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Abstract
Due to its complexity, the problem of the motion of

a rigid body in an unbounded medium requires the
introduction of certain simplifying restrictions. The
main aim in this connection is to introduce hypotheses
that would make it possible to study the motion of the
rigid body separately from the motion of the medium
in which the body is embedded. On the one hand, a
similar approach was realized in the classical Kirchhoff
problem on the motion of a body in an unbounded ideal
incompressible fluid that undergoes an irrotational mo-
tion and is at rest at infinity. On the other hand, it is
obvious that the above-mentioned Kirchhoff problem
does not exhaust the possibilities of this kind of simu-
lation.
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1 Introduction
In this activity, we consider the possibility of trans-

ferring the results of the dynamics of the plane-parallel
motion of a homogeneous axisymmetric rigid body in-
teracting with a uniform flow of a resisting medium
through its forward circular face to the case of three-
dimensional motion. In contrast to the preceding
works, the medium action on the rigid body is simu-
lated with the inclusion of the effects of the so-called
rotary derivatives of the moment of hydroaerodynamic
forces with respect to the components of the angular
velocity of the body itself.
On the basis of certain hypotheses, the main one

of which is the quasi-stationarity hypothesis, a three–
dimensional dynamic model of the medium action on
the body was developed. In this connection, the pos-
sibility arises to formalize the model assumptions and
derive a complete system of equations.
In what follows, we will address some typical repre-

sentatives of the classes of the medium action functions

under consideration, namely, the Chaplygin functions.
We will use Chaplygin’s result as a reference point.

Chaplygin calculated the medium action functions for
an infinitely long plate in plane–parallel motion in the
oncoming flow following the jet flow laws. In this case,
the distance between the drag application point (center
of pressure) and the plate center is proportional to the
sine of the angle of attack, while the Newtonian drag
coefficient is proportional to its cosine.
Moreover, integrable cases in the dynamics of the

three-dimensional motion of a rigid body were also
found for other model problems in the early works of
the present author. For the Chaplygin medium action
functions, the systems had a complete set of transcen-
dental first integrals, which could be expressed in terms
of a finite combination of elementary functions. In this
case, transcendence is understood in the sense of the
theory of functions of a complex variable (that is, their
continuations to the complex plane have essentially sin-
gular points).
The present-day state-of-the-art of modeling the mo-

tion of a rigid body in a medium rests upon the model
constraints imposed on the problem and uses a devel-
oping mathematical technique. Thus, the Chaplygin
problem of the free fall of a massive body with plane
symmetry in an unbounded volume (spatial region) of
an ideal fluid was considered. In these monographs,
the properties of trajectories were examined. The prop-
erties of Bernoulli surfaces of constant curvature for
compressible continuous media were characterized.

2 Studies of Professor N. E. Zhukovskii
Zhukovskii was one of the pioneering scientists who

examined various problems of the dynamics of a mass
point in a medium, namely, the gravity drop of bodies,
the motion of a body thrown off at an angle with the
horizon, the motion of a pendulum, etc. Along with in-
tegration of equations of motion, Zhukovskii improved
the model describing the interaction of bodies with a
resisting medium. He assumed that the kinetic energy



of a falling body goes partly to the generation of vortex
motions of air and partly to overcoming the molecular
forces of air adhesion to the moving body. The drag de-
pends not only on the velocities of motion of the points
of a body but also on the shape of this body. If the
velocity is small, then it would be accurate enough to
take the drag to be proportional to the first power of the
velocity. At high velocities, the drag is proportional to
the squared velocity.
Although the qualitative technique of the theory of

differential equations was not so extensively used on
the eve of the 20th century as it is now, researchers car-
ried out a complete analysis of problems of motion in
a medium not only for mass points but for rigid bodies
as well. As a rule, these problems were purely model
in their nature.
Zhukovskii also studied experiments on the self-

rotation of plates falling in air. Here, one has to take
into account such effects of the media as the drag and
lifting forces. Precisely the aerodynamic characteris-
tics of a plate were used to model the flight of a bird.
Zhukovskii conjectured the existence of a dynamic

equilibrium of a ”bird’s body” relative to the center
of mass. In this equilibrium, the angle made by the
center–of–mass velocity vector with the plane of a
plated wing (the angle of attack) is a control parame-
ter, i.e., it can be assigned arbitrarily. This assumption
is equivalent to the assumption on decoupled motion of
a body wherein the characteristic time of motion rela-
tive to the center of mass is substantially smaller than
the characteristic time of motion of the center of mass
itself.
The study of the motion of a body in a medium when

its translational motion is coupled with the rotational
motion is also of great interest. The Kirchoff problem
mentioned above does not exhaust the list of all possi-
ble cases of this sort.

3 Semiconservative systems
Dynamic systems investigated are the dynamic sys-

tems with variable dissipation with zero mean value
(over the angle of attack, in our case). This means that
the integral over a period of the angle of attack from the
divergence of its right-hand side is equal to zero [this
integral is responsible for the phase volume variation
(after the corresponding reduction of the system)]. In
this sense, the system is ”semiconservative.”
In contrast to the preceding works, the medium action

on the rigid body is simulated with the inclusion of the
effects of the so-called rotary derivatives of the moment
of hydrodynamic forces with respect to the components
of the angular velocity of the body itself.

4 A dynamically symmetric body under the action
of the newtonian drag and a controlling force

On the basis of certain hypotheses, the main one of
which is the quasi–stationarity hypothesis, a three–
dimensional dynamic model of the medium action on
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the body was developed.
And so, under the assumption that the interaction

obeys the jet flow laws, the interaction force S is normal
to the disk, while the application pointN of the force
S is determined by at least one parameter, namely, the
angle of attack. Thus, we have

DN = R(α, . . . ) (1)

We will take the magnitude of the Newtonian dragS in
the form

S = s1v
2ex (2)

where the drag coefficients1 is a function ofα only:

s1 = s1(α) (3)

(fig. 1). At the same time, we will separate a class
of problems related to the medium action on a body
in which the controlling force acting along the geo-
metrical symmetry axis ensures the realization of the
classes of motions of interest under certain conditions
(imposed constraints). Precisely the controlling force
is a reaction of the constraints imposed. In this study,
the controlling force always ensures the fulfillment of
the condition

|v| = v = const (4)

In a body–fitted coordinate system, with one of the co-
ordinate axes aligned with the axis of symmetry and
two other axes lying in the plane of the disk, the tensor
of inertia is diagonal

diag{I1, I2, I2} (5)



We will consider the spherical coordinates

(v, α, β1) (6)

of the end of the velocity vectorv of the pointD rela-
tive to the flow. Expressing the quantities (6) in terms
of the cyclic kinematic variables and velocities via non-
integrable relations, we will consider them as quasi-
velocities supplementing them by the components

(Ωx, Ωy, Ωz) (7)

5 Equations of motion in the case of zero spin of
the rigid body about the longitudinal axis

In what follows, we will investigate in more detail the
case of zero spin of the rigid body about its longitudinal
axis. In this case, the following condition is fulfilled

Ωx0 = 0 (8)

Then the independent dynamic part of the equations
of motion in the four–dimensional phase space has the
form

α̇v cosα cos β1 − β̇1v sin α sin β1+
+Ωzv cosα− σΩ̇z = 0

(9)

α̇v cosα sin β1 + β̇1v sin α cosβ1−
−Ωyv cosα + σΩ̇y = 0

(10)

I2Ω̇y = −zNs(α)v2, I2Ω̇z = yNs(α)v2 (11)

σ = CD, N = (0, yN , zN )
s(α) = s1(α)signcos α

(12)

System (9)–(11) involves the medium action functions
yN , zN , ands. For their qualitative determination, we
will use the experimental information on the jet flow
properties.

6 Chaplygin functions of medium action
In what follows, we will address some typical ”rep-

resentatives” of the classes of the medium action func-
tions under consideration, namely, the Chaplygin func-
tions.
We will use Chaplygin’s result as a reference point.

Chaplygin calculated the medium action functions for
an infinitely long plate in plane–parallel motion in the
oncoming flow following the jet flow laws. In this case,

the distance between the drag application point (center
of pressure) and the plate center is proportional to the
sine of the angle of attack, while the Newtonian drag
coefficient is proportional to its cosine.
Thus, in what follows, we will restrict ourselves to the

investigation of our system for the following medium
action functions (A,B, h > 0)

yN = A sin α cosβ1 + hΩz/v
zN = A sin α sin β1 − hΩy/v
s(α) = B cos α

(13)

where the coefficienth occurs in terms that are propor-
tional to the rotary derivatives of the moment of hydro-
dynamic forces with respect to the components of the
angular velocity of the rigid body.

7 A system with variable dissipation with zero
mean value and an analytical right side

Projecting then the angular velocities onto movable
axes, which are unfitted to the body, so that

z1 = Ωy cos β1 + Ωz sin β1

z2 = −Ωy sin β1 + Ωz cos β1
(14)

and introducing dimensionless variables, parameters
and new differentiality in accordance with the formu-
las

wk, k = 1, 2, h1 = hB, σh1/I2 = H1

β = σAB/I2, σzk = vwk, α′ = vα̇/σ, . . .
(15)

we obtain the fourth–order dynamic system

α′ = −(1 + H1)w2 + β sin α (16)

w′2 = β sin α cosα− (1 + H1)w2
1tgα−

−H1w2 cosα
(17)

w′1 = (1 + H1)w1w2tgα−H1w1 cosα (18)

β′1 = (1 + H1)w1tgα (19)

which incorporates an independent third–order subsys-
tem given by first three equations.
For β = H1, the divergence of the right-hand side of

system (16)–(18), or (16)–(19), is identically zero after
the change of variables

w∗1 = ln |w1| (20)



this property makes it possible to consider these sys-
tems as conservative.
Theorem 1. System (16)–(19) possesses a complete

set of first integrals being elementary transcendental
functions of their phase variables. Two of them form a
complete set of the first integrals of system (16)–(18).
Indeed, we will associate system (16)–(18) of order

three with the second-order non–autonomous system

dw2
dα = β sin α cos α−(1+H1)w

2
1 tgα−H1w2 cos α

−(1+H1)w2+β sin α
(21)

dw2
dα = (1+H1)w1w2tgα−H1w1 cos α

−(1+H1)w2+β sin α (22)

Applying the substitution

τ = sin α (23)

we transform the last system to the algebraic form

dw2
dτ = βτ−(1+H1)/τ−H1w2

−(1+H1)w2+βτ (24)

dw2
dτ = (1+H1)w1w2/τ−H1w1

−(1+H1)w2+βτ (25)

and making then the change

wk = ukτ, k = 1, 2 (26)

characteristic of homogeneous systems, we will asso-
ciate the system specified by Eqs. (24) and (25) with
the non–autonomous differential equation

du2
du1

= β+(1+H1)(u
2
2−u2

1)−(H1+β)u2
2(1+H1)u1u2−(H1+β)u1

(27)

which has a first integral of the form

(1+H1)u
2
2−(H1+β)u2+(1+H1)u

2
1+β

u1
= C1 (28)

In other words, our system investigated has a first inte-
gral of the form

(1+H1)w
2
2−(H1+β)w2 sin α+(1+H1)w

2
1+β sin2 α

w1 sin α = C1

(29)
As noted above, at

β = H1 (30)

the dynamic system investigated is conservative. In-
deed, Eq. (29) is transformed to the invariant relation

w2
2+(1+β)w2

1+β[w2−sin α]2

w1 sin α = C1 (31)

Moreover, it is easy to verify that both the numerator
and the denominator of Eq. (31) atβ = H1 are the first
integrals of system investigated

w2
2 + (1 + β)w2

1 + β[w2 − sinα]2 = C∗1
w1 sin α = C∗2

(32)

For

β 6= H1 (33)

investigated system is no longer conservative and nei-
ther the numerator nor the denominator of the invariant
relation (29) is the first integral. This fact can not nec-
essarily be verified analytically, because investigated
system has attractive and repulsive limiting sets, which
preclude the existence of the complete set of even con-
tinuous first integrals for the system under considera-
tion.
The additional first integral for the investigated system

of order three may be obtained from the quadrature

∫
dτ
τ =

=
∫ [β−(1+H1)u2]du2

β−(H1+β)u2+(1+H1)[u2
2−U(u1,C1)]

(34)

where

U(u1, C1) = 1
2(1+H1)

{C1 ±
√

C2
1 − 4D1} (35)

D1 = (1 + H1)u2
2 − (H1 + β)u2 + β (36)

The general structural form of the additional first in-
tegral for the investigated system of order three is as
follows

Φ1(w1, w2, sin α) = C2 (37)

In view of Eq. (19) the additional first integral for the
fourth-order system investigated is obtained from the
solution of the equation

du1
dβ1

+ β−(1+H1)u2
1+H1

= u2 − H1
1+H1

(38)

which leads to the invariant relation

sin2{2(1 + H1)2(β + C3)} =
= (2(1+H1)w1−2C1 sin α)2

[(H1+β)2−4β(1+H1)+C2
1 ] sin2 α

(39)



Figure 2.

8 Three–dimensional pendulum in an oncoming
flow

By analogy with a free body, we will consider the
problem of the motion of a three–dimensional pendu-
lum in an oncoming uniform flow for the following
case: the flow acts only on a circular disk fixed rigidly
at its center, perpendicular to a sting that, in turn, is
fixed by its other end on a spherical hinge. The model
of the medium action on the disk is the same as above.
The pendulum moves without its own spin. As before,
the effects of the rotary derivatives of the moment of
hydrodynamic forces with respect to the angular veloc-
ity of the rigid body are taken into account using the
Chaplygin functions of the medium action [Shamolin,
M. V. (1993) Classification...], [Shamolin, M. V. (1993)
Application...], [Shamolin, M. V. (1993) Existence...].
If θ, ψ are the angles determining the position of the

three–dimensional pendulum on a sphereS2 (fig. 2)
then the equations of motion of the system on the tan-
gent bundleT ∗S2 of the two–dimensional sphere can
be written in the form

θ̈ + (β −H1)θ̇ cos θ + β sin θ cos θ−
−ψ̇2tgθ = 0

(40)

ψ̈ + (β −H1)ψ̇ cos θ+
+θ̇ψ̇

(
1+cos2 θ
cos θ sin θ

)
= 0

(41)

The phase pattern of this system is the following (fig.
3) Here,β andH1 are dimensionless physical constants
and the coefficientH1 is, as before, proportional to
the rotary derivatives of the moment of hydrodynamic
forces with respect to the components of the angular
velocity of the three–dimensional pendulum. The sting
length is equivalent to the distanceσ and the constant
velocity of the oncoming flow is equivalent to the con-
stant parameterv. The angle of attack of the free body
is equivalent to the angleθ of the pendulum deviation
from the flow velocity vector and the angleβ1 is equiv-
alent to the cyclic variable (angle)ψ.
Theorem 2. System (16)–(18) is topologically equiv-

alent to the system given by Eqs. (40) and (41).

Figure 3.

We note that system of order three for pendulum for
the casecos θ = 0 can be defined using continuity.
And the singularitysin θ = 0 has the kinematic sense
[Shamolin, M. V. (1994) New...], [Shamolin, M. V.
(1996) The definition...], [Shamolin, M. V. (1996) Pe-
riodic...], [Shamolin, M. V. (1996) A variety...].

9 Conclusion
As is obvious from the foregoing account, only one

aspect of the problem of motion of rigid bodies in re-
sisting media was considered in the past. Namely, the
primary interest of researchers was to obtain particular
trajectories that could be described (yet only approxi-
mately) in explicit form. In this process, the problem
of a more precise modeling of the interaction of a body
in a resisting medium was considered concurrently. We
briefly describe the latter problem for bodies of simple
shape.
A plane plate is the simplest body for which various

distinctive features of motion in a medium can be con-
sidered. The phenomena that are related to the effect of
associated masses (the classical Kirchoff problem) are
demonstrated in the manual written by Lamb by using
the example of the motion of a plate in a fluid (the study
of this effect, as is known, was initiated by Thompson,
Tait, and Kirchoff).
The Kirchoff problem, which was stated in the second

half of the 19th century, laid the basis for the consid-
eration of the second aspect of the problem, namely,
the integrability of a particular nonlinear system of dif-
ferential equations that describes this particular motion
(the problem of existence of analytic (smooth, mero-
morphic) first integrals) [Shamolin, M. V. (1996) An
introduction...].
Because of its complexity, various versions of the Kir-

choff problem up to now almost always have been con-
sidered from the standpoint of the integrability prob-
lem. Only in several cases was a qualitative analy-
sis of a number of trajectories carried out. In works
of Kirchhoff, Clebsch, Steklov, Lyapunov, Chaplygin,
Kharlamov, and other scientists, the existence condi-



tions for the additional analytic first integral are stated.
New approaches to this problem are being elaborated
at present. Thus the theory of integrable cases is con-
structed (the construction of an L–A-pair). The condi-
tions for the nonexistence of the first integral of Kir-
choff equations are found.
We point to the third aspect of this problem, namely,

the qualitative analysis of sets of differential equa-
tions describing a given motion (phase–space fibering,
qualitative arrangement of phase trajectories, symme-
tries, etc.). Although all the problems listed above are
closely related to the integrability problem, solutions
of them are of independent significance. Moreover, the
consideration of this aspect of the problem would foster
the elaboration of techniques for the qualitative analy-
sis.
Theinnovativecharacter of this paper is seen from the

following:

new integrable cases and families of phase por-
traits in the plane dynamics of rigid bodiesare
discovered. Certain model cases of the motion of
rigid bodies in a resisting medium are qualitatively
studied and integrated. The first integrals of cor-
responding systems are found; these integrals are
transcendental functions and functions that can be
expressed in terms of elementary functions;
new integrable cases and families of multidimen-
sional phase portraits in the spatial dynamics of
rigid bodiesare found. The problem of the three–
dimensional motion of a dynamically symmetri-
cally fixed rigid body placed in the flow of an in-
coming medium is integrated in the sense of Ja-
cobi [Shamolin, M. V. (1997) On the integrable...],
[Shamolin, M. V. (1997) Spatial...], [Shamolin,
M. V. (1998) On the integrability...], [Shamolin,
M. V. (1998) A family...].
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