
CYBERNETICS AND PHYSICS, VOL. 7, NO. 1, 2018 , 26–34

ON STABILIZABILITY OF FLUID MULTI-SERVER
POLLING SYSTEMS WITH SETUPS

Alexey Matveev
Department of Mathematics and Mechanics

Saint Petersburg State University
Russia

almat1712@yahoo.com

Article history:
Received 28.10.2017, Accepted 15.05.2018

Abstract
A time-invariant fluid model of a polling system is

considered. It consists of finitely many servers and
buffers with unlimited sizes. The buffers receive in-
flows of work from the outside, work leaves the sys-
tem after processing by a server. Every server works
only with buffers from an associated zone of service,
which may overlap for various servers, is able to serve
at most one buffer at a time and so has to switch, from
time to time, among buffers, the switch-over times are
nonzero. We present a criterion for existence of a
scheduling and service protocol that makes the system
stable in the sense that the total amount of work in the
buffers remains bounded as time progresses. The ne-
cessity part of this result is concerned with the widest
class of protocols, including dynamic ones that are cen-
tralized and have access to the full information about
the events in the system. Meanwhile, we show that
every stabilizable system can be stabilized in a fully
decentralized fashion via a simple static protocol, e.g.,
by a protocol that is based on independent round robin
scheduling of the servers and for every server, employs
only time measurement.

Key words
Queues, service, planning and scheduling, stability.

1 Introduction
We consider polling systems [Kleinrock, 1976] where

finitely many and mostly independent queues share
common sources of service (finite capacity servers);

every server is able to serve at most one queue at a
time and has to switch among queues from time to time.
Such systems have gained tremendous interest as mod-
els of some key aspects of functioning in a wide range
of applications, such as computer and communication
networks, flexible manufacturing systems, transporta-
tion, repair management, chemical kinetics, etc. [Levy
and Sidi, 1990; Takagi, 1997, 2001; Vishnevskii and
Semenova, 2006; Boon et al., 2014]. In many of these
applications, every server incurs a switch-over period
when changing a queue.

Control of polling systems is a twofold discipline:
for every server, a scheduling protocol gives the queue
to visit next, whereas a service protocol regulates the
amount and rate of service given to the current queue.
The stability of the closed-loop system is of paramount
importance. Stochastic models of queueing theory are
typically viewed as stable if the underlying Markov
process describing the dynamics of the closed-loop net-
work is positive Harris recurrent [Meyn and Tweedie,
1993]. Stability of a polling system in this sense can
be linked to stability of an associated deterministic
fluid model, see, e.g., [Rybko and Stolyar, 1992; Chen,
1995; Dai, 1995; Fricker and Jaı̈bi, 1998; Down, 1998;
Foss and Kovalevskii, 1999; Bramson, 2008]. This
serves as an extra incentive for study of such models
whose general discussion is available in, e.g., [Chen
and Mandelbaum, 1994]. In the case of zero switch-
over times, definitions of stability of such a fluid model
often require that the system eventually drains to zero
and then stays empty regardless of the initial state [Dai,
1995]. However, this is unrealistic if the switch-over
times are nonzero; then the requirement is weakened:
the system’s content should merely stay bounded as
time progresses [Kumar and Seidman, 1990; Matveev

CYBERNETICS AND PHYSICS, VOL. 7, NO. 1 27

and Savkin, 2000; Lefeber and Rooda, 2006].
Although the main body of the vast literature on

polling systems assumes a single server [Takagi, 1997,
2001; Vishnevskii and Semenova, 2006], nowadays the
“second wave” of interest to the multiple server case is
motivated by recent advances in multiple access tech-
nologies in passive optical networks [Antunes et al.,
2011] and emerging intellectual transportation systems
[Boon et al., 2014]. The multiplicity of servers brings
strong extra challenges, which make the analysis much
more involved and less tractable [Dai, 1995].
In [Dai, 1995], an unified approach to stability study

is laid down for a general class of stochastic multi-
server multi-class open queueing networks with a given
queueing discipline by showing that such a network
is positive Harris recurrent if the corresponding fluid
limit model eventually reaches zero and stays there re-
gardless of the initial system configuration. By us-
ing this result, it is shown that the usual traffic con-
dition ensures positive Harris recurrence of the net-
work under a number of specific standard disciplines.
Multiple-server stochastic polling models with individ-
ual time-invariant stochastic Markov routing of every
server over the buffers are examined in [Fricker and
Jaı̈bi, 1998; Down, 1998; Delcoigne and Fayolle, 1999;
Antunes et al., 2011]. In [Fricker and Jaı̈bi, 1998] nec-
essary and sufficient conditions for stability are estab-
lished for given service disciplines taken from a spe-
cific general class. Stability conditions for a some-
what more general case where the service protocol is
randomly chosen from a given finite set are offered
in [Down, 1998]. In [Delcoigne and Fayolle, 1999],
polling systems are analyzed in the thermodynamic
limit, i.e., as the numbers of the queues and servers
grow without limits, with assuming some symmetry
of the system. A stochastic model with two heteroge-
neous servers, two input streams of customers, and the
exhaustive policy is studied in [Foss and Kovalevskii,
1999]. In [van der Mei and Borst, 1997; Borst and
van der Mei, 1998], the notion of server limits is in-
troduced: when visiting queues in a cyclic order, the
server moves directly to the next queue if the maximal
allowed number of servers is already present in the cur-
rent queue. Formulas for the mean waiting time are ob-
tained for the exhaustive and gated service disciplines.
Stability conditions under server limits are established
in [Down, 1998; Antunes et al., 2011].
Thus the previous research on multiple-server case

was focused on stability of a closed-loop system un-
der Markov routing and mostly dealt with pre-specified
classes of static service disciplines. Meanwhile, recent
research interest has largely turned to design of dy-
namic (interactive, feedback) protocols [Aytug et al.,
2005; Ouelhadj and Petrovic, 2009; Terekhov et al.,

2014], which make decisions on an ongoing basis from
the current events in the system. For them, the servers
may visit the queues in an a priori unknown, not nec-
essarily regular order, with no guarantees that choices
of the next queue happen to be in a Markov fashion.
Whether the breakthrough to this wider class of proto-
cols may bring essential performance improvement?
We address this issue in static environments, i.e., as-

sume that the arrival rates to the queues, the server
maximum productivity, and the changeover periods are
time-invariant. A generic deterministic fluid polling
system is examined, with negative queue content be-
ing meaningless.1 The primary focus of our analysis
is not so much on closed-loop stability as on stabiliz-
ability of the system, i.e., the possibility to design a
scheduling and service protocol that makes the system
stable. The main result of the paper gives necessary and
sufficient conditions for stabilizability. In its necessity
part, it in fact addresses the widest class of schedul-
ing and service protocols and does not limit anyhow
their features, except for inevitable requirements, such
as logical consistency in closed-loop. Meanwhile, the
sufficiency part shows that any system stabilizable in
this widest class can be stabilized in a fully decentral-
ized fashion via a simple static protocol that is based
on independent round robin scheduling of the servers.
The body of the paper is organized as follows. The

problem to be studied is introduced in Sect. 2. Section 3
introduces the notion of stabilizability, whereas Sect. 4
presents the main result, which proof is given in Sect. 5.
Section 6 summarizes the findings of the paper.

2 Multi-Server Polling System
The system is assembled of n ≥ 2 infinite size buffers

and s servers. The content xb of any buffer b is called
work and interpreted as fluid; negative buffer levels
xb < 0 are meaningless. Work arrives at every buffer
b at a constant rate λb > 0. Every server σ is able
to work with at most one buffer at a time but is re-
sponsible for service of several buffers, which consti-
tute its operational zone ∅ ̸= Zσ ⊂ [1 : n]. So any
server has to change buffers from time to time; switch
from buffer b to b′ involves a switch-over activity and
consumes a nonzero time δb→b′|σ > 0. When serving
buffer b ∈ Zσ , server σ withdraws its content at a rate
uσ ∈ [0, µb,σ], where uσ is a control variable and the
maximal productivity µb,σ > 0 is given. No buffer b is
refused service: Σb := {σ : b ∈ Zσ} ̸= ∅. The opera-
tional zones of various servers may overlap. We exam-
ine the case where several servers σ1, . . . , σk ∈ Σ(b)
may cooperate and simultaneously serve a common

1When modeling a manufacturing process, with inflows to the
queues being interpreted as flows of demands, this means that our
study is confined to make-to-order strategies.

28 CYBERNETICS AND PHYSICS, VOL. 7, NO. 1

buffer b; then the total rate of withdrawing its content
xb may vary from 0 to

∑k
i=1 µb,σi .

A process is any feasible scenario of system’s evolu-
tion over time, including a feasible initial state (X,Q).
Here X = {xb}nb=1 is a continuous state and Q =
{qσ}sσ=1 is a discrete state, where qσ = ~ means
that server σ is switching among buffers; otherwise, qσ
is the serial number of the attended buffer. The state
(X,Q) is feasible if

xb ≥ 0 ∀b, qσ ∈ Ẑσ := Zσ ∪ {~} ∀σ. (1)

A formal definition of the process is as follows.

Definition 2.1. A process is any pair of functions p =
[X(·), Q(·)] that are defined on [0,∞) and meet the
following requirements:

i) The function Q(t) = {qσ(t)} is piece-wise con-
stant and [X(t), Q(t)] is a feasible state for all t;

ii) If server σ leaves buffer b1 := qσ(t∗−0) at a time
t∗, the “switch” value qσ(t∗ + 0) = ~ is first as-
sumed by qσ(·) and then altered by some “buffer”
value qσ(t⋆ + 0) = b2 at t⋆ = t∗ + δb1→b2|σ;

iii) The function X(·) is absolutely continuous and

ẋb(t) = λb −
∑

σ:b=qσ(t)

uσ(t) (2)

for any buffer b ∈ [1 : n], where the sum over the
empty set is defined to be zero and

0 ≤ uσ(t) ≤ µqσ(t),σ whenever qσ(t) ̸= ~. (3)

Typically, polling systems are controlled according to
a certain scheduling and service protocol. This is an
algorithm that for any time and every server σ, gives 1)
the current rate of service,2 2) the time when the server
should (depending on the type of the current activity)
either terminate service of the current buffer or com-
plete the switch between the buffers, and 3) the buffer
b ∈ Zσ to be served next. We consider only deter-
ministic protocols that are arbitrary in other respects,
except for the natural requirement that the current de-
cision should not be based on future events. Mathe-
matically, one more inevitable minimal requirement is
that the system closed by the control algorithm at hands
should be solvable and give rise to a specific process
from any feasible initial state (X,Q).

2This rate is 0 whenever the server undergoes a switch-over.

3 Stabilizability of the Multi-Server Polling Sys-
tem

The concept of stabilizability addresses possibility to
avoid a catastrophic explosion of the total amount of
work in the system

w =

n∑
b=1

xb. (4)

This possibility means that the productivity of the
servers conforms to the challenge from the inflows:
there is a way to process the inflows with finite queues.

Definition 3.1. i) A process p is said to be stable if
sup
t≥0

w(t) < ∞.

ii) The system is said to be slightly stabilizable if
there exists a stable process in it.

iii) The system is said to be stabilizable if some
scheduling and service protocol gives rise to a sta-
ble process from any feasible initial state.

iv) The system is said to be strongly stabilizable if
there exists a scheduling and service protocol and
c, d ∈ [0,∞) such that for any feasible initial state
and the associated process,

w(t) ≤ cw(0) + d ∀t ≥ 0.

It is clear that ii) ⇐ iii) ⇐ iv).
If there exists a buffer b for which

λb >
∑
σ∈Σb

µb,σ, (5)

then w(t) ≥ xb(t) → ∞ as t → ∞ and so the system is
not slightly stabilizable. Now we address the marginal
case where = is put in place of > in (5).

Lemma 3.1. Let λb =
∑

σ∈Σb
µb,σ for buffer b. Then

for any stable process, there exists time after which ev-
ery server σ ∈ Σb is constantly in service of buffer b.

Proof. Suppose to the contrary that for some stable
process, some server σ ∈ Σb is not in b at arbitrarily
large times. Since switching of σ to b consumes no less
than δ→b|σ := minb′ δb′→b|σ > 0 time units, there ex-
ists an infinite time sequence t0 = 0 < t1 < t2 < . . .
such that ti−1 < ti− δ→b|σ ∀i ≥ 1 and σ is not in b for

CYBERNETICS AND PHYSICS, VOL. 7, NO. 1 29

all t ∈ [ti − δ→b|σ, ti], i ≥ 1. Due to (1)—(3), we have

ẋb(t) ≥ λb −
∑

σ′:b=qσ′ (t)

µb,σ′ ≥

λb −

∑
σ′∈Σb

µb,σ′ = 0 ∀t,

λb −
∑

σ′∈Σb:σ′ ̸=σ

µb,σ′ = µb,σ ∀t ∈ [ti − δ→b|σ, ti],

where i ≥ 1 is arbitrary. It follows that xb(t) → ∞ ⇒
w(t) → ∞ as t → ∞, in violation of i) in Defini-
tion 3.1. This contradiction completes the proof.

Lemma 3.1 provides an evidence that in the marginal
case, stability can be achieved only if all servers σ ∈
Σb are affixed to the considered buffer b. Since the
effect from their acceleration in productivity up to the
maximum µb,σ is beneficial for stability, study of sys-
tem’s stability can be carried out under the condition
that the servers σ ∈ Σb are constantly in b and work at
the respective maximal rates, thus keeping the level of
buffer b constant. Hence stability depends entirely on
capacity of the other servers σ ̸∈ Σb to cope with the
outer inflows to buffers b′ ̸= b. This permits one to ex-
clude buffer b and servers σ ∈ Σb from consideration
and focus on the thus obtained system. If in this sim-
pler system, some buffer is refused service (does not
belong to the operational zone of any of the remaining
servers), instability surely holds, and so the analysis is
completed. Otherwise, the simpler system meets the
basic assumptions stated at the beginning of Section 2.
By consecutively applying this procedure, while pos-

sible, and invoking the remark on instability due to (5),
stability analysis can be ultimately boiled down to that
for a system with the following property:

λb <
∑
σ∈Σb

µb,σ ∀b. (6)

So taking (6) as an assumption in fact does not cause
any loss of generality in our stability analysis.

4 Criterion for Stabilizability of the Polling Sys-
tem

To state the main result, we introduce the following
convex programming problem:

maximize
n∑

b=1

λbzb

subject to
∑
σ

max
b

(zbµb,σ) ≤ 1, zb ≥ 0 ∀b, (7)

where µb,σ := 0 ∀b ̸∈ Zσ .
Lemma 5.1 will throw an extra light on this problem.

Theorem 4.1. Suppose that (6) is true. Then the fol-
lowing statements hold:

i) If the multi-server polling system is slightly stabi-
lizable, then the maximum value of the cost func-
tional in the problem (7) is less than 1;

ii) Conversely, if the maximum value of the cost func-
tional in the problem (7) is less than 1, the system
is strongly stabilizable.

Thus slight and strong stabilizability occur only si-
multaneously. Theorem 4.1 will be proved in Section 5,
along with following fact.

Remark 4.1. Whenever the system is strongly stabi-
lizable, its strong stability can be basically ensured via
round robin scheduling of the servers: every of them
repeatedly runs through its own fixed cycle of visits
to the buffers from its operational zone, with serving
every buffer during a pre-specified time slot. Every
server basically acts independently of the others. How-
ever, the servers are periodically synchronized. To this
end, progression of a given server through its cycle of
services may be delayed at certain recurrent temporal
“check points”, which are common for all servers. As
a result, all servers “depart” from these “check points”
simultaneously and their distribution over the buffers at
the departure times is periodically repeated.

The problem (7) can be rewritten as that of linear pro-
gramming. Indeed, let us introduce extra variables γσ
with the meaning of upper bounds on maxb(zbµb,σ) =
maxb∈Zσ (zbµb,σ), where the last equation holds since
µb,σ = 0 ∀b ̸∈ Zσ. Then (7) can be shaped into

maximize
N∑
b=1

λbzb subject to∑
σ

γσ ≤ 1, zb ≥ 0 ∀b, zb ≤
γσ
µb,σ

∀b ∈ Zσ, σ. (8)

In turns, focusing on the maximum value of zb yields
the following equivalent dual reformulation of (7):

maximize
∑
b

λb min
σ∈Σb

γσ
µb,σ

subject to

γσ ≥ 0 ∀σ,
∑
σ

γσ ≤ 1. (9)

The following examples demonstrate that the criterion
from Theorem 4.1 can be transformed in a closed from
in some cases. The first two of these examples aim

30 CYBERNETICS AND PHYSICS, VOL. 7, NO. 1

at displaying the conformity of Theorem 4.1 with the
well-known traffic conditions for single-server polling
systems; see, e.g., [Hopp and Spearman, 2001]. To
make the things interesting, the number of the buffers
n ≥ 2 in all examples.
Example 1. Let the number of the servers s = 1,

which permits us to drop the index σ = 1 in µb,σ . The
assumption (6) means that λb < µb ∀b. The maximum
value of the cost functional (9) equals

∑n
b=1

λb

µb
and so

the criterion from Theorem 4.1 comes to

n∑
b=1

λb

µb
< 1.

Example 2. The number of the servers s ≥ 2, their
zones of service are disjoint Zσ′ ∩Zσ′′ = ∅ ∀σ′ ̸= σ′′.
Since the server σ ∈ Σ(b) is determined by b, the index
σ in µb,σ is dropped. The assumption (6) still means
that λb < µb ∀b. The problem (9) takes the form

maximize
∑
σ

γσ
∑
b∈Zσ

λb

µb
subject to

γσ ≥ 0 ∀σ,
∑
σ

γσ ≤ 1.

The respective maximum equals maxσ
∑

b∈Zσ

λb

µb
.

Thus the criterion from Theorem 4.1 means that∑
b∈Zσ

λb/µb < 1 for all servers σ.
Example 3. Two servers s = 2, more than one buffer

in the zone of responsibility of each of them, these
zones contain a single common buffer b0 ∈ Z1 ∩ Z2.
The problem (9) takes the form:

maximize γ1
∑

b∈Σ1:b̸=b0

λb

µb,1

+ λb0 min

{
γ1

µb0,1
;

γ2
µb0,2

}
+ γ2

∑
b∈Σ2:b ̸=b0

λb

µb,2

subject to γ1, γ2 ≥ 0, γ1 + γ2 ≤ 1.

Here γ1 + γ2 ≤ 1 can be evidently replaced by
γ1 + γ2 = 1 ⇔ γ2 = 1 − γ1. Being treated as a func-
tion of γ1 ∈ [0, 1], the continuous piecewise linear cost
functional attains its maximum either at an end-point
γ1 = 0 or γ1 = 1 of the interval [0, 1], or at the point
of the fracture, where γ1/µb0,1 = γ2/µb0,2 and so
γ1 = µb0,1/(µb0,1+µb0,2), γ2 = µb0,2/(µb0,1+µb0,2).

Thus the criterion from Theorem 4.1 takes the form

∑
b∈Σ1:b ̸=b0

λb

µb,1
< 1,

∑
b∈Σ2:b̸=b0

λb

µb,2
< 1,

µb0,1

µb0,1 + µb0,2

∑
b∈Σ1:b ̸=b0

λb

µb,1

+
λb0

µb0,1 + µb0,2

+
µb0,2

µb0,1 + µb0,2

∑
b∈Σ2:b̸=b0

λb

µb,2
< 1.

Here the third inequality implies some of the first two
inequalities.

5 Proof of Theorem 4.1
We first show that the criterion from Theorem 4.1 can

be reformulated as feasibility of the following set of
linear relations in unknowns τb,σ:

τb,σ ≥ 0 ∀b, σ,∑
b

τb,σ < 1 ∀σ,
∑
σ

µb,στb,σ = λb ∀b. (10)

Remark 5.1. Feasibility of (10) is equivalent to fea-
sibility of the relaxed system that results from putting∑

σ µb,στb,σ ≥ λb in place of
∑

σ µb,στb,σ = λb:

τb,σ ≥ 0 ∀b, σ,∑
b

τb,σ < 1 ∀σ,
∑
σ

µb,στb,σ ≥ λb ∀b. (11)

Indeed, on the one hand, (10) ⇒ (11). On the other
hand, any solution τb,σ of (11) is transformed into a
solution of (10) by putting τ ′b,σ := abτb,σ , where ab :=

λb (
∑

σ µb,στb,σ)
−1 ∈ [0, 1] and so τ ′b,σ ≤ τb,σ.

Lemma 5.1. Feasibility of (10) holds if and only if the
maximum of the cost functional in (7) is less than 1.

Proof. By Remark 5.1, attention can be switched to
(11). By Motzkin’s transposition theorem [Schrijver,
1999, Cor. 7.1k], the infeasibility of (11) is equivalent
to existence of zb ≥ 0, yσ ≥ 0, and xb,σ ≥ 0 such that

yσ = xb,σ + µb,σzb,
∑
σ

yσ −
∑
b

λbzb ≤ 0,

and either
∑
σ

yσ −
∑
b

λbzb < 0 or
∑
σ

yσ > 0.

CYBERNETICS AND PHYSICS, VOL. 7, NO. 1 31

Here the unknowns xb,σ can be evidently dropped by
transforming the first equation into the inequality yσ ≥
µb,σzb. So (11) is infeasible if and only if the following
system has a solution yσ ≥ 0, zb ≥ 0:

yσ ≥ µb,σzb∀b, σ,
∑
σ

yσ ≤
∑
b

λbzb,

and either
∑
σ

yσ <
∑
b

λbzb or
∑
σ

yσ > 0.

Since the first inequality implies that yσ ≥
maxb(µb,σzb), it is easy to see that the last system is
feasible if and only if there exists a solution zb ≥ 0 to

∑
σ

max
b

(µb,σzb) ≤
∑
b

λbzb,

and either
∑
σ

max
b

(µb,σzb) <
∑
b

λbzb

or q :=
∑
σ

max
b

(µb,σzb) > 0. (12)

Since q = 0 ⇒ zb = 0 ∀b, in violation of the
second row in (12), we see that q > 0. By putting
zb := q−1zb ∀b, we get another solution of (12) and
make q = 1. These zb’s are feasible in (7) and for
them, the value of the cost functional is no less than 1.
Thus its maximal value is also no less than 1.
Conversely, suppose that this value is no less than 1.

Let us consider a solution z1, . . . , zn for (7). Since∑
b λbzb ≥ 1 ⇒ ∃b : zb > 0 and so q > 0 in

(12). Thus (10) is infeasible if and only if the maxi-
mum value of the cost functional in (7) is no less than
1, which completes the proof. �

5.1 Proof of i) in Theorem 4.1
Let the system be slightly stabilizable. We consider a

stable process p, which exists by ii) in Definition 3.1,
and the events that occur for p. For any time interval
I ⊂ [0,∞), we introduce the following notations:

• tb,σ(I), the total time spent by server σ in buffer b
within the time interval I;

• ∆σ(I), the total time spent by server σ on switching
among buffers within the time interval I;

• |I|, the length of the interval I .

An infinite sequence of time intervals I = {Ij}∞j=1 is
said to be proper if the following statements hold:

p1) the intervals Ij are pairwise disjoint;
p2) Ij ⊂ [0,∞) ∀j and |Ij | → ∞ as j → ∞;

p3) there exist the following limits

τb,σ(I) := lim
j→∞

tb,σ(Ij)

|Ij |
∀b, σ,

δ∞σ (I) := lim
j→∞

∆σ(Ij)

|Ij |
∀σ. (13)

Since the ratios in (13) do not exceed 1, any sequence
{Ij}∞j=1 satisfying p1) and p2) has a proper subse-
quence. So proper sequences do exist. Any subse-
quence of a proper sequence is clearly proper and has
the same characteristics (13) as the parent sequence. A
proper sequence I′ = {I ′k}∞k=1 is called an abatement
of a proper sequence I = {Ij}∞j=1 if for any k there
exists j = j(k) such that I ′k ⊂ Ij(k).

Definition 5.1. Server σ is said to be fixed for a proper
sequence I if there exists b = b(σ) ∈ Zσ such that
server σ is in buffer b at any time t ∈ Ij from any
interval in this sequence.

Lemma 5.2. Let δ∞σ (I) = 0 for some server σ and a
proper sequence I = {Ij}∞j=1. Then there exists an
abatement of I for which this server is fixed.

Proof. Thanks to i) in Definition 2.1, the set {t ∈
Ij : serverσ is in buffer b} is either empty or
is assembled of finitely many disjoint subintervals
I
b|σ
j (1), . . . , I

b|σ
j (mj) interspersed by intervals where

σ is not in b. Let Lj(b) be zero in the former case
and be the maximal length of these subintervals in the
latter case. We are going to show that the sequence
{Lj(b)}∞j=1 is unbounded for some b ∈ Zσ .
Suppose to the contrary that there exists L ∈ (0,∞)

such that Lj(b) ≤ L ∀j, b ∈ Zσ , and put

δ−σ := min
b′ ̸=b′′

δb′→b′′|σ > 0, δ+σ := max
b′ ̸=b′′

δb′→b′′|σ > 0.

Now for given j, we gather all intervals of the form
I
b|σ
j (p), p = 1, . . . ,mj , b ∈ Zσ and put them in the

ascending order. By ii) in Definition 2.1, any two ad-
joint terms in the resultant sequence are separated by
an interval of switch-over activity; its duration is thus
no less than δ−σ and no more than δ+σ . Such an interval
may also separate the left end of Ij and the first interval
in this sequence, as well as the the right end of Ij and
the last interval. It follows that |Ij | ≤ δ+σ +Nj(L+δ+σ),
where Nj is the number of elements in this sequence.
Hence Nj ≥ (|Ij | − δ+σ)/(L + δ+σ) and ∆σ(Ij) ≥

32 CYBERNETICS AND PHYSICS, VOL. 7, NO. 1

δ−σ (Nj − 1). By invoking (13) and p2), we see that

δ∞σ (I) = lim
j→∞

∆σ(Ij)

|Ij |

≥ lim
j→∞

δ−σ
|Ij |

[
|Ij | − δ+σ
L+ δ+σ

− 1

]
=

δ−σ
(L+ δ+σ)

> 0,

in violation of the assumption δ∞σ (I) = 0 of the lemma.
The contradiction obtained proves that the sequence
{Lj(b)} is unbounded for some b ∈ Zσ . Then there ex-
ists a subsequence such that Lj(k)(b) → ∞ as j → ∞.
Meanwhile, Lj(k)(b) = |Ib|σj(k)[p(k)]| for some p(k)

by the definition of Lj(b). The sequence {I ′k :=

I
b|σ
j(k)[p(k)]}

∞
k=1 clearly meets p1), p2), whereas p3)

can be ensured by passing to a subsequence, as was
remarked just after (13). This subsequence is clearly
proper. By construction, it is an abatement of the initial
sequence I and server σ is fixed for it. �

If server σ is fixed for a proper sequence I , it is
evidently fixed for any its abatement as well. So
Lemma 5.2 can be applied recurrently until arrival at
the situation described in the following.

Corollary 5.1. For any proper sequence I = {Ij}∞j=1,
there exists an abatement of I for which every server σ
is either fixed or has δ∞σ (I) > 0.

Completion of the proof of i) in Theorem 4.1. By
Corollary 5.1, there exists a proper sequence I for
which every server σ is either fixed or has δ∞σ (I) > 0.
Let Σfix stand for the set of fixed servers and let b(σ) be
taken from Definition 5.1 for σ ∈ Σfix. We are going to
show that τb,σ := τb,σ(I) obey the following relations:

τb,σ ≥ 0 ∀b, σ,
τb(σ),σ ≤ 1, τb,σ = 0 ∀b ̸= b(σ), σ ∈ Σfix,∑

b

τb,σ < 1 ∀σ ̸∈ Σfix,
∑
σ

µb,στb,σ = λb ∀b. (14)

Here the relations from the first and second row are ev-
ident. For every σ ̸∈ Σfix, any time interval Ij from I

is fully composed of times when σ either serves some
buffer or switches among buffers. So

∑
b

tb,σ(Ij) + ∆σ(Ij) = |Ij |.

Dividing this equation by |Ij |, letting j → ∞, and in-
voking (13) show that

∑
b

τb,σ(I) + δ∞σ (I) = 1,

where δ∞σ (I) > 0. Thus the first inequality in the third
row from (14) is true.
By i) of Definition 3.1, there exists w∞ ∈ [0,∞) such

that w(t) ≤ w∞ ∀t ≥ 0, where w(t) ≥ xb(t) ∀b by
(4). For any buffer b, the total amount of work that
is brought by the outer inflow to this buffer during the
time interval Ij = [t−j , t

+
j] equals λb|Ij |. Meanwhile

the amount of work withdrawn by all servers during
this interval does not exceed

∑
σ µb,σtb,σ(Ij). So

2w∞ ≥ xb(t
+
j)− xb(t

−
j) ≥ λb|Ij | −

∑
σ

µb,σtb,σ(Ij)

⇒
∑
σ

µb,σ
tb,σ(Ij)

|Ij |
≥ λb − 2

w∞

|Ij |
j→∞
===⇒

∑
σ

µb,στb,σ ≥ λb ∀b.

To complete the proof of (14), it suffices to cor-
rect τb,σ by putting τ ′b,σ := abτb,σ, where ab :=

λb (
∑

σ µb,στb,σ)
−1 ∈ [0, 1] and so τ ′b,σ ≤ τb,σ.

By (14), τb,σ ≤ 1 for all b and σ. The equation from
the third row in (14) and (6) imply that τb,σ < 1 for
some σ ∈ Σb irrespective of buffer b. So if τb(σ),σ = 1
for some server σ ∈ Σfix, there is a possibility to
slightly reduce τb(σ),σ = 1, with slightly increasing
τb,σ′ < 1 for b = b(σ) and some other σ′ ∈ Σb, so that
(14) remains true, along with all initially strict inequal-
ities in the second row, whereas τb(σ),σ = 1 becomes
less than 1. By consecutively repeating this procedure,
we ultimately see that (14) is feasible with < put in
place of ≤ in the second row.
In turns, this means that (10) is feasible. Lemma 5.1

completes the proof.

5.2 Proof of Remark 4.1 and Part ii) in Theo-
rem 4.1

By Lemma 5.1, there exists a solution {τb,σ} for (10).
We put τb,σ := 0 whenever µb,σ = 0, which does not
violate (10). Also, we order the operational zone Zσ =
{bσ1 ̸= · · · ≠ bσk(σ)} of every server σ and put

∆σ :=

k(σ)−1∑
i=1

δbσi →bσi+1|σ + δbσ
k(σ)

→bσ1 |σ. (15)

This is the total time that server σ spends on switch-
ing among buffers when running through one cycle de-
picted in Fig. 1. Since

∑
b∈Zσ

τb,σ < 1 by (10), there
exists a large enough T such that

T
∑
b∈Zσ

τb,σ +∆σ ≤ T ∀σ, T > max
b′ ̸=b′′

δb′→b′′ . (16)

CYBERNETICS AND PHYSICS, VOL. 7, NO. 1 33

Figure 1. The cycle run by server σ.

The proposed protocol consists of the following rules:

r1) Within the time interval [0, T], every server σ is
switched to buffer bσ1 , where it idles ubσ1 ,σ

≡ 0
until T if the switch is completed before T ;

r2) Within any time interval of the form [kT, (k +
1)T], k ≥ 1, every server σ with k(σ) > 1 per-
forms the following operations:

A) It makes a tour over its operational zone in the
cyclic order bσ1 7→ · · · 7→ bσk(σ) 7→ bσ1 illus-
trated in Fig. 1, starting and finishing in the
same buffer bσ1 ;

B) When visiting buffer bσi , it serves this buffer at
the maximal rate µbσi ,σ

during τbσi ,σ · T units
of time;

C) After this, it is switched to bσi+1 if i < k(σ),
and to bσ1 if i = k(σ);

D) In the latter case, the server idles in buffer bσ1
until (k+ 1)T if the switch to bσ1 is completed
before (k + 1)T .

r3) Within any time interval of the form [kT, (k +
1)T], k ≥ 1, every server σ with k(σ) = 1 first
serves the buffer bσ1 at the maximal rate µbσ1 ,σ

dur-
ing τbσ1 ,σ · T units of time and then idles in buffer
bσ1 until (k + 1)T .

To prove that r1)—r3) are always executable, it suf-
fices to show that

a) on [0, T], every server has enough time to complete
switching requested in r1),

b) the rules r2B) and r3) are executable on the time in-
terval [kT, (k+1)T] for any k ≥ 1, i.e., the content
of buffer b is large enough so that any concerned
server can work at the maximal rate during the re-
quested time slot,

c) on any interval [kT, (k + 1)T], k ≥ 1, every server
σ with k(σ) > 1 completes the tour from Fig. 1
before (k + 1)T .

All these are true indeed.
a) This is true due to the second inequality from (16).
b) It suffices to prove that for all k,

xb[kT] ≥
∑

σ∈Σ(b)

x↓(b, σ), (17)

where x↓(b, σ) := µb,σ · τb,σ · T is the amount of work
to be withdrawn by server σ from buffer b ∈ Zσ when
working at the maximal rate µb,σ during τb,σT units of
time, as is required by the protocol. We shall argue via
induction on k. Thanks to the last equation from (10),

∑
σ∈Σ(b)

x↓(b, σ) = T
∑

σ∈Σ(b)

µb,στb,σ = λbT.

So for k = 1, (17) is true thanks to r1). Suppose that
(17) holds for some k ≥ 1. During the time interval
[kT, (k+1T)] the servers withdraw

∑
σ∈Σ(b) x↓(b, σ)

units of work from buffer b due to r2), r3) and the in-
duction hypothesis, whereas λbT units are brought to b
by the outer inflow. Thanks to (17), this yields that

xb[(k + 1)T] = xb[kT] (18)

and so (17) holds with k := k + 1.
c) To fully serve all buffers within one cycle from

Fig. 1, server σ needs T
∑

b∈Zσ
τb,σ time units,

whereas ∆σ time units more are needed for switching
among the buffers. The proof is completed by the first
inequality from (16).
To prove strong stability, we define k(t) as the integer

floor of t/T and note that τ(t) := t−Tk(t) ∈ [0, T) ⇒
xb[t] ≤ xb[Tk(t)]+λbT . Meanwhile, xb(t) = xb(0)+
λbt ≤ xb(0) + λbT ∀t ∈ [0, T] thanks to r1). So (18)
implies that that xb(kT) ≤ xb(0) + λbT ∀k ≥ 0 and

w(t)
(4)
=

n∑
b=1

xb(t) ≤
n∑

b=1

{
xb[Tk(t)] + λbT

}
.

(18)
=

n∑
b=1

[
xb(0) + 2λbT

] (4)
= w(0) + d,

where d := 2T
∑n

b=1 λb. The proof is completed by
iv) in Definition 3.1. �

6 Conclusion
A criterion for stabilizability of multiple-server sta-

tionary fluid model of a polling system was obtained.
In general, this criterion refers to solution of a lin-
ear/convex programming problem; it was shown that
it can be transformed in a closed form in some spe-
cial cases. It was also shown that any stabilizable fluid
model can be stabilized in a fully decentralized fash-
ion via a simple static protocol that is based on inde-
pendent round robin scheduling of the servers and for
every server, employs only time measurement.

34 CYBERNETICS AND PHYSICS, VOL. 7, NO. 1

Acknowledgements
This research was supported by the Russian Science

Foundation under the grant 14-21-00041p and was per-
formed in Saint Petersburg State University.

References
Antunes, N., Fricker, C. and Roberts, J. [2011]. Stabil-

ity of multi-server polling system with server limits,
Queueing systems 68: 229–235.

Aytug, H., Lawley, M., McKay, K. and Mohan, S.
[2005]. Executing production schedules in the face
of uncertainties: A review and some future direc-
tions, Europ. J. of Oper. Research 161(1): 86–110.

Boon, M., van der Mei, R. and Winands, E.
[2014]. Applications of polling systems, arXiv.
1408.0136v1.

Borst, S. and van der Mei, R. [1998]. Waiting time
approximations for multiple-server polling systems,
Performance Evaluation 31: 163–182.

Bramson, M. [2008]. Stability of queueing net-
works, Vol. 1950 of Lecture Notes in Mathematics,
Springer-Verlag.

Chen, H. [1995]. Fluid approximations and stability
of multiclass queueing networks: work-conserving
disciplines, Ann. Appl. Probab. 5: 637–655.

Chen, H. and Mandelbaum, A. [1994]. Hierarchical
modeling of stochastic networks, Part I: Fluid mod-
els, in D. Yao (ed.), Stochastic Modeling and Anal-
ysis of Manufacturing Systems, Springer-Verlag,
Berlin.

Dai, J. [1995]. On positive Harris recurrence of multi-
class queueing networks: a unified approach via fluid
limit models, Ann. Appl. Probab. 5: 49–77.

Delcoigne, F. and Fayolle, G. [1999]. Thermody-
namical limit and propagation of chaos in polling
systems, Markov Processes and Related Fields
5(1): 89–124.

Down, D. [1998]. On the stability of polling models
with multiple server, Journal of Applied Probability
35(4): 925–935.

Foss, S. and Kovalevskii, A. [1999]. A stability crite-
rion via fluid limits and its application to a polling
system, Queueing systems 32(1–3): 131–168.

Fricker, C. and Jaı̈bi, M. [1998]. Stability of multi-
server polling models, Technical Report RR-3347,
INRIA.

Hopp, W. and Spearman, M. [2001]. Factory physics,
second edn, McGraw-Hill, New York.

Kleinrock, L. [1976]. Queueing Systems, Vol. 2, John
Wiley and Sons, New York.

Kumar, P. R. and Seidman, T. I. [1990]. Dynamic insta-
bilities and stabilization methods in distributed real-
time scheduling of manufacturing systems, IEEE
Transactions on Automatic Control 35(3): 289–298.

Lefeber, E. and Rooda, J. [2006]. Controller design
for a reentrant network of servers with setup times:
the Kumar-Seidman case, 45th IEEE Conference on
Decision and Control, San Diego, CA.

Levy, H. and Sidi, M. [1990]. Polling systems: appli-
cations, modeling, and optimization, IEEE Transac-
tions on Communications 38(10): 1750–1760.

Matveev, A. S. and Savkin, A. V. [2000]. Qualita-
tive Theory of Hybrid Dynamical Systems, M. A.,
Birkhauser, Boston.

Meyn, S. and Tweedie, R. [1993]. Markov Chains and
Stochastic Stability, Springer-Verlag, London.

Ouelhadj, D. and Petrovic, S. [2009]. A survey of dy-
namic scheduling in manufacturing systems, Journal
of Scheduling 12(4): 417–431.

Rybko, A. and Stolyar, A. [1992]. Ergodicity of
stochastic processes describing the operation of open
queueing networks, Problems of Information Trans-
mission 28: 199–220.

Schrijver, A. [1999]. Theory of linear and integer
programming, Wiley-Interscience series in discrete
mathematics and optimization, Wiley & Sons, NY.

Takagi, H. [1997]. Queueing analysis of polling mod-
els: progress in 1990-1994, in J. Dshalalow (ed.),
Frontiers in Queueing: Models, Methods and Prob-
lems, CRC Press, Boca Raton, pp. 119–146.

Takagi, H. [2001]. Bibliography on polling
models, Technical report, Institute of
Socio-Economic Planning, University of
Tsukuba, Tsukuba-shi, Japan. Available at
http://www.sk.tsukuba.ac.jp/takagi/
polling.html.

Terekhov, D., Down, D. and Beck, J. [2014].
Queueing-theoretic approaches for dynamic
scheduling: A survey, Surveys in Operations
Research and Management Science 19(2): 105–129.

van der Mei, R. and Borst, S. [1997]. Analy-
sis of multiple-server polling systems by means
of the powerseries algorithm, Stochastic Models
13(2): 339–369.

Vishnevskii, V. and Semenova, O. [2006]. Mathemat-
ical methods to study the polling systems, Automa-
tion and Remote Control 67(2): 173–220.

