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1. INTRODUCTION

To follow several feedback control design techniques it
is required to solve a continuous-time periodic matrix
differential Riccati equations. The examples are the
linear-quadratic regulator optimal control problem
for linear periodic systems (Yakubovich, 1986) and
stabilization of periodic motions of underactuated
mechanical systems (Shiriaev et al., 2005).

The straightforward approach to the solution of the
problem is based on different methods of numerical
solution of ordinary differential equations (Johansson
et al., 2007) A disadvantage of this approach is a
necessity to solve some unstable ordinary matrix dif-
ferential equations.

Here we propose an alternative (spectral) approach
for solving the periodic Riccati equations. The main
idea is to reformulate the problem in terms of con-
vex optimization in the space of Fourier expan-
sions of solutions. It turns out that the obtained

infinite-dimensional convex problem can be approxi-
mated by the sequence of finite-dimensional problems
with growing dimensions. Using the generalization
of Yakubovich lemma recently proposed in (Gusev,
2006), the latter problems are reduced to standard
linear matrix inequalities (LMI) optimization.

A numerical solution for a simple benchmark problem,
presented below, shows advantage of the proposed
approach over the standard one.

2. EXTREMAL PROPERTY OF STABILIZING
SOLUTION OF RICCATI EQUATION

Consider the matrix Riccati equation

R(H(.), t) = 0 ∀t ≥ 0, (1)

where the Riccati operator is defined as

R(H(.), t) = Ḣ(t) +A>(t)H(t) +H(t)A(t)−
H(t)B(t)R(t)−1B>(t)H(t) +Q(t)

(2)



and n×n matrix-function A(t) and Q(t) = Q>(t) ≥ 0,
n×mmatrix function B(t), andm×mmatrix function
R(t) = R>(t) > 0 are continuous for t ∈ [0,+∞) and
periodic with a given period T > 0.

The solution H+(.) of (1) is called stabilizing if any
solution X(.) of the associated with this equation
closed-loop linear system

Ẋ(t) =
(
A(t)−B(t)R−1(t)B>(t)H+(t)

)
X(t)

belongs to L2([0,+∞)).

Our approach to be presented shortly is based on the
following property of the stabilizing solution of the
Riccati equation.

Theorem 1. Suppose that the functionA(.), B(.), Q(.),
R(.), R−1(.) are bonded and for all t ≥ 0 : Q(t) > 0
and R(t) > 0. Let H+(.) be a stabilizing solution of
(1). Then, any bounded matrix H(.), satisfying the
Riccati inequality

R(H(.), t) ≥ 0 ∀t ≥ 0, (3)

defined by (2), satisfies also the inequality

H(t) ≤ H+(t) ∀t ≥ 0.

The extremal property of stabilizing solution was
first discovered by Willems (1971) for the algebraic
Riccati equation. It was then generalized to periodic
differential Riccati equation in (Bittanti et al., 1989).

For a family of matrices Wj = W>j (t) > 0 and a
set of numbers tj ≥ 0, j = 1, . . . , l, let us define the
functional

J(H(.)) =
l∑

j=1

tr
(
H(tj)Wj

)
. (4)

It follows from Theorem 1 that a maximum of
the functional (4) over the set of bounded matrices
H(.), satisfying (3), is achieved on stabilizing solution
H+(.).

Using this property we can reduce the numerical com-
putation of H+(.) to maximization of linear functional
over convex set of matrices H(.), satisfying inequality
(3). This is infinite dimensional convex optimization
problem. To solve it we construct the sequence of
approximating finite dimensional problems.

3. FINITE-DIMENSIONAL OPTIMIZATION
PROBLEM

Suppose that matrices A(.), B(.), R(.), and Q(.) are
periodic, bounded, and moreover, can be written in
the form

A(t) =
k∑

j=−k

eijωtAj , B(t) =
k∑

j=−k

eijωtBj ,

Q(t) =
k∑

j=−k

eijωtQj , R(t) =
k∑

j=−k

eijωtRj

(5)

where i =
√
−1, and the n× n complex matrices Aj ,

Bj , Qj , and Rj are such that A−j = Āj , B−j = B̄j ,
Q−j = Q̄j , R−j = R̄j for j = 0, . . . , k.

Let us consider the problem of minimization of the
cost function J, defined by (4), over the set of matrices

H(t) =
k∑

j=−k

eijωtHj

with H−j = H̄j , j = 0, . . . , k, which satisfy the
inequality (3).

The quadratic inequality (3) is equivalent to the
parameter-dependent LMI(
Ḣ(t)+H(t)A(t)+A>(t)H(t)+Q(t) H(t)B(t)

B>(t)H(t) R(t)

)
≥0

∀t ≥ 0.
(6)

Denote the right hand side of (6) by S(H(.), t). Let
Ĥ = (H0, H1, . . . ,Hk) be the matrix of coefficients of
H(t). Then

S(H(.), t) =
2k∑

j=−2k

eijωtSj(Ĥ),

where each Sj(Ĥ) is linear in Ĥ.

Define (2k + 1) × (2k + 1) matrices Kj as follows:

Kj,α,β =
{

1, if α = 2k + 1− j, β = 2k + 1
0 otherwise, j =

0, . . . 2k + 1, Kj = K>−j , j = −1, . . . ,−2k − 1. Let
M = (I2k, 0) and N = (0, I2k), where Id here and
below denotes the identity matrix of dimension d.

It follows from Yakubovich lemma for matrix fre-
quency domain inequalities (Gusev, 2006) that H(.)
satisfies (6) if and only if there exists a complex
2k(m+ n)× 2k(m+ n) matrix F = F̄> such that

2k+1∑
j=−2k−1

Sj(Ĥ)⊗Kj ≥ (Im+n ⊗N)>F (Im+n ⊗N)−

(Im+n ⊗M)>F (Im+n ⊗M).
(7)

Let us define the linear functional

L(Ĥ) =
l∑

α=1

tr

Wα

k∑
j=−k

eijωtαHj

 .

It follows from definition that L(Ĥ) = J(H(.)).



The auxiliary finite-dimensional problem is to maxi-
mize this functional over the set of matrices {Ĥ, F}
that satisfy (7). This is a standard LMI optimization
problem.

4. APPROXIMATION FOR THE SOLUTION OF
THE RICCATI EQUATION

Consider the continuous-time differential matrix Ric-
cati equation (1) and suppose that the matrices A(.),
B(.), R(.), and Q(.) are continuous and periodic with
period T = 2π/ω.

LetA(t) =
∑+∞
j=−∞ eijωtAj , B(t) =

∑+∞
j=−∞ eijωtBj ,

Q(t) =
∑+∞
j=−∞ eijωtQj , R(t) =

∑+∞
j=−∞ eijωtRj be

the Fourier expansions of A(.), B(.), R(.), and Q(.),
correspondingly.

For a natural number k let us: denote by A(k)(t),
B(k)(t), R(k)(t), Q(k)(t) the partial sums (5) for these
expansions, solve the auxiliary optimization problem
for these matrices, denote by Ĥ(k) = (H(k)

0 , . . . ,H
(k)
k )

a solution of this problem, define the periodic function
H

(k)
+ (t) =

∑k
j=−k e

ijωtH
(k)
j .

The following result can be proved.

Theorem 2. Suppose that: the matrix functions A(t),
B(t), R(t), and Q(t) are continuous and periodic with
period T ; the Riccati equation (1) has a continuous pe-
riodic stabilizing solution H+(.); there is a continuous
periodic matrix Ho(.) that satisfies the strict Riccati
inequality R(Ho(.), t) > 0 for all t ∈ [0, T ]. Then,
limk→∞H

(k)
+ (t) = H+(t) for all t ∈ [0, T ].

5. AN EXAMPLE

Let us consider the following benchmark problem. Let
A ∈ R2×2, B ∈ R1×2, R > 0, Q = Q> > 0 ∈ R2×2.
Suppose that matrix H+ is the stabilizing solution of
the algebraic Riccati equation

A>H +HA−HBR−1B>H +Q = 0.

Let P (t) =
(

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)
and define the

matrix-functions

A(t) =
dP (t)
dt

P (t)−1 + P (t)AP (t)−1, B(t) = P (t)B,

Q(t) = (P (t)−1)>QP (t)−1, R(t) = R.

Then, the matrix-functionH+(t) = (P (t)−1)>H+P (t)−1

is a stabilizing solution of the periodic Riccati equa-
tion (1). The problem is to compute the approx-
imation H̃+(.) of H+(.) using the sampled values

A(tj), B(tj), Q(tj), tj = (j − 1) TN , where T =
2π/ω, j = 1, . . . , N. The accuracy of approxima-
tion is measured by the relative error e(H̃+(.)) =
1
N

∑N
j=1

‖H̃+(tj)−H+(tj)‖
‖H+(tj)‖ .

Two methods have been compared: the iterative nu-
merical solution of the differential equation (1) pre-
sented in (Johansson et al., 2007) and the proposed
LMI approach. The parameters were taken as follows:

A=
(

1 0.5
3 5

)
, B=

(
3
1

)
, Q=

(
0.01 0

0 a

)
, R= 1,

ω = 2 (T = π), N = 100. The dependence of the
relative error for various values of the parameter a
has been investigated.

For the first method, we have e ≈ 10−15 for 1 ≤ a ≤ 33
and e = 9·10−2 for a = 34. The method fails for larger
values of a.

For the LMI approach (k = 3) we have e = 1.6 · 10−10

for a = 1, e = 1.2 · 10−10 for a = 34, e = 4.8 · 10−9 for
a = 103, e = 1.4 · 10−5 for a = 106. The method fails
for larger values of a.

The experiments show that in the considered bench-
mark problem the LMI approach is more stable to the
variation in the parameter. For the same time for small
values of a the first method provides higher precision
of the solution.
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