WTW).

Based on Lemma 2 in [Chezhegov et al., 2022], it fol-
lows that

λ
1
2
max(WTW) = max

t
max
1≤l≤d

λ
1
2
max(L(Ḡl

t)
TL(Ḡl

t)).

Substituting the redefined constant, we get the result of
Theorem 1 in [Erofeeva and Granichin, 2023].

6 Simulations
We consider multi-sensor multi-target tracking prob-

lem fully described in [Granichin et al., 2020]. The sen-
sor network consisting on n nodes spatially distributed
over an area of interest tracks m targets. The sensor
nodes are assumed to be static. Their state is represented
by a position in 2D plane. The state-transition model
of targets is defined as in (1). The sensors can measure
the distance between their positions and the positions of
targets. The goal of the sensor network is to estimate
the unknown target positions based on the measured dis-
tances. The sensors are able to communicate with each
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Figure 5. Max delay in AP-DSPSA equals 150 iterations. SPSA
doesn’t have any delays.

other over possibly delayed channels to obtain a com-
mon solution.

We estimate the target positions using the proposed
accelerated SPSA algorithm with partially observed pa-
rameters. We have set the following parameters of the
algorithm: h = 0.08, ω = 1, β = 0.5, η = 0.95, αi

x =

0.1, γi
0 = 2, L = 2, µ = 2. The initial estimates θ̂i0 are

chosen randomly at each sensor. The states of the sen-
sors are chosen randomly from interval [100; 120]. The
number of sensors is n = 3, the number of targets is
m = 10.

In the simulation, the new algorithm AP-DSPSA is
compared with the previous one from [Granichin et al.,
2020]. Figures 3, 4, 5 show the cumulative tracking
error in different delayed scenarios on the logarithmic
scale. The delays are added to the new algorithm only.
We generate them randomly setting the max delay equal
to 10, 50 and 150 iterations, correspondingly. As can be
seen, the delays influence the convergence time. How-
ever, the algorithm is still able to achieve the accuracy
level of the non-delayed version.
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Figure 3. Max delay in AP-DSPSA equals 10 iterations. SPSA
doesn’t have any delays.
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Figure 4. Max delay in AP-DSPSA equals 50 iterations. SPSA
doesn’t have any delays.

7 Conclusion
In this paper, we consider non-stationary distributed

optimization with partially observed parameters. We for-
mulate this partial observability as time-varying commu-
nication matrix defined for each parameter separately.
We propose the new AP-DSPSA algorithm combining
the accelerated SPSA and the described communica-
tion scheme as well as show its theoretical properties.
The simulation validates the proposed algorithm in tar-
get tracking problem over delayed channels.
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