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Abstract
We propose six heuristic methods for finding an ap-

proximate solution to the following combinatorial prob-
lem: GivenN points in the n-dimensional space, find the
minimum-size ellipsoid covering exactlyN−k of them,
where k is much less than N . Various assumptions on
the nature of the points and their amount are considered;
the results of illustrative numerical experiments with the
algorithms are discussed.
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1 Introduction
The presence of errors and inaccuracies in the data is

typical to most of the real-life physical processes, since
usually, there are no precise models of the phenomenon
in question. Verification of experimental data is one of
the key issues when applying physical theories to the
practice; adequate decision making from available ob-
servations and model formation are the necessary inher-
ent features of all approaches and algorithms used in cy-
bernetics.

In many areas of system theory and cybernetics such
as data mining and data transmission, decision making,
sparse data representation, estimation and filtering, etc.,
it is often the case that the available data is not only er-
roneous and noise-corrupted, but is excessive too. At the
same time, the capacity of the storage is limited, so that
some of the observation data is to be discarded without
an essential loss of useful information.

The amount of literature on the subject is enormous,
and we list just several most influencing and classi-
cal texts [Ruan et al., 2005; Donoho, 2006; Becker

et al., 2009; Burke and Kendall, 2014]. In particular,
see [Burke and Kendall, 2014] for a detailed discussion
and pointers to the literature.

In this note we discuss a very simple model formula-
tion that can be thought of as the core of problems of this
sort. Namely, the following problem will be considered:

Discard k out of theN � k given points xi ∈ S ⊂ Rn
in such a way that the ellipsoid around the remaining
ones be smallest in size.

In practical applications, the available multidimen-
sional points are usually associated with sets of proper-
ties of a physical object or phenomenon of interest. The
problem formulated above often arises in the processing
of many samples of these data sets related to batches of
the input raw material in order to detect abnormalities
and improve the output of the manufacturing process;
e.g., see [Van Aelst and Rousseeuw, 2009] for the exam-
ples of paper production and TV sets production lines
and the experimental setup discussed there.

In cyber-physical systems of various nature, the for-
mulation above may have numerous applications. For
instance, the capacity of data transmission lines in such
systems is limited; e.g., this is typically the case for mul-
tiagent systems (groups of robots, etc., as in [Tomashe-
vich et al., 2018]), and some of the data is to be dis-
carded. These considerations also relate to optimal task
scheduling between the computing devices in distributed
computer systems, [Amelina et al., 2018]. Some large-
scale network-related problems, such as reducing the di-
mensionality and detecting critical in some sense nodes
and paths in the network [Runge et al., 2015], can also
be categorized as problems of this sort. Yet another im-
portant area where solution of the problem of our inter-
est may be useful is control and optimization of power
grids, with emphasis on robustness against various dis-
turbances, [Mehrmann et al., 2013].
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The ellipsoidal shape of the enclosing set in the prob-
lem above is adopted by many reasons. irst, it is flexi-
ble enough (e.g., as compared to rectangles) yet simple
(e.g., as compared to polytopes), being defined by a cen-
ter and a shaping matrix. Even more importantly, this
setup captures the typical case where noise-corrupted
observations containing outliers from a certain distribu-
tion class are available, and are to be filtered out. For
example, the points xi are known to be generated from
a Gaussian distribution with unknown mean and covari-
ance and contain low-level noise and small number of
outliers; the goal is to recover the underlying Gaussian
distribution. Particularly, the Gaussian type of uncer-
tainty is very common to standard representation of data
obtained from physical experiments. This prospective
formulation motivates the use of ellipsoids as comprising
sets, thus linking the problem to finding high probability
confidence ellipsoids explaining the available data.

In the specialized computer science literature; e.g.,
see [Ahipaşaoğlu, 2015], the problem formulated above
and its variations is known as k-MVE (here, k denotes
the amount of discarded points and MVE stands for Min-
imum Volume Ellipsoid); it has the two basic compo-
nents: a) finding the optimal or near-optimal subset of
points of the desired cardinality (N −k), and b) exact or
approximate computation of the minimum-size ellipsoid
around a given point set.

Problem b), often referred to as the MVE Problem or
MVEP, can be solved exactly in many ways. The “stan-
dard” approach is via solving an appropriate convex op-
timization problem with linear matrix inequality (LMI)
constraints using interior point methods as in [Boyd
et al., 1994] or [Boyd and Vandenberge, 2004] and nu-
merous handy software such as cvx [Grant and Boyd,
2020]. However applicability of these tools is limited to
relatively low dimensions of data and size of datasets.
On the other hand, there exist alternative methods for
higher dimensional problems, based on different ideas.
Optimization methods of this sort are proposed, e.g.,
in [Sun and Freund, 2004; Ahipaşaoğlu et al., 2008]; the
reported dimensions that can be handled with are up to
N = 30 000 and n = 30.

Problem a) is inherently combinatorial, and several
types of approaches to solution can be found in the liter-
ature.

The first one attempts at finding the exact solution but
with a reduced computational complexity. Examples of
such methods are a specialized version of the Branch-
and-Bound algorithm as in [Agullo, 1996], or use of the
so-called LP-type property of the considered problem,
as in [Dabbene and Shcherbakov, 2019] (see [Bai et al.,
2002; Gärtner, 2015] for LP-type problems). Note that
the proposed solutions are still combinatorial, but the
computational cost is much lower.

The second, very popular approach is based on ran-
domization in the spirit of [Tempo et al., 2013]; both
the data and the outcome of a method are assumed to
be random, and provable probabilistic estimates of the

accuracy and computational complexity can sometimes
be provided. The related literature is large enough; we
mention [Van Aelst and Rousseeuw, 2009], where an ex-
tensive bibliography on the topic is presented and re-
sampling algorithms with modifications were analyzed
together with some statistical properties of the solution
obtained. A very deep paper [Gärtner, 2015] describes
in detail the sampling-and-removal approach to solving
similar problems, with the accent on LP-type problems
mentioned above. In the large, this approach is closely
related to the ideas of chance-constrained optimization
in [Campi and Garatti, 2011]. We also mention the re-
cent work [Dabbene et al., 2015], where a related prob-
lem was considered, namely, the construction of ran-
domized approximations to nonconvex sets by regularly
shaped bodies (boxes, polytopes, ellipsoids).

The third approach may be referred to as determinis-
tic approximate; a solution is based on one or another
“efficient heuristic,” the accuracy of the outcome can
hardly be evaluated rigorously, but numerical experi-
ments testify to reasonable or good performance. As
an example of such methods, we mention [Ahipaşaoğlu,
2015], where the so-called 2-exchange iterative proce-
dure is proposed; it is based on comparing two covering
ellipsoids comprising the points sets which differ by one
point. This procedure is rather efficient, but the outcome
depends on the initial “guess,” so that the algorithm is to
be run repeatedly from various initial conditions.

In this note we follow the third route and present sev-
eral simple approximate deterministic methods. The
proposed algorithms are based on either common sense
reasonings or one or another efficient heuristics; they are
then tested numerically over sets of randomly generated
data. For small values of N and k, the exact solution of
the k-MVE problem (optimal ellipsoid E∗) can be found
by checking all combinations of k discarded points out
of the total N , computing the associated minimum-size
ellipsoid around the rest of them and picking the best
one. The outcomes of the algorithms are then compared
to each other and to the optimal solution.

For largeN, k, we simply run the algorithms over each
of the data sets and compare the results using several
performance indices.

This paper is of experimental and discussion flavor.
Thus, no proofs of convergence and theoretical estimates
of performance are given, and the methods were tested
over a rather limited set of problems. These tasks are a
matter of future work. The interested readers are wel-
come to propose their own methods to be tested and
competed with the ones reported in this note; the MAT-
LAB codes of the algorithms presented below are avail-
able upon request.

The rest of the paper is organized as follows. In the
next section we recall some basic definitions of ellip-
soids and provide an LMI-formulation of the problem
of finding the minimum-volume ellipsoid around a given
point set. The proposed approximate k-MVE algorithms,
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together with possible modifications, are described in
Section 3. The construction of the test datasets and the
results of numerical experiments over this data are de-
scribed in Section 4. In the last section we present con-
cluding remarks and outline possible directions for fu-
ture research.

This paper is an extension and revision of the prelimi-
nary text [Shcherbakov, 2020] presented at a conference.
Numerous misprints in the text and the notation are cor-
rected and the language is improved, many formulations
are made more accurate, the overall motivation is modi-
fied in the extended introduction, the bibliography list is
extended, and the numerical simulations are refined.

2 Minimum-Size Ellipsoid Around
a Given Point Set

In this section, we introduce the necessary notation and
recall some standard definitions; e.g., see [Boyd et al.,
1994; Boyd and Vandenberge, 2004].

An ellipsoid in Rn is specified by its matrix and center,
the typical definition being

E = {x ∈ Rn : (x− xc)>P−1(x− xc) ≤ 1}, (1)

where P � 0 is a positive definite matrix defining the
shape of the ellipsoid and xc ∈ Rn is its center. There
exist other descriptions which fit well different size-
minimization problems. The most commonly used size
criteria for ellipsoids are the following: (i) the radius of
the smallest ball containing the ellipsoid; (ii) the sum of
the squared semiaxes; (iii) the volume.

In this paper we consider the most natural volumet-
ric criterion with Vol(E) = νn(detP )1/2, where νn
is the volume of the n-dimensional unit Euclidean ball,
and det(·) stands for the determinant of a matrix. To fa-
cilitate optimization, we adopt the following equivalent
definition of ellipsoid (1):

E = {x ∈ Rn : ‖Qx− a‖ ≤ 1
}
, (2)

where Q = P−1/2, a = P−1/2xc, and ‖ · ‖ is the Eu-
clidean vector norm. Using Schur complement, the in-
equality in (2) can be equivalently written as the LMI(

1 (Qx− a)>

Qx− a I

)
< 0,

where I is the identity matrix. Next, since P = Q−2,
we have log detP = −2 log detQ. Hence, given the
points x1, . . . , xN , and keeping in mind that the func-
tion − log detX is convex for X � 0, we formulate the
following convex optimization problem in the variables
Q = Q> ∈ Rn×n and a ∈ Rn:

MVE Problem : −log detQ→ min (3)

subject to the LMI constraints(
1 (Qxi − a)>

Qxi − a I

)
<0, i = 1, . . . , N, Q�0.

The solution of this Minimum Volume Ellipsoid Prob-
lem, MVEP, defines the matrix P = Q−2 and the center
xc= Q−1a of the desired minimum-volume ellipsoid (1)
comprising the points x1, . . . , xN .

For simplicity, we assume that the point set
{x1, . . . , xN} is full-dimensional; i.e., it does not belong
to a lower-dimensional subspace of Rn.

The MVEP optimization problem is well-defined and
can be efficiently solved by means of numerous avail-
able software; we will use the MATLAB-compatible op-
timization package cvx [Grant and Boyd, 2020]. From
the structure of the problem, it is seen that the number of
variables and constraints in this problem grow slowly as
n,N grow, and memory requirements are also modest;
hence, problems of reasonable dimensions can be easily
handled within cvx. However even in low dimensions
and small N , it still takes quite an amount of time; for
instance, in a very simple situation n = 2, N = 10,
k = 3, the computations require about 0.2sec on a stan-
dard modern laptop, while for N = 100 the solution re-
quires about 1.5sec, and 11sec for n = 10, N = 200. In
the experiments, we restrict ourselves to relatively small
values of n and N ; see discussion in Sections 4 and 5.

The MVEP problem is at the nucleus of all methods
discussed in this paper; it is to be solved repeatedly as
an algorithm runs, so that the amount of calls to this pro-
cedure can be taken as one of the measures of numerical
complexity of an algorithm.

3 The Six Tested Algorithms
The overall structure of all methods analyzed in this

note is simple enough. The points are discarded one by
one at every iteration until the amount of the remaining
ones is exactly N − k. To discard a point, one or an-
other heuristic is exploited, and attempt is made toward
locally (sub)optimal solution. In this sense, the methods
are greedy.

In this section we describe six methods of this sort and
discuss their possible modifications.

3.1 “Naive” Methods
Algorithms in this group are based on common sense

reasonings.
Method I: Spherical Peeling (SP). This is probably the

simplest method that can be devised. At every iteration,
having M remained points xi, compute the mean value

x̄ =
1

M

M∑
i=1

xi (4)

and compose the ball of minimum radius that contains
all M points. Discard any of them which is on the sur-
face of the ball (in other words, drop out the point that
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maximizes the distance to the mean). After k iterations,
solve the MVEP (3) for the remaining N − k points.

This method is very simple and fast, it requires just
one call to the MVEP routine; however, clearly, its per-
formance is expected to be poor as confirmed by experi-
ments.

Method II: Ellipsoidal Peeling (EP). This method is
borrowed from [Tempo et al., 2013], see Algorithms
12.2, 12.3; it is a natural generalization of the previous
one. At every iteration, we solve the MVEP problem (3)
for the currently available M points and remove any one
of them which belongs to the boundary. Repeat calcula-
tions until exactly (N − k) points remain. This method
requires (k + 1) calls to the MVEP routine.

A simplified version of the EP-method consists in dis-
carding in one shot the whole bunch of k points with
the minimum distance to the surface of the initial el-
lipsoid (same goes to the SP). Alternatively, discard the
points which are precisely on the boundary of the ellip-
soid (in case their amount is less than or equal to k) and
re-iterate until exactly k points are discarded. Experi-
ments demonstrate similar performance of the versions
with a slight advantage of the basic one-discarded-point
version.

Method III: Convex Hull Peeling (CHP). The consid-
eration behind this approach is the following. HavingM
points at a current iteration, construct their convex hull
and consider all combinations of M − 1 points obtained
by deleting one point from the convex hull. For each
of the combinations, solve the MVEP problem (3) and
choose the one with the smallest volume; re-iterate.

The cardinality of the convex hull of N points
uniformly distributed in the cube in Rn is
O(logn−1N) [Raynaud, 1970]. Hence, for this al-
gorithm, the amount of calls to the MVEP solver is of
the order of k O(logn−1N). Similar estimates hold for
Gaussian distributions, [Hueter, 1999] (hence, including
balls, not cubes).

Note that the computation of the convex hull is a costly
operation in higher dimensions. Experiments confirm
reasonable performance of the method; however, it is
rather sensitive to the presence of clusters.

We next pass on to “more advanced” algorithms that
exploit heuristics based on known results and techniques
from statistics, estimation and sparse data recovery.

3.2 Sample Covariance Matrix
Whereas the methods considered so far pay no atten-

tion to the origin of the data, the heuristics behind the
approach below is dictated by the stochastic nature of
the observations; namely, the points are generated by a
random mechanism and have a certain probabilistic dis-
tribution.

Method IV: Covariance Matrix (Cov). At each step,
having M points, compute their sample mean (4) and

the sample covariance matrix

H =
1

M

M∑
i=1

(xi − x̄)(xi − x̄)>. (5)

Discard the point xout which maximizes the distance
to x̄ in the metric defined by H:

xout = arg max
i

(xi − x̄)>H−1(xi − x̄).

Iterate until exactly k points are discarded.
Likewise SP, this method requires just one call to the

MVEP routine, but its accuracy is drastically better.
Overall execution time is slightly larger than that of SP
due to extra operations needed for the computation of
matrix (5). A simple recursive procedure can be used for
the re-computation.

3.3 Principal Component Analysis
The second “advanced” approach to solving the prob-

lem uses the ideas of the principal component analysis
(PCA), [Jolliffe, 2002; Pearson, 1901] targeted at filter-
ing out outliers.

Method V: Principal Component Analysis (PCA). The
simplest version of the method proceeds as follows. We
find the minimum-volume ellipsoid around all of the cur-
rent points, project them onto the smallest axis, and drop
out the point which maximizes the distance to the center.

Let (Q, a) define the current ellipsoid (2)

E = {x ∈ Rn : (x− xc)>Q−1(x− xc) ≤ 1},

and let e be the eigenvector of Q associated with the
smallest eigenvalue. Then the projection of xi on the
smallest axis of Q is equal to

πe(xi) = e>(xi − xc)e+ xc,

and the distance to xc is equal to

dist
(
πe(xi), xc

)
= ‖πe(xi)− xc‖ =

= ‖e>(xi − xc)e‖ = |e>(xi − xc)|.

Discard xi that maximizes the distance, call it xsmall.
In the experiments, we also considered projections on

the largest axis, detected the corresponding point xlarge
and discarded the worst one in the pair (xsmall, xlarge).
As per experiments, such a modification is more effi-
cient; it requires 2k + 1 calls to the MVEP routine.

Yet another modification of this algorithm is a mix-
ture of methods Cov and PCA; namely, the points are
projected on the small axis of the ellipsoid defined by
the sample covariance matrix H , not Q. Then, the
two points with maximum and minimum projections on
the smallest and the largest axis, respectively, are deter-
mined, the two corresponding ellipsoids are compared
and the best one is chosen.
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3.4 `1-optimization
The third general approach is based in the ideas of

`1-optimization and sparsity, [Donoho, 2006; Boyd and
Vandenberge, 2004].

Method VI: Ideas of `1-optimization (`1). The scheme
of the algorithm is as follows. Let Q and a denote the
shaping matrix and the center of the current iteration el-
lipsoid. Instead of the condition ‖Qx − a‖2 ≤ 1, con-
sider the the constraints

‖Qxi − a‖2 ≤ 1 + di, di ≥ 0, i = 1, . . . ,M,

where di penalizes the point xi to leave the ellipsoid.
Introduce the vector variable d = (d1, . . . , dM )> and
solve the following convex optimization problem in the
variables Q, a, d:

− log detQ+ µ‖d‖1 → min

subject to the constraints

‖Qxi−a‖2 ≤ 1+di, di ≥ 0; i = 1, . . . ,M, Q � 0,

where ‖d‖1 =
∑
i |d1| is the vector `1-norm and µ > 0

is the scalar parameter (the constraints above can be
re-written in the LMI-form similarly to those in the
MVEP (3)). Let Eµ denote the ellipsoid defined by the
solution (Q, a) of this convex problem. Clearly, for large
µ, all points are inside Eµ, and as µ decreases, the result-
ing ellipsoid shrinks and contains no points.

Hence, we start with µ large enough and decrease it (by
dichotomy) until exactly one point is outside the corre-
sponding ellipsoid Eµ. Drop it away and restart with the
set of remaining points; repeat calculations until k points
are outside.

In the experiments, we used the following modifica-
tion of the method. We decreased µ until half of the
points are outside the ellipsoid (more accurately, bM/2c
of them), discard the point with the largest value of the
penalty di and restart with the rest of them.

The heuristics behind this modification is not quite
clear, but experiments testify to a much better perfor-
mance. The amount of calls to the MVEP is hard to
evaluate, but it is seen to be “large.”

3.5 Other Possible Modifications
Several obvious modifications are plausible.

1. Likewise method EP, all other methods admit a
much faster yet essentially less accurate single-
iteration simplification: Remove exactly k worst
points in one shot.

2. At every iteration, the center of the ellipsoid is fixed
as the mean of the currently remaining points.

3. Brute force at the last iteration: Having N − k+
1 points, test all combinations of N − k points
and choose the one that minimizes the volume (cf.
method CHP).

4. In the special case n = 2, the ellipsoid is defined
by a small number of parameters (two for the cen-
ter and three for the matrix), so that straightforward
optimization may be arranged.

4 Experiments
In the experiments, we restricted our analysis to low-

dimensional small-sized datasets. The reason is that we
used the cvx toolbox which implements interior point
optimization methods; for high dimensions, memory re-
quirements may be excessive and execution time may be
large. As mentioned in the Introduction, more powerful
optimization routines may be used to solve the MVEP
problem in higher dimensions (e.g., as in [Sun and Fre-
und, 2004; Ahipaşaoğlu et al., 2008]). However, in this
work we were primarily interested in the volumetric per-
formance of the presented algorithms that use different
heuristics for choosing a suboptimal subset of a given
cardinality, rather than in fast solution of the MVEP
problem. Needless to say, the synthetic data that we op-
erate with in the experiments below are just of illustra-
tive nature; still, it is believed that, in a sense, they may
approximately characterize simplest physical processes
such as the behavior of small collections of particles,
simple mechanical systems, etc.

4.1 Construction of the Datasets
In every experiment, we compare the performance of

the algorithms over Nset = 1,000 randomly generated
data sets, which are sampled from two distributions.

The first option is the Gaussian distribution xi ∼
N (0,Σ), which is the most natural one; it is generated
as x = F ∗ randn(n, 1), where F ∈ Rn×n, so that
Σ = FF>. The matrix F is either fixed in every experi-
ment, or also generated randomly as F = 2∗rand(n)−1
for every dataset.

The second option is the uniform distribution over the
unit box B = {x ∈ Rn : ‖x‖∞ ≤ 1}.

Next, denote by vi(A) the volume of the ellipsoid
obtained by algorithm A for the dataset i, and let vi
be the best outcome for the dataset i. Alternatively,
for small N, k, the quantity vi is associated with the
optimal ellipsoid, which can be found by checking all
nchoosek(N,k) combinations of discarded points.

The performance of the algorithm A will be character-
ized by the following indices:
• the mean relative volume:

volume(A) =
1

Nset

Nset∑
i=1

vi(A)

vi

• the standard deviation of the random variable ξi =
vi(A)
vi

:

std(A)=

(
1

Nset−1

Nset∑
i=1

(ξi−ξ̄)

)1/2
, ξ̄=

1

Nset

Nset∑
i=1

ξi
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Figure 1. Outcomes of different algorithms for a (2,10,3) dataset.
Cyan: true, Cov, `1; green: SP ; blue: EP ; black: CHP ; ma-
genta: PCA

• average amount of “wins” (algorithm A outperforms
other algorithms in an experiment); alternatively, the av-
eraged amount of true answers:

wins(A) = card{vi(A) = vi}

• average amount of calls to the MVEP routine
• average execution time, time(A).

4.2 Simulations
The first experiment: n = 2, N = 10, k = 3. This is

an illustrative, very low-dimensional example where the
exact solution vi can be found easily. This example is
intended to show that (i) “often,” some of the methods
produce the exact result, and (ii) the outcome may differ
dramatically from method to method.

In all runs, the data was sampled from the Gaussian
distribution N (0,Σ), where Σ = FF> and F is fixed:

F =

(
1 1
0 1

)
.

The results are given in the table below.

Table 1. Results of the first experiment

volume wins calls time std

SP 1.3991 29% 1 0.3002 0.5701

EP 1.1301 62% 4 1.1785 0.2322

CHP 1.1077 63% 19.38 4.7701 0.2280

Cov 1.0310 76% 1 0.3102 0.0880

PCA 1.1200 56% 7 1.7777 0.2103

`1 1.0290 77% 20.12 8.1612 0.0861

true 1 100% 120 32.5182 0

The first observation is that, in terms of performance
(volume), all the methods are similar (except for SP
which is much worse). Perhaps this is explainable by
low dimensions and sample-sizes.

The second observation is that, very often, the methods
produce the true answer; especially, this is the case for
Cov and `1.

The third observation is that the two latter methods are
very similar in performance, with 95% coincidences of
the resulting ellipses; though `1 is much more time con-
suming.

Finally, the results demonstrate a potentially large vari-
ety of the outcomes of different methods; e.g., as shown
in Fig. 1.

The second experiment: n = 2, N = 10, k = 3, but
the points were sampled from the uniform distribution
over the unit box. In this illustrative example, the meth-
ods exposed different behavior, indicating that the per-
formance heavily depends on a priori assumptions on
the nature of points.

The results are accumulated in Table 2, and they are
seen to differ from those in the previous experiment.

Table 2. Results of the second experiment

volume wins calls time std

SP 1.3298 15% 1 0.2801 0.3717

EP 1.2600 43% 4 1.1731 0.3412

CHP 1.2198 41% 18.73 4.9100 0.3501

Cov 1.1237 63% 1 0.2844 0.2399

PCA 1.2487 44% 7 1.7554 0.4371

`1 1.1262 55% 20.39 8.1113 0.2289

true 1 100% 120 30.5170 0

Indeed, whereas the execution time and the amount
of calls to the MVEP routine remain the same (as ex-
pected), the number of exact answers is much lower,
as well as the volumetric accuracy (the second column
of Table 2). Another interesting observation is that the
standard deviation (last column) increased considerably
for all the methods except for SP. However, similarly to
the first experiment, methods Cov and `1 outperform the
other methods as seen from columns 2 and 3.

The third experiment: n = 2, N = 100, k = 3. In
this slightly more “sizeable” experiment, we considered
points xi from Gaussian distributions with different co-
variance matrices for each of the Nset = 1,000 runs (see
explanations at the beginning of Section 4.1). The rest of
the quantities and indices are the same as above; clearly,
computation of the exact answer is impossible due to the
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size of the dataset (it would require 161,700 calls to the
MVEP routine for every dataset). The results are sum-
marized in Table 3.

Table 3. Results of the third experiment

volume wins calls time std

SP 1.1412 6% 1 1.4391 0.1531

EP 1.0909 30% 4 6.1777 0.0531

CHP 1.0112 86% 29.35 42.0012 0.0161

Cov 1.0361 45% 1 1.4774 0.0509

PCA 1.0434 41% 7 9.7220 0.0602

`1 1.0399 42% 50.02 100.5192 0.0509

Several obvious observations are immediate.
First, of course, the execution time increased consid-

erably because of the increased amount of constraints in
the MVEP problem (3).

Second, the CHP method produced overwhelmingly
better results; however, at the expense of a much higher
computational effort (execution time increased by a fac-
tor of 8.5 with a ten-fold increase of the amount N of
points). An explanation is that this methods is somewhat
close in nature to brute force methods, and it can hardly
be applied to higher dimensional problems.

Finally, the three methods Cov, PCA, and `1 have
shown a very similar accuracy, but the execution time
is much lower for Cov.

Having the results of the experiments above and keep-
ing all performance indices in mind, we conclude that
method Cov based on use of sample covariance matrix is
seen to be most attractive and promising.

5 Conclusions and Future Research
We proposed several simple and transparent methods

for solving the k-MVE problem and presented prelimi-
nary simulation results. Theoretical estimates of the per-
formance can hardly be obtained; hence, more experi-
ments are desired and they will be performed in the fu-
ture. Overall, this kind of research is thought of being
useful in the development of new approaches to the con-
struction of “economy” cybernetical models of various
real-life physical systems.

Below, we list some of the important issues that should
be taken into account in the experiments.

1. Origin of the points: From the experiments, the per-
formance is seen to depend on the distribution of the
data and the support set S).

2. Amount N of points and the relation between N
and k. This knowledge perhaps can be taken into
account to improve the methods.

3. Presence of outliers (use of intentionally contami-
nated Gaussian distributions) and clusters.

We conclude the paper by formulating in rough terms
the four problems closely related to the k-MVE problem;
it is believed that the analysis of these problems my be
interesting and useful.

Problem 1: Given N points, find a nondegenerate el-
lipsoid E that minimizes the cost

Vol(E)

Np
,

where Np > 2 is the amount of points in E .
Problem 2: Given a distribution and a sample-size,

evaluate the probability that the ellipsoid obtained with
one or another method differs from the optimal one by
no more than a prespecified quantity.

Problem 3: Given N points uniformly distributed in
the cube, consider the random variable ω which is the
volume of the minimal ellipsoid containing them. Eval-
uate Eω, the mean of ω.

Problem 4: Given a fixed volume of an ellipsoid, max-
imize the amount of points that it covers by optimizing in
Q, a. This can be thought of as an inverse to the k-MVE
problem.
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