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Abstract
In the present paper two different approaches for spur

gear noise reduction using micro-geometrical modifi-
cations are compared. The two approaches are based
respectively on the reduction of Static Transmission
Error (STE) and Dynamic Transmission Error (DTE)
fluctuations. The dynamic behaviour of the system is
computed through a simple lumped parameter model.
A genetic algorithm is proposed to find the best solu-
tions inside the parameters space because the evalua-
tion of the objective functions requires finite elements
calculations and numerical ODE integrations. A relia-
bility analysis is afterwards performed to evaluate the
effect of manufacturing errors on the dynamic perfor-
mance of the achieved optimum.
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1 Introduction
The reduction of vibration and noise is one of the

main issue in spur gear design. Literature offers
many approaches to evaluate the dynamic behaviour
of such systems and their design optimization. Most
of the design methods are based on the use of tip an
root relief, which consist in a removal of material
from the tooth flank in order to reduce the fluctuation
of the static transmission error (STE) at a specific
torque level. Kahraman and Blankenship [1] proved
the influence of profile modifications on the dynamic
response with experiments.
In the last century, optimization approaches were
mainly based on simplified analytical model. For
example, rigid models of gear teeth were used to eval-

uate the static transmission error, assuming that low
excursions of the STE correspond to low vibrations,
i.e. low fluctuations of the dynamic transmission
error (DTE) [2]. Gear tooth deformations were also
taken into account using a simplified cantilever beam
model [3]. Beghini et al. [4] proposed an iterative
method to reduce the peak to peak of the STE based
on FEM models. In their paper, a sequential approach,
spanning couples of profile modification parameters,
is described. Despite the accuracy in stiffness evalu-
ation, Finite Element Methods do not allow to bring
out a search in the parameter space using common
optimization techniques, e.g. steepest descent, because
the objective function is not known in an explicit
formulation. It is to note that all approaches found in
literature are not global in nature, because only one
load value is considered, while, due to nonlinearities,
both STE and DTE depend on the applied torque.
The relationship between static and dynamic transmis-
sion error can be investigated using lumped parameter
models, which permits to find the dynamic behaviour
of the gear pair for varying speed starting from a series
of static FEM calculations. On this topic, previous
works from Parker et al. [5] were considered to de-
velop a tool for studying the dynamic effectiveness of
profile modifications. In this paper STE is interpolated
by means of Discrete Fourier Transform (DFT) starting
from fifteen reciprocal positions within a mesh cycle.
This work focuses on the comparison between two dif-
ferent objective functions in gear profile optimization:
the first one takes into account the harmonic content
of the STE, the second considers mean amplitudes
of vibration of the system. Both approaches perform
simulations at three different torque levels, so that the
minima, found by the optimization processes, keep
their effectiveness despite the applied load condition.



Since both objective functions can be estimated
only for a finite number of configurations, a genetic
algorithm is developed and applied to both static and
dynamic optimization. The effectiveness of the opti-
mum is afterwards checked by means of the method
proposed in [10]: a random profile is created starting
from the optimal one and the dynamic behaviour of
the new gear pair is compared to the unperturbed
case. It is to stress that usual tolerances in the profile
manufacturing are larger than the magnitudes of profile
modifications, for this reason such a comparison is
quite important to understand whether or not profile
modifications are suitable for technological applica-
tion.

2 Dynamic model
The dynamic model used in this paper is the simple

lumped mass model showed in Fig. 1. Such model
considers spur gears as rigid disks, coupled along the
line of action through a time varying mesh stiffness
k(t) and a constant mesh damping c; θg1(t) is the
angular position of the driver wheel (pinion), θg2(t) is
the angular position of the driven wheel (gear); Tg1(t)
is the driving torque, Tg2(t) is the braking torque; Ig1

and Ig2 are the rotary inertias; dg1 and dg2 are the base
diameters.
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Figure 1. Dynamic model of a spur gear pair

According to literature [8], the relative dynamics of
gears along the line of action can be represented by the
following equation of motion:

meẍ(t)+c(ẋ(t))+k(t)f1(x(t))+kbs(t)f2(x(t)) = Tg(t)
(1)

where ˙(·) = d(·)
dt , me is the equivalent mass:

me =

(
d2

g1

4Ig1
+

d2
g2

4Ig2

)−1

(2)

Tg(t) is the equivalent applied preload:

Tg(t) = me

(
dg1Tg1(t)

2Ig1
+
dg2Tg2(t)

2Ig2

)
(3)

Tg2(t) = Tg1(t)dg2
dg1

and Tg1(t) = Tg1 are assumed to
be constant.
The dynamic transmission error x(t) along the line of
action is defined as:

x(t) =
dg1

2
θg1(t)− dg2

2
θg2(t) (4)

kbs(t) is the back side contact stiffness.
Smoothing backlash functions are considered in order
to simulate clearances:

f1(t) = 1
2 [(x(t)− b) {1 + tanh[λ(x(t)− b)]}]

f2(t) = 1
2 [(x(t) + b) {1 + tanh[−λ(x(t) + b)]}]

(5)
where 2 b is the backlash along the line of action and λ
is the shape parameter (λ = 108). The gear pair mesh
stiffness along the line of action is given by:

k(t) =
2Tg1

dg1STE(t)
=

4Tg1

d2
g1δ(t)

(6)

where

δ(t) = θ1(t)− dg2

dg1
θ2(t) STE(t) =

dg1δ(t)
2

(7)

δ(t) is the difference between the nominal position of
the wheel 1 (pinion) given by the exact kinematics and
the actual position influenced by the teeth flexibility;
STE(t) is the static transmission error along the line
of action, it depends on time because, during meshing,
both the contact point and the number of teeth in con-
tact can change.
Parker et al. [5] described a methodology to compute
θ1(t) and θ2(t), referred as the rotational degrees of
freedom of the pinion and the gear, for small “rigid-
body” motions; this approach is followed here for static
analyses.
Since no manufacturing errors are included, the mesh
stiffness is periodic within a mesh cycle; therefore, it is
expanded in terms of Fourier series:

k(t) = k0 +
N∑

j=1

kj cos(jωmt− ϕj) (8)

where ωm is the mesh circular frequency, amplitudes
kj and phases ϕj are obtained using the Discrete
Fourier Transform (DFT); the number of samples n is
related to the number of harmonics N = (n− 1)/2; in
the following, n = 15 is considered to ensure enough
accuracy in the expansion.
Similarly we have:

kbs(t) = k0 +
N∑

j=1

kj cos(−(jωmt− ϕj + j
sts,1

dg1
))

(9)



where sts,1 is the thickness of the pinion tooth space at
the pitch operating diameter, see equation (3.2.32) of
Ref. [9] for details.
A dimensionless form of equation is obtained by let-
ting:

ωn =
√

k0
me

; ζ = c
2meωn

; τ = ωnt ;

T̄g = Tg

bmeω2
n

; x̄ = x
b

(10)

and:

k̄j = kj

meω2
n

; k̄(τ) = 1 +
N∑

j=1

k̄j cos
(
j ωm

ωn
τ − ϕj

)
;

k̄bs(τ) = 1 +
N∑

j=1

k̄j cos
(
−j ωm

ωn
τ + ϕj − j sts,1

dg1

)
(11)

Dynamic transmission error is computed using an im-
plicit Runge-Kutta numerical integrator.

3 Profile modifications
Profile modifications are micro-geometrical removals

of material both from the tip and from the root of the
tooth. The parameters that define these profile modi-
fications are the roll angle of start and magnitude re-
lief at the tip, the roll angles of start and magnitudes
of relief at the root; this way the parameter space is
8-dimensional. Fig 2 shows the parameters defining
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Figure 2. Representation of profile modification parameters

tooth profile modifications. The type of the modifica-
tions can be linear or parabolic with respect to the roll
angle. Since parabolic modifications give worst results
in optimization [6], linear modifications are consid-
ered. Ranges spanned by each parameter are reported
in Tab. 1.

4 Optimization
Genetic algorithms are optimization methods that start

from an initial population of points and improve it
through the iterative application of three transforma-
tions: selection, crossover and mutation. Although dis-
crete in nature, since genetic algorithms work on bit

Parameter Start End

αts Roll angle at operating pitch diameter Roll angle at tip diameter

magt 0 40 µm

αrs Roll angle at operating pitch diameter Roll angle at initial point of contact diameter

magr 0 40 µm

Table 1. Parameter ranges for the optimization

strings, it is possible to use them to find minima of
multivariable functions through a discretization of the
domain. The three transformations resemble the evo-
lution of biological systems. At the first stage, selec-
tion, the objective function is evaluated for each mem-
ber of the actual population and a new set of points is
extracted from the actual one by means of a stochastical
sampling in which better elements have higher proba-
bility of extraction. Crossover, which acts like chro-
mosome recombination, combines the extracted solu-
tions in order to search different areas of the parameter
space. Since some regions of the space could not be
reached by crossover, mutation adds a random varia-
tion of points inside the population.
An optimization strategy based on genetic algorithms
is proposed and applied to an actual gear pair. Tab. 2
shows data of the case study.

Data Pinion Gear

Number of teeth 28 43

Module [mm] 3 3

Pressure angle [Deg] 20 20

Base radius [mm] 39.467 60.610

Theoretical pitch radius [mm] 42 64.5

Thickness on theoretical pitch circle [mm] 6.1151 6.7128

Addendum modification [mm] 1.927 2.748

Face width [mm] 20 20

Hob tip radius [mm] 0.9 0.9

Outer diameter [mm] 93.1 139.7

Root diameter [mm] 79.1 126.2

Inner diameter [mm] 40 40

Mass [kg] 0.71681 1.9823

Inertia [kgm2] 0.0008076 0.0047762

Young’s modulus [MPa] 206000 206000

Poisson’s coefficient 0.3 0.3

Center distance [mm] 111

Backlash [mm] 0.3461

Backlash (2b) on the line of action [mm] 0.312

Backside stiffness phase [rad] 1.594232

Transmission ratio 0.6511

Contact ratio 1.28565

Torque (Tg1) [Nmm] 470000

Damping coefficient (ζ) 0.01

Table 2. Geometrical data for the case study (courtesy of CNH Case
New Holland)



4.1 Effectiveness of optimization
At a first stage, the proposed algorithm is used to find

an optimum set of profile modifications for a specific
torque value, i.e. the nominal torque. Two differ-
ent objective functions, peak to peak of STE (CASE
B) and mean value of the first seven harmonics of
STE (CASE C) are applied and their dynamic effec-
tiveness is compared to that of a pure involute pro-
file (CASE A). Fig 3 shows the dynamic results: the
amplitude-frequency diagram is obtained starting from
strongly perturbed initial conditions. This approach,
even though produces lower vibration levels, is con-
sidered to be more realistic because the operating en-
vironment is subjected to strong perturbations. Mini-
mizations at the nominal torque value of peak to peak
of STE produces the best results in terms of vibration
reduction. In the following, we will consider the har-
monic content of STE, instead of the peak to peak, be-
cause it is the direct source of excitation and for this
reason can be related to the dynamic behaviour.
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Figure 3. Amplitude-Frequency diagrams: CASE A - no profile
modifications; CASE B - peak to peak of STE; CASE C - mean value
of the first seven harmonics of STE

4.2 Static optimization
In the present section, the same algorithm has been

applied to minimize the mean amplitude of the first
seven harmonics of STE at three different torque lev-
els (CASE D): nominal load, 66% and 33% of nominal
load. This way, for each point in the parameter space,
3x15 FEM simulations are performed, so that the first
seven harmonics of STE could be evaluated by means
of DFT. With reference to the algorithm described in
[6], the parameters used in the present simulations are
collected in Tab. 3:
The optimal set of profile modification, which should

be capable to reduce vibrations at different loads, is
tested to find out its dynamic behaviour. Figure 4 sum-
marizes the dynamic scenarios obtained for the three

Number of strings in the population
npop

50

Crossover probability pc 1

Mutation rate pm 0.4

Multiplier for the fitness scaling
cmult

1.5

Number of iterations niter 60

Table 3. Parameters of the genetic optimization

different torque values.

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
M

S
 A

m
p

lit
u
d

e

Normalized frequency !/!
nat

 

 

100% T

66% T

33% T

Figure 4. Amplitude frequency diagrams: CASE D - Static opti-
mization

4.3 Dynamic optimization
In this case for each solution three numerical integra-

tions are performed for three different torque values.
In this way, the Root Mean Square (RMS) of the so-
lution is evaluated in the range between 500 to 25000
rpm. The target of optimization is the mean value of
the RMS for the three different torque levels. Fig 5
shows the dynamic scenario for the dynamically op-
timized gears. The dynamic optimization approach is
applied to the same case study (Case E) and the optimal
solution shows the same behaviour of the static one: vi-
bration levels are higher at the maximum torque, lower
at 33% of the nominal torque.
Tab 4 presents the sets of optimized profile modifi-

cations for CASE D and CASE E: it is to note that
both solutions present very small modifications at root.
Since root modifications are more difficult to manufac-
ture than tip modifications, this observation suggests
that tip only modifications could be considered in de-
signing gear transmissions.
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Figure 5. Amplitude frequency diagrams: CASE E - Dynamic op-
timization

Case D Case E

Pinion Gear Pinion Gear

Tip Relief

αts [deg] 34.488 30.006 32.715 30.886

magt [mm] 0.039 0.037 0.022 0.020

Root Relief

αrs [deg] 23.455 25.168 21.947 22.545

αre [deg] 14.433 20.576 14.433 20.576

magr [mm] 0.010 0.000 0.006 0.002

Table 4. Optimal profile modifications according to optimizations:
cases D and E

4.4 Reliability analysis
Considering the set of optimal profile modifications

proposed in Tab. 4 Case D , it can be seen that the mag-
nitudes lie in the range 0 − 40µm, which is usually
the same size of the allowable manufacturing error. To
simulate the profile error, a random profile is consid-
ered. This profile is defined by means of random nor-
mally distributed points with standard deviation set up
considering prescribed tolerances. In gear profile, tol-
erances are defined using a ”k-chart”, that is a sketch
of the domain of allowable profile, see Fig. 6.
In the present case study, since profile modification

manufacturing is less accurate than pure involute pro-
file, tolerances are set up as in the following: ∆i =
8µm, ∆r = 20µm. Starting from these values, a ran-
dom profile is defined; the corresponding transmission
error is calculated and represented using the first four
harmonic components; which are added to the dynamic
model as e(t) in Fig. 1.
Figure 7 shows the dynamic behaviour of the per-

turbed profile: vibration levels are higher than in Case
D, but still lower than pure involute profile (Case A).

5 Conclusion
Two optimization strategies are proposed to find op-

timal sets of profile modifications at different torque
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Figure 6. Example of k-chart used to represent tolerances in gear
profile
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Figure 7. CASE A - no profile modifications; CASE D - Static op-
timum; CASE F - Effect of manufacturing error on D case

levels: the first is based on static finite element calcula-
tions, the second involves a numerical ODE integration
as well. The main focus is to reduce vibrations in spur
gears. The effectiveness in vibration reduction has been



checked for both approaches, showing a good reduc-
tion of noise level. The first method gives good results
with much lower computational time. For this reason,
the optimum obtained on a static basis is assumed as
a standard. Since the magnitudes of the modifications
are of the same size of the manufacturing error, a per-
turbed profile is considered in order to prove that vi-
bration level of the optimized profile is still better than
pure involute even if profile errors are taken into ac-
count.
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