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Abstract
The paper is devoted to study of synchronization in

small neural networks with coupling delays. We con-
centrate on two problems: i) long-range synchroniza-
tion of cortical areas and ii) control of patterns of rhyth-
mic activity of central pattern generators. We show that
precise zero lag synchronization is possible even for
distant areas, which interact with large coupling delays.
In context of CPGs dynamics coupling delays may pro-
vide a mechanism for control of rhythmic patterns.
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1 Introduction
Mutual synchronization of interacting oscillators is a

fundamental effect observed in all fields of physics.
Particularly, there is lot of evidence that this effect
plays crucial role in many aspects of brain function-
ing. For example, there is an important link between
synchronization of distributed neural activity and com-
plex informational processing in cortical networks. A
number of experiments in visual cortex and other cor-
tical areas of animals show that discharges of differ-
ent areas often demonstrate precise and context de-
pendent temporal relations [Engel et al., 1991; Frien
et al., 1994; Steriade et al., 1996; Courtemanche and
Lamarre, 2005]. This synchronization is shown to be
provided by reciprocal cortical-cortical connections. A
fact of great interest is that systematic phase lags may
be established even between the discharges of neurons
from distant areas. In many cases precise zero-lag syn-
chronization between distant areas is observed. This
effect may be very important because it is hypothesized
to provide a mechanism for the large-scale integration
of distributed brain activity. Different aspects of the in-
tegral cognitive process occur in different areas, and the
temporal synchronization between these areas ensures

binding of all these subprocesses [Gray et al., 1989;
Ulhaas et al., 2009].
Another instance of importance of synchronization in

neural networks concerns control of motions. Rhyth-
mic motions of animals, such as walking, scratching or
breathing, are shown to be controlled by rhythmic ac-
tivity of the so-called central pattern generators. CPGs
are neural networks that produce rhythmic outputs au-
tonomously, i.e. without sensory or central input. For
example, locomotion of mammals were proved to be
concerned with activity of such networks located in
spinal cord [Ijspeert, 2008; Guertin, 2009; Duysens
and Can de Crommert, 1998]. From dynamical point
of view CPGs are systems of coupled oscillators which
undergo mutual synchronization. Phase relations be-
tween the neural oscillators determine output rhythmic
patterns of neural activity which underlie motor pat-
terns. Different kinds of rhythmic motions correspond
to different phase relations between neurons discharges
[Collins and Stewart, 1993; Collins and Richmond,
1994; Abarbanel et al., 1996], that is why variability
of phase patterns of CPG is of great importance.
Theoretical study of synchronization in neural net-

works faces one with many specific features of neu-
ronal coupling. Let us dwell on two of them. Firstly,
dynamics of neural networks is often concerned with
temporal delays in communication between the neu-
rons. These delays arise from two reasons: i) chemi-
cal synapses inertness and ii) finite velocity of spikes
propagation along axons. Synaptic delays are usually
about 1 ms, but axonal delays depend on distance be-
tween communicating neurons and may reach values
of several tens on milliseconds. Large coupling delays
may strongly change synchronization, that is why it is
important to study how they influence dynamics of neu-
ral networks [Ermentrout and Koppel, 1998; Earl and
Strogatz, 2003; Bazhenov et al., 2008; Jahnke et al.,
2008; Schöll et al., 2009; Panchuk et al., 2012]. Sec-
ondly, coupling in neural networks has strongly discon-
tinuous character. Typical signals between the neurons
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represents series of pulses, or spikes, which are often
short in relation to intervals between them.
These two features of neural coupling define the mo-

tivation of the present paper. We consider synchroniza-
tion in networks of pulse oscillators with time-delayed
couplings developing the approach introduced in our
previous works [Klinshov and Nekorkin, 2011]. We
are mainly concentrated on two things. Firstly, we are
interested how oscillators may synchronize with zero
lag in the presence of large delays which are of order
and even larger than the period of the oscillations. This
question concerns the problem of long-range synchro-
nization of distant brain areas and binding of their ac-
tivity. Secondly, we are interested in synchronization
and phase patterns in CPGs. We examine how intro-
duction of delays influences the dynamics of CPGs and
show that it may cause sufficient variability of demon-
strated output patterns. This may provide a mechanism
for rhythmic patterns control and switching which con-
cerns the problem of motion control.

2 Model
In our model we represent an individual neuron as an

oscillator with phase φ ∈ [0; 1] growing uniformly with
the velocity dφ/dt = ω. For φ = 1, the oscillator
reaches threshold, emits a pulse, and resets its phase to
zero. We consider an ensemble of N non-identical neu-
rons with frequencies ωj interacting with a time lags. It
is described by the following system:

dφj(t)

dt
= ωj +

N∑
k=1

Gjk(φj(t), φk(t− τjk)). (1)

We use technique of phase response curves (PRCs)
to describe interaction between the neurons. In this
technique, coupling function is chosen in the form
Gjk(φj(t), φk(t−τjk)) = µjkF (φj(t))δ(φk(t−τjk)).
This means that when k-th neuron emits a pulse, it
is received by j-th neuron with delay τjk. When j-
th neuron receives a pulse its phase instantly changes
on value ∆φ = µjkF (φj). This value is the so-
called phase response curve. Further we use function
F (φ) = − sin 2πφ. Such form of PRC belongs to
the so-called second class [Hansel et al., 1995], which
means that incoming pulses may either delay or ad-
vance neuron excitation.
Strictly speaking, (1) is the system with time lagging,

so it has infinite dimension and is very difficult for
studying. But because of using of PRC approach this
system can be reduced to the map of finite dimension,
which simplifies its investigation. The technique of
such reduction was introduced in [Klinshov and Neko-
rkin, 2011] for the case of two units and may be gener-
alized for the case of arbitrary N . The main idea of this
reduction is that system dynamics consists of discrete
events which occur when the neurons emit or receive
pulses. During these events (the so-called G-events)

the neurons phases are perturbed, and between these
events they grow uniformly. We construct the map that
describes how the system state changes between se-
quential G-events (the so-called G-map, see Methods).
The further study of the system dynamics is based on
this map.
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Figure 1. Synchronous regimes in a pair of oscillators with simmer-
ing coupling: phase lag versus coupling delay. Solid lines correspond
to stable solutions, dotted lines correspond to unstable ones. Param-
eters: µ = 0.1, ω1 = 1, ω2 = 1.01.

3 Long-Range Synchronization
Let us begin from studying of the effect of long-range

zero-lag synchronization. We call the synchronization
“zero-lag” if it occurs with the zero phase shift, i.e. the
units undergoing zero-lag synchronization fire strictly
simultaneously. And we call it “long-range” meaning
that the coupling delay is large enough in respect to the
period of intrinsic spiking. In our previous works we
have proved, that synchronization of pulse oscillators is
possible for arbitrary large coupling delays. For a pair
of neurons with symmetric delayed coupling (N = 2,
µ12 = µ21 = µ, τ12 = τ21 = τ ) we have proved that
synchronization occurs for the frequency mismatches
limited by

ω2 − ω1 ≤ ζ0 =
2µω1

1− µ
. (2)

Synchronous regimes are observed in the so-called
“synchronization intervals” of coupling delay τ (Fig.
2). For the case of close frequencies ω1 ≈ ω2 these
intervals cover almost all values of τ . This may ex-
plain long-range synchronization, but not zero-lag one.
The point is that the phase lag ∆ between instants of
neurons firing depends on τ and strongly changes from
interval to interval. The intervals with in-phase and an-
tiphase synchronization alternate while τ grows. This
feature does not allow to obtain perceive zero-lag syn-
chronization with arbitrary coupling delay.
To explain zero-lag long-range synchronization the

so-called “dynamical relaying” concept was suggested
in [Vincente et al, 2008; Vincente et al., 2009]. In this
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Figure 2. Direct communication (a) and dynamical relaying (b) of
two cortical areas. In the last case the cortical areas “1” and “2”
communicate through the third intermediate area.

concept it is assumed that synchronizing cortical ar-
eas communicate not directly but through some other
intermediate area. This scheme is illustrated in Fig.
3. The authors report that dynamical relaying allows
to achieve precise zero-lag synchronization with high
probability for all values of coupling delay.
To test this hypothesis and explain the mechanism of

dynamical relaying we considered the system (1) for
the case of N = 3 identical neurons (ωj = 1) which
are connected as it is shown in Fig. 3. In this scheme
the nonzero parameters are as follows:

τ1i = τi1 =
τ

2
,

τ2i = τi2 =
τ

2
,

µ1i = µ2i =
µ

2
,

µi1 = µi2 = µ.

We studied the dynamics of this system and found that
the oscillators 1 and 2 really undergo strict zero-lag
synchronization for all values of τ and almost all ini-
tial conditions. The typical evolution of the system is
depicted in Fig. 3(a). One can see that the phase lag
between the units 1 and 2 quickly tends to zero, while
the intermediate unit stays in antiphase with them.
We studied the probability Pz of the zero-lag synchro-

nization in the cases of direct coupling and dynamical
relaying, which are depicted in Fig. 3(b) versus delay
τ . In the first case, this probability equals 100% in-
side the in-phase intervals and 0% inside the antiphase
ones. Near the borders of the intervals they overlap
and the system is multistable, which results in medium
values of the probability Pz . For the case of dynam-
ical relaying the probability Pz almost always equals
100%. Only small dip for τ = 0.5 is observed. This is
because synchronization for such delays occurs slowly,
and it was not established yet during the finite time of
simulation.
To explain the dynamical mechanism of precise zero-

lag synchronization via dynamical relaying we used
our earlier results on synchronization of directly cou-
pled oscillators. As it was stated above, two directly
coupled identical oscillators synchronize in phase or in
antiphase depending on the value of the coupling delay.
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Figure 3. (a) Synchronization of two oscillators interacting via dy-
namical relaying. Phase lag between units “1” and “2” is plotted
with black dots, and phase lag between the intermediate unit and
the first unit is plotted with gray dots. Coupling delay τ = 1.3.
(b) Probability of zero-lag synchronization for direct coupling (gray)
and dynamical relaying (black).

In the case of dynamical relaying scheme the situation
is similar. When the value τ/2 belongs to the inphase
synchronization interval, the intermediate unit synchro-
nizes in phase with the first one and with the second
one, so they are in phase with each other as well. When
the value τ/2 falls into the antiphase synchronization
interval, the intermediate unit is in antiphase with units
1 and 2, and they turn out in-phase synchronized again.

4 Rhythmic Patterns of CPGs
Let us pass from zero-lag synchronization to more

complex synchronous regimes, namely rhythmic pat-
terns of central pattern generators. We say that the
CPG demonstrates a patterned rhythmic activity if all
the neurons discharge periodically with the same pe-
riod and constant phase relations between them. These
phase relations are used to characterize the rhythmic
pattern.
Let us study rhythmic activity of CPGs in presence

of coupling delays. Rhythmic patterns can be found
even in the ensemble of two unit. In this simplest CPG
only two stable “patterns” are possible. They corre-
spond to in-phase and antiphase synchronization of the
units. The main properties of the coupling delay in this
case are the following (see Fig. 4, modified from [Klin-
shov and Nekorkin, 2011]). First of all, introducing of
the delay increases the patterns variability: without de-
lay the only in-phase pattern is possible, while in the
presence of delay the antiphase one appears. Secondly,
varying of the delay results in controllable switching of
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Figure 4. Switching between in-phase and antiphase “patterns” in
the system of two symmetrically coupled oscillators.

the patterns. And finally, this switching is connected
with hysteresis.
These key features of rhythmic patterns turn out to

be typical for CPGs with greater number of units with
time-delayed coupling. As an example of such CPG we
consider a network of four globally coupled neurons
which is depicted in Fig. 5(a). Four neurons are lo-
cated in corners of a square, delays between neighbor-
ing neurons equal τ/2, delays between diagonal neu-
rons equal τ . Coupling strength between each pair of
neurons equals µ = 0.1. Frequencies ωj have Gaussian
distribution with median value ω = 1 and dispersion
σ = 0.01. We set them not identical to study the influ-
ence of possible parameters varying and make sure that
the regimes we obtain are not sensible to them.
Studying of the network showed that depending on the

delay parameter τ it may produce a number of various
rhythmic patterns. We mark these patterns with sets
of four numbers (φ1, φ2, φ3, φ4), where φj means the
phase lag between the first and the j-th neurons fir-
ing. The most typical are the following patterns: i)
The pattern (0,0,0,0) of global synchronization, when
all the units fire simultaneously in the same phase. ii)
The pattern (0,0.5,0,0.5) or partial pairwise synchro-
nization, when the first unit fires in phase with the third
one, and the second unit fires sin phase with the fourth
one, while these pairs fire in antiphase. iii) The pattern
(0,0.25,0.5,0.75) of sequential firing, when all the units
fire one after another with the quarter-period lag.
Each of these three patterns exists in definite interval

of delay coefficient τ . These intervals are depicted in
Fig. 5(b). One can see that the key features of the sys-
tem dynamics are similar as in the case of two units.
Slow increasing of the parameter τ results in sequen-
tial switching between the patterns. For τ = 0 the
only pattern (0,0.5,0,0.5) exists. When τ = τ1 ≈ 0.37
the second pattern (0,0.25,0.5,0.75) appears. And for
τ = τ2 ≈ 0.61 the third pattern (0,0,0,0) appears. The
switching between the patterns is concerned with hys-
teresis which comes from the system instability near
the points in which new patterns are born. For example,
the pattern (0,0.25,0.5,0.75) appears for τ = τ1, but

the pattern (0,0.5,0,0.5) disappears only for τ = τ ′1 ≈
0.48. This means that when τ increases the switching
(0,0.5,0,0.5)→(0,0.25,0.5,0.75) takes place for τ = τ ′1.
But when the τ decreases the opposite switching takes
place only for τ = τ1.

5 Discussion
We have studied influence of coupling delay on dy-

namics of small neural networks. We have shown
that even large coupling delay does not prevent mutual
synchronization of coupled neurons or neuronal areas.
This may explain long-range synchronization observed
in numerous experiments. More complex schemes of
coupling, such as dynamical relaying, may explain pre-
cise zero-lag long-range synchronization or cortical ar-
eas.
Another result is that the coupling delay may be an

instrument for control of rhythmic patterns of central
pattern generators. We show that varying delays in a
small network of coupled oscillatory neurons allows to
change phase relationships between the units. In pre-
vious works [Masoller and Marti, 2005; Motter et al.,
2005; Kanter et al., 2011] the authors reported that the
structure of the connections in the network defines the
properties of its synchronization. Particularly, in [Kan-
ter et al., 2011] it was shown that the distribution of
the delays determines the number of clusters which ap-
pear in the network. To find this number the authors
calculate the greatest common divisor (GCD) of the
summary delays of the loops composing the connec-
tions graph. In our small network the GCD equals 2
which means that the expected regime is coexistence of
two clusters with zero-lag synchronization inside them.
However, we observe the regimes with 1, 2 or 4 clus-
ters, and each of them is stable in different interval of τ .
Observing of the regimes with quantity of clusters ex-
ceeding the GCD can is because in contrast with [Kan-
ter et al., 2011] we considered not chaotical oscilla-
tors, but periodical ones with a very simple (pulsative)
coupling, and there is no need for all the inputs to be
strictly identical. And the influence of the value of τ is
alteration of the stability of different regimes.
Changing of the synchronization regimes by the delay

may be also related to the problem of control of rhyth-
mic patterns which attracts a lot of attention in connec-
tion with motion control studying. Particularly, a num-
ber of papers was devoted to locomotion of tetrapod
animals or robots [Collins and Stewart, 1993; Collins
and Richmond, 1994; Abarbanel et al., 1996; Kimura
et al., 1999; Shinkichi et al., 2006]. The authors con-
sidered networks of four coupled oscillators each of
which controls the motion of one limb. In this case dif-
ferent patterns of the rhythmic activity of the network
correspond to different gait types – walk, trot, gallop
and so on. For example, the pattern (0,0.5,0,0.5) corre-
sponds to trot, (0,0.25,0.5,0.75) is walk, and (0,0,0,0)
is “pronk” [Collins and Stewart, 1993]. In the previ-
ous works the authors specially tuned the parameters
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Figure 5. (a) CPG consisting of four neurons with delayed coupling. (b) Possible output rhythmic patterns and τ intervals inside which they
exist. Sequences of black dots determine series of pulses emitted by the oscillators.

of the networks for each gait: to establish the certain
phase relations they changed the intrinsic parameters of
thew oscillators and coupling parameters. In our model
switching of the patterns occurs when we change only
one parameter, namely delay parameter τ .
One may object that in real CPGs it is difficult to vary

all the coupling delays simultaneously. But the point is
that absolute values of delays do not play any crucial
role, and the only thing which is important is relation
between them and oscillations frequency. From this
point of view varying of delays is equal to changing
of network oscillations frequency ω. This frequency
defines the rate of limbs motion, i.e. the speed of the
animal movement. Thereby, in our model switching of
gaits takes place when the speed of the animal changes.
No any other parameters tuning is necessary.
The fact that the animal gait change with its speed

growth is well known from numerous experiments. The
bifurcation diagram in Fig. 9 from [Collins and Stew-
art, 1993] illustrates this idea for the horse gaits. When
the animal moves slowly it walks. Increasing the speed
results in transition to trot and then to gallop. Our
model describes possible mechanism of these switch-
ing, which may be related to coupling delays in CPG.
A fact of great interest is that the switching of gaits
is experimentally shown to have hysteresis character,
which is in good agreement with our results.

6 Conclusions
Coupling delays were shown to exert essential influ-

ence on dynamics of small neural networks. In the
problem of synchronization of distant cortex areas this
influence is negative, but it may be overcome with us-
ing indirect coupling schemes such as dynamical relay-
ing. And in context of control of CPG rhythmic activ-
ity coupling delays may be even useful. They increase
variability of rhythmic patterns and allow their control-
lable switching.
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Methods
Here we demonstrate the technique of reduction of the

system (1) to the map. Let us introduce the state vector

ξ(t) =
(
φ1(t), φ2(t), ..., φN (t), x1

1, x
2
1, ...., x

K
1 ,

x1
2, x

1
2, ..., x

K
2 , ..., x1

N , x2
N , ..., xK

N

)
,

where xk
j = t − tkj is the time which passed from the

moment when j-th unit emitted k-th pulse. For large
enough K the state vector ξ fully describes the state of
the system (1) and allows to predict its future dynamics.
Let us study the dynamics of the state vector. Each of

its components grows uniformly almost always:

dφj

dt
= ωj ,

dxk
j

dt
= 1.

However, in certain moments some of the components
undergo stepwise changes. These moments are related
to events of two types:
i) Pulse emitting by one of the units. This event takes

place when the phase of one of the oscillators reaches
unity. Then its phase resets to zero, and a new pulse
with tkj = t appears. Call events of this type E-events.
The nearest E-event for the k-th unit takes place at the
time t′ = t+ θk, where

θk =
1− φk

ωk
.

Then the state vectors changes as follows:

φk(t
′) = 0,

φp(t
′) = φp(t) + ωpθk,

xk
1(t

′) = 0, (3)
xk
j (t

′) = xk
j−1(t) + φk, j > 1,

xp
j (t

′) = xp
j (t) + φk, j > 1,
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where p ̸= k. Denote transformation (3) as the map
Ek : ξ(t) 7→ ξ(t′).
ii) Pulse receiving by one of the units. This event hap-

pens when a pulse produced by one of the units ear-
lier reaches any second unit after some delay. Then the
phase of the second unit instantly shifts on some value
which depends on the coupling strength and the PRC
shape. Call such events F -events. The nearest F -event
concerned with action of the pulse produced by m-th
unit on k-th unit occurs at the moment t′ = t + ϑmk,
where

ϑmk = τmk − xm
q ,

where q = max{j|xm
j < τmk}. The state vector

changes after this event as follows:

φk(t
′) = φk(t) + ωkϑmk + µmkf (φk(t) + ωkϑmk) ,

φp(t
′) = φp(t) + ωpϑmk, (4)

xk,p
j (t′) = xk,p

j (t) + ϑmk,

where p ̸= k. Denote transformation (4) as the map
Fk : ξ(t) 7→ ξ(t′).
Name both E- and F -events G-events. Then to deter-

mine the nearest G-event one should find the minimum
value δmin of all values θk and ϑmk. The system state
change is defined by the map

G : ξ(t) 7→ ξ(t′) =

{
Ek, δmin = θk,
Fmk, δmin = ϑmk.

This map fully describes dynamics of the system (1).
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