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Abstract
Entropy is one of the most important characteristics of

the behavior of a dynamical system. For direct calcula-
tion both topological and metric entropy involves prob-
lems, the elaboration of numerical methods of their es-
timation is of considerable importance in applications.
We use the concept of symbolic image, which is a finite
approximation of a dynamical system. Symbolic im-
age is constructed as an oriented graph for a mapping
f and a fixed covering of its phase space. The vertices
of the graph correspond to the cells of the covering and
edges show the existence of nonempty intersections of
the covering cells with their images. We use a method
of linear programming, which allows us to construct an
invariant measure on the graph and thereby to specify
a stationary process. The estimation of the entropy of
such a process gives a bound for the entropy off.
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1 Introduction
This paper is dedicated to an elaboration of a numer-

ical method of the estimation of the entropy of a dy-
namical system using the notion of symbolic image.
It was introduced by G.S. Osipenko [Osipenko, 1983]
and became one of main tools for the investigation of
dynamical system by symbolic analysis methods. The
advantage of such a method is that many problems (lo-
calization of periodic orbits and invariant sets, estima-
tion of Lyapunov exponents, estimation of topological
entropy) may be solved using well known algorithms
for directed graphs.
The estimation of the topological entropy of a dynam-

ical system may be obtained by application of sub-
division technique and construction of a topological
Markov chain. The chain is considered as a directed

graph, the arcs are labeled according to the fixed par-
tition, which leads to the construction of a sofic shift.
Then a subshift of finite type is produced via a stan-
dard techique [Lind, Marcus, 1995]. The entropy of
this subshift is estimated by the logarithm of the maxi-
mal eigenvalue of its adjacency matrix. Such a method
was implemented in [Froyland, Junge and Ochs, 2001]
and [Osipenko, Ampilova, 2005]. Following this line
of attack, we estimate a ”topological entropy of a sym-
bolic image” which gives an upper bound for the topo-
logical entropy of the system.
We consider a method of the estimation of ” metric

entropy of a symbolic image” based on the construction
of an invariant measure of an directed graph.
An algorithm of the construction of such a measure

using prime cycles was designed and implemented in
[Ampilova, 2007]. In a prime cycle withl edges the
value 1/l is assigned to every edge. A coefficient
(weight) is designated to every prime cycle, being the
sum of weights equals to one. The measure of an edge
belonging to more than one cycle is defined as the sum
of the measures which the edge has in every cycle. If
an edge does not belong to any cycle, its measure is
zero. The measure of a vertex is the sum of measures
of outcoming (or incoming ) edges. This method, while
clear, has an evident disadvantage: the number of prime
cycles may be very significant and the algorithm be-
comes time-consuming. An optimization may lead to
cycle missing. Hence, the measure is not assigned to
all edges of the graph.
The proposed method is aimed at the construction of

an invariant measure, such that to assign a value to ev-
ery edge. To solve the problem we apply a linear pro-
gramming technique. It allows us to construct a sta-
tionary process on the graph (with a given accuracy),
using a method of the sequential balance of the vertices
measures. L.M. Bregman proved the convergence of
the method in [Bregman, 1967]. The entropy computed
with regard to the measure is an estimation of the sta-
tionary process entropy. Numerical experiments show



that this value less than the entropy of corresponding
topological Markov chain.
The paper is organized as follows: next section is ded-

icated to the notion of symbolic image. In sections 3-4
definitions of Markov chain, stationary processes on a
graph and their entropy are given. Section 5 describes
the algorithm of the construction of the invariant mea-
sure. Finally in sections 6 and 7 we give the data of
numerical experiments and summarize our results.

2 Symbolic image of a dynamical system
Let φ be a discrete dynamical system generated by a

homeomorphismf on a compactM ∈ Rn. Symbolic
image of a dynamical systemf [Osipenko, 1983] is
an oriented graphG, constructed in accordance with
a covering{Mi}, i = 1, . . . , k of M by closed sets,
being vertices correspond to the covering cells and the
existence of the edge(i, j) means thatf(Mi) ∩Mj 6=
∅. The symbolic image is a finite approximation of the
systemf .
It depends on the covering and may be specified by

the following parameters:d — diameter of the cover-
ing, which is the largest of diameters ofMi; q — upper
bound of the symbolic image, which is the largest di-
ameter off(Mi); r — lower bound of the symbolic
image, which is the minimum of the distances between
f(Mi) andMj , if f(Mi) ∩Mj = ∅. Being a relation-
ship between the parameters and an valueε is given,
there is a correspondence between theε-orbits of the
system and paths onG. [Osipenko, 2007] The con-
struction of a sequence of symbolic images correspond-
ing to a sequential subdivision of the setM results in
obtaining sequential approximations of the system dy-
namics.
It is known that any invariant measureµ of the sys-

tem f may induce a stationary process (an invari-
ant measureν) on its symbolic image, providing that
νij = µ(f(M(i)) ∩ M(j)), where

∑
ij νij = 1. [Os-

ipenko, Krupin, Bezruchko, Petrenko and Kapitanov,
2007] We consider a method of construction of an in-
variant measure on the graph and calculate the entropy
of the stationary process. It allows us to estimate the
entropy of a symbolic image and in some way [Os-
ipenko, Ampilova, 2005] the entropy of the initial sys-
tem.

3 Markov chain on a graph
Consider a graphG = (V,E) and a finite setS of

states of a process. We assign a probability (measure)
to every state. The vertices ofG are the states ofS
with positive probability,V = {I ∈ S, µ(I) ≥ 0}.
The edges ofG are the transitions from one state to
another that have positive conditional probability,E =
{(I, J), µ(J |I) ≥ 0}.
Let i(e) be the beginning of an edgee. Denote

by µ(i(e)) a probability to be at the beginning ofe,
µ(e|i(e)) the conditional probability ofe.

Definition 1. A Markov chainµ on a graphG =
(V,E) is an assignment of probabilitiesµ(I) ≥ 0, I ∈
S and conditional probabilitiesµ(e|i(e)) ≥ 0 such that∑

I∈S µ(I) = 1;
∑

e∈EI
µ(e|I) = 1∀I ∈ S, where

EI denotes the set of edges outcoming fromI.

The probability of an edgee :

µ(e) = µ(i(e))µ(e|i(e)). (1)

The probability of a pathe1e2 . . . en:

µ(i(e1))µ(e1|i(e1))µ(e2|i(e2)) . . . µ(en|i(en)). (2)

( It should be noted that such a definition means that
the process is Markovian.)
It follows from (1) that

∑
e∈Ei(e)

µ(e) = µ(i(e))
∑

e∈Ei(e)

µ(e|i(e)) = µ(i(e)),

i.e. the probability to be in a vertex equals to the sum
of probabilities of outcoming edges.
The initial state probabilities are assembled into a row

vector p — initial state distribution, indexed by the
states ofG, such thatpI = µ(I). The conditional prob-
abilitiesµ(e|I) form a stohastic square matrix defined
by

PIJ =
∑

e∈EJ
I

µ(e|I),

whereEJ
I denotes the set of edges outcoming fromI

and incoming toJ.

4 The entropy of a stationary process on a graph
Let for a Markov chain onG = (V,E) a vectorp and

a matrixP be defined.

Definition 2. The Markov chain is said to be station-
ary if the equality

pP = p (3)

holds.

HencepI =
∑n

J=1 pJPJI and stationarity means that
for any stateI the probability to be in it equals to the
sum of all incoming edges probabilities. Taking into
account the definition of a Markov chain, it easy to un-
derstand that the stationarity condition means the fol-
lowing: for any vertex the sum of incoming edges prob-
abilities equals to the sum of outcoming ones.
The entropy of a stationary Markov chain is naturally

defined in the more generall setting of stationary pro-
cesses. LetA be an alphabet andX be a set of se-
quences of symbols fromA. Let F be a set of blocks



which are not allowed inX (forbidden blocks). Denote
by XF the set of sequences which do not contain for-
bidden blocks. A subsetX1 of X is called shift space
overA if it coincides withXF . In what follows we as-
sume that we deal with a shift space. A stationary pro-
cess over an alphabetA is an assignmentµ to blocks
overA such that

∑
a∈A µ(a) = 1 (4)

and

µ(w) =
∑

a∈A µ(wa) =
∑

a∈A µ(aw) (5)

for any blockw overA.
The shift space overA defined by forbidding the

blocks with zero probability is said to be the support
of a stationary process. A stationary process on a shift
spaceX is one whose support is contained inX.
A stationary process onG = (V,E) is defined to be

a stationary process on the setA = E of edges ofG
whose support is inXG, whereXG denotes the edge
shift (the elements of edge shift correspond to the ad-
missible paths onG). A stationary Markov chain on
a graphG is a stationary process onG. (It should be
noted that the stationarity means the invariance of the
measureµ with regard to the shift mapσ.)
Given a stationary processµ, for each n, assemble the

probabilities of the paths of length n into a probability
vectorp(n)

µ . The entropy ofµ is defined as

h(µ) = limn→∞
1
nh(p(n)

µ ). (6)

It is well known [Petersen, 1989] that the limit exists
and the entropy may be computed by the formula

h(µ) = −
∑

e∈E(G) µ(i(e))µ(e|i(e)) log(µ(e|i(e))),
(7)

which may be rewritten in the equivalent form

h(µ) =
∑

i∈V µ(i(e)) log(µ(i(e)))
−

∑
e∈E µ(e) log(µ(e)). (8)

Let G be an irreducible graph. Then the entropy of
every stationary processµ onG satisfies the inequality
[Lind, Marcus, 1995]

h(µ) ≤ log λ, (9)

whereλ is the maximal eigenvalue of the adjacency
matrix of G. If G is an arbitrary graph then in (9)λ
is the maximal value of eigenvalues of all irreducible
components ofG.

5 Construction of an invariant measureµ
Assign probabilities to all edges of the graphG arbi-

trary. Denote byP = {pij}, i, j = 1, . . . ,m, the ma-
trix formed by these values. Our goal is to transformP
in such a way to obtain a stationary process onG. This
problem may be formulated as a part of the following
linear programming task.
Maximize the function

∑
i,j xij ln pij

xij
on conditions

m∑
j=1

xij = ai,
m∑

i=1

xij = bj , xij ≥ 0;

m∑
i=1

ai =
m∑

j=1

bj ; ai, bj > 0; pij ≥ 0,
∑
i,j

xij = 1.

For a vertexi the above conditions mean that the
sum of outcoming edges is equal toai and the sum
of incoming ones isbi. A method of solution was
proposed by G.V.Sheleihovsky, its convergence was
proved by L.M.Bregman [Bregman, 1967]. It is based
on a method of balance of vertices such that to satisfy
the stationarity condition accurate within a givenε. Let
n ∈ V and

beg(n) = {e ∈ E, e = (n, j), j ∈ V },

end(n) = {e ∈ E, e = (i, n), i ∈ V }.

Assign measures to all edges ofG. As the normal-
ization step may be fulfilled at the and of operating
period, we assumeµ(e) = 1, ∀e ∈ E .
For each vertexn calculate its balans

q(n) = |
∑

e∈beg(n)

µ(e)−
∑

e∈end(n)

µ(e)|.

Construct a priority queueQ of the vertices ofG,
being a vertexn with the greatestq(n) has the
greatest priority. So, we assign the greatest pri-
ority to the most unbalanced vertex.
In the cycle: select the next vertexn from Q.

If q(n) < ε, then complete the processing of
n and go out from the cycle. (In view of the
priority of Q such an inequality holds for all
remaining elements.)
Else calculate

out =
∑

e∈beg(n)

µ(e)

in =
∑

e∈end(n)

µ(e)

∀e ∈ end(n) µ(e) := µ(e) ∗
√

out
in .



∀e ∈ beg(n) µ(e) := µ(e) ∗
√

in
out .

If some of valuesout, in,
√

out
in is too

large (or small), we fulfill the normal-
ization.

Fulfill the normalization. The algorithm is com-
pleted.

To obtain the value of the entropy according to the
constructed measure we use formula (8).

6 Implementation
To provide the efficiency of the algorithm we have to

save both forth and back directions of the edges, which
results in the representation of the graph with using
two hash-tables. Priority queue has been implemented
using Fibonacci trees [Cormen, Leiserson and Rivest,
2001].

Example 1. Estimate the entropy of a symbolic image
for Henon map [Henon, 1976].

(
x
y

)
→

(
1− ax2 + by

x

)
, (10)

for a = 1.4, b = 0.3. We consider areaD =
[−10, 10] × [−10, 10] and use both linear and punc-
tual methods [Petrenko, 2006] to construct a symbolic
image. The initial partition consists from 9 cells. On
each step every cell is subdivided in 4 cells. In the ta-
ble the entropy, the number of nodes and the estimation
of the entropy by (9) are given.

Subdivision Nodes Entropy log λ
9× 22×6 231 1.384079 1.386763

Example 2. Consider logistic mapf(x) = ax(1 −
x), x ∈ [0, 1], for a = 4 and a = 3.569. The results
are given in the table.

Subdivision Nodes Entropy log λ
9× 22×6 162 0.916999 0.940517

9× 22×12 1 032 0.729919 0.731549
9× 22×11 672 0.756997 0.779899

7 Conlusion
This paper provides a numerical characteristic of a dy-

namical system, namely metric entropy of its symbolic
image. This value is computed as the entropy of a sta-
tionary process on a graph with regard to an invariant
measure. Such a measure is assigned to all edges of
the graph using a linear programming technique. The
most important goal of our future work is to provide a
relationship between the metric entropy of a dynamical
system and this characteristic.
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