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Universitat Politècnica de Catalunya
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Abstract

It is well known that a sliding mode controller can re-

ject external perturbations when it is implemented in

the continuous-time domain. However, when a dis-

crete implementation of the continuous time sliding

controller is realized, the controller performance can

be degraded. The aim of this work is to evaluate a slid-

ing mode controller performance when it is discretely

implemented. This evaluation is carried out using the

polyhedral approximation method.
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1 Introduction

The sliding mode control approach is one of the most

efficient tools to design robust controllers to dynamical

systems [Utkin, 1977]. This control method design has

been reported in extent literature [Edwards and Spur-

geon, 1998] since it was first proposed in the 1950’s

in the ex Soviet Union [Hung, Gao, and Hung, 1993].

The idea of this technique is to realize a discontinuous

feedback control law to make the closed-loop system

insensitive to parametric uncertainty and external per-

turbations [Edwards and Spurgeon, 1998; Utkin, 1977;

Hung, Gao, and Hung, 1993]. Nowadays, this control

design has been employed to a wide variety of engi-

neering systems [Perruquetti and Barbot, 2002].

Somehow the control realization is usually imple-

mented on digital computers [Ogata, 1995; Gao, Wang,

and Homaifa, 1995; Tang and Misawa, 2000]. But,

when the sliding mode controller is digitally pro-

grammed, the insensitivity property is no longer hold

due to the finite time sampling process of the digital

devices [Tang and Misawa, 2000]. So, sliding con-

trol performance in its discrete-time version requires

to be studied. It should be noted that discrete-time slid-

ing mode control cannot be obtained from its continu-

ous time model by means of simple equivalence [Gao,

Wang, and Homaifa, 1995], and in some cases, the

discrete-time model obtained introduces some kind of

bounded perturbation.

On the other hand, to compute the control law, and to

analyze stability of the closed-loop system, it is neces-

sary to know the system vector state (or to estimate it

from the output and input information of the plant, if

possible). That is why the problem of state vector esti-

mation for systems with unknown but bounded distur-

bances is important in the context of the control theory

field.

One of well known techniques of dynamical system

state estimation is the Kalman filter in its stochastic ap-

proach [Alamo, Bravo, and Camacho, 2005; Matasov,

1998]. Sometimes, the prior statistical information

about perturbations cannot be obtained, but it is known

that at a sample time they are bounded with some con-

vex sets [Schweppe, 1968; Alamo, Bravo, and Cama-

cho, 2005; Chernousko, 2002; Kurzhanski and Varaiya,

2005; Shiryaev and Podivilova, 2014; Podivilova,

2012]. According to this set-membership approach the

estimation procedure consists of the construction of

feasible sets, which are guaranteed to contain all pos-

sible values of dynamical system state vector at sam-

ple times. But exact calculation of feasible sets is not

always computationally possible, and to reduce com-
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Figure 1. Diagram of a pendulum.

plexity of the algorithm, the approximation of feasible

sets with some canonical geometric sets is applied (al-

though it causes loss of accuracy) [Alamo, Bravo, and

Camacho, 2005; Chernousko, 2002; Kurzhanski and

Varaiya, 2005; Polyak et al., 2004].

On the contrary, the polyhedral approximation algo-

rithm shows to have some advantages of the existent

state vector estimation tools. This method is described

here. Then, performance of a sliding mode controller

in discrete-time domain applied to the pendulum sys-

tem is analyzed. On the other hand, other techniques

to study robustness of discrete-time controllers can be

found, for instance, in [Shiriaev et al., 2001; Fradkov

and Furuta, 1996]. However, from the mathematical

point of view, the polyhedral approximation method

offers a numerical option to study the closed-loop sys-

tems robustness in discrete-time domain in terms of the

sampling rate.

The rest of the paper is structured as follows. Section

2 describes the continuous-time sliding mode control

applied to the well known pendulum system that is also

an academic example to introduce control of mechani-

cal devices [Edwards and Spurgeon, 1998]. In Section

3 the discrete model of the sliding mode control is an-

alyzed using the polyhedral method. Section 4 states

this polyhedral algorithm tool. Section 5 shows the ob-

tained numerical results. Finally, Section 6 gives the

conclusions.

2 Continuous-time Model

Consider the mechanical system of a pendulum (Fig-

ure 1). Its normalized equation is [Edwards and Spur-

geon, 1998]:

θ̈(t) = −a1 sin(θ(t)) + u(t), (1)

where a1 is a positive scalar that depends on the sys-

tem parameters (M , g, L: the mass, the gravity accel-

eration, and the pendulum length, respectively), and on

a scaling factor [Edwards and Spurgeon, 1998]; θ(t) is

the angular displacement (Rad); u(t) is the torque con-

trol input (N·m) (see Figure 1). The following sliding

mode controller is used[Edwards and Spurgeon, 1998]:

Figure 2. Simulation results: state trajectories (upper plot) and

phase portrait (bottom plot).

u(t) = −sign(s(t)), (2)

and

s(t) = mθ(t) + θ̇(t), (3)

where m is a positive controller parameter, and sign(·)
is the signum function. It can be ensured that, in finite

time, the phase portrait intercepts the sliding surface

Ls = (θ, θ̇ : s(θ, θ̇) = 0) and is forced to remain into

there according to the following dynamic:

θ̇(t) = −mθ(t). (4)

So, the state-space trajectory of the closed-loop sys-

tem (1)-(3) converges to the equilibrium point (θ, θ̇) =
(0, 0), where the nonlinear term a1 sin (θ(t)), which

can be considered as a disturbance, has been com-

pletely rejected [Edwards and Spurgeon, 1998]. Figure

2 shows simulation results using a1 = 0.25, m = 1,

θ(0) = 1 Rad, and θ̇(0) = 0 Rad/sec.

3 Discrete-time Realization of the Sliding Mode

Controller

To obtain a discrete-time version of the closed-loop

system (1)-(3), let w(t) = a1 sin (θ(t)) be the pertur-

bation on the system. Then, we have:

θ̈(t) = u(t) + w(t), u(t) = −sign(s(t)). (5)

The state-space representation of the above system can

be written as:

ẋ = Ax+Bu+ Γw, u(t) = −sign(s(t)), (6)

y = Cx, (7)

where A =

[

0 1
0 0

]

, B =

[

0
−1

]

, Γ =

[

0
1

]

, C =
[

m 1
]

and x =

[

θ(t)

θ̇(t)

]

. In discrete control of continuous time



176 CYBERNETICS AND PHYSICS, VOL. 3, NO. 4, 2014

systems, to study stability and robustness, it is neces-

sary to convert the continuous-time state-space equa-

tions into the discrete-time ones. This conversion can

be done in different ways, but assuming fictitious sam-

plers and fictitious zero-order holding devices 1 [Ogata,

1995]. The conversion is performed using zero-order

holding process that assumes that the control inputs

are piecewise constant over the sampling period. For

a sampling rate of 1 second we obtain the following

discrete-time version of the system (6), (7):

xk+1 = ADxk +BDuk + ΓDwk, (8)

yk+1 = CDxk+1, k = 0, ..., N, (9)

where AD =

[

1 1
0 1

]

, BD =

[

−0.5
−1

]

, ΓD =

[

0.5
1

]

,

CD =
[

m 1
]

, wk = −a1 sin (θk), uk = sign(sk), and

sk = mθk + θ̇k.

System (8), (9) represents the discrete-time model of

the system (6), (7), where, obviously, a discretization

error appears depending on the sampling time.

Therefore, the objective is to evaluate the sliding mode

control performance on this discrete-time version of the

continuous-time plant by using polyhedral approxima-

tion. The method allows to calculate set estimates bas-

ing on the system’s output given by (7). Obviously, if

sensors are used, the output equation y(t) can be real-

ized as demanded. It is expected that the state trajectory

will converge to some region around the equilibrium

point. The size of this region can be obtained with our

polyhedral algorithm. Thus, the polyhedral approxima-

tion method will be applied to analyze the performance

of the controller in its discrete-time version for differ-

ent sampling rates.

4 Dynamical System State Estimation Using Poly-

hedral Approximation

Given the discrete dynamical system (8), (9), consider

the initial state x0 and uncertain perturbations wk at a

sample time k be bounded with convex sets:

x0 ∈ X0 : {−1 ≤ x0(1) ≤ 1, x0(2) = 1},

wk ∈ W : {−a1 ≤ wk ≤ a1}. (10)

Let us perform dynamical system state estimation us-

ing minimax filter [Shiryaev and Podivilova, 2014;

Shiryaev and Podivilova, 2013; Alamo, Bravo, and Ca-

macho, 2005]. It consists of a construction of feasible

sets Xk, which are guaranteed to contain all possible

values of dynamical system state vector xk ∈ Xk at a

sample time:

Xk+1/k = ADXk + ΓDW +BDuk, (11)

1Zero-order holders are the most frequently used in digital sys-

tems.

X [yk+1] = {x ∈ R2|CDx = yk+1}, (12)

Xk+1 = Xk+1/k ∩X [yk+1]. (13)

Minimax filter (11)-(13) involves performing set oper-

ations: linear transformation of sets, Minkowski sum

of sets, set intersections. But when the problem dimen-

sion increases troubles in performing Minkowski sum

operation in real-time occur. It is suggested to con-

struct feasible sets without performing intractable op-

erations of Minkowski sum and intersection. Only sys-

tem equations and linear inequalities systems describ-

ing possible value sets of initial state of the system, dis-

turbances and measurement noises are used [Shiryaev

and Podivilova, 2014].

Now allow the sets X0, W be described using linear

inequality systems:

X0 : Ax0
x0 ≤ bx0

, W : Awwk ≤ bw. (14)

At a sample time all this information is included in

one large system of linear inequalities. This system

implicitly describes the feasible set. To get an explicit

description it is necessary to approximate it with

polyhedra of any required form; i.e. with any range

of facets. The approximation algorithm consists of

solving linear programming problems for all of the

given facets with the received linear inequalities

system as constraints (see Algorithm 1).

Algorithm 1:

Step 1. State the linear equation system describing dy-

namical system at a sample time k as:

(

I −A −Γ
G 0 0

)





xk+1

xk

wk



 =

(

BDuk

yk+1

)

. (15)

Step 2. Describe the linear inequality system describ-

ing bounds as:

(

0 Axk
0

0 0 Aw

)





xk+1

xk

wk



 ≤

(

bxk

bw

)

. (16)

Step 3. Calculate the feasible set as a linear inequality

system:

Xk+1 ⊂ Xk+1 : Axk+1
xk+1 ≤ bxk+1

, (17)

< ai, x >→ max
(15),(16)

, (18)
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and bi =< ai, x
∗ >, where ai – i-th row of matrix

Axk+1
, x∗ is the solution of the linear programming

problem (18).

To find bounds of coordinates of vector xk for

discrete-time model of a pendulum (8), (9) we will

perform approximation of feasible set with rectangles.

To estimate the set of the control inputs, the centers

of approximating rectangles were chosen. The result

of approximation for modelling the process with sam-

ple time 0.5s is shown on Figure 3. The Figure 3

shows the bounds of the coordinates x(1) and x(2)
of the vector xk , where x(1) represents the angular

position (Rad) and x(2) represents the angular veloc-

ity (Rad/sec), both, in discrete-time, of the mechanical

system.
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Figure 3. Approximation of feasible sets of xk in case of dis-

cretization with sample time 0.5s (red line corresponds to upper

bound, blue line corresponds to lower bound).

Note from (9) that the measurements are received

without errors, that is why the tubes of possible values

of x(1) and x(2) are quite narrow and these tubes os-

cillate around equilibrium point. When a smaller sam-

ple time is used the amplitude of these oscillations de-

creases.
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Figure 4. The simulation of continuous-time model with discrete-

time controller with sample time 0.5s.

5 Implementation of Discrete-time Controller to

Continuous Model

Let us perform the continuous time simulation of the

process using discrete-time controller with different

sample times using Simulink. The result of the experi-

ment for sample time 0.5s is shown in the Figure 4.

Let us compare the amplitudes of the system state os-

cillation around the equilibrium point for discrete-time

and continuous-time approaches. Maximum and min-

imum values of the coordinates x(1) and x(2) in both

cases were calculated. These values were chosen from

the period of the last 20 seconds of the modeling time

because for this time we can see some kind of stability

of the system. The bounds of values of the coordinates

x(1) and x(2) for different sample times are shown on

Figure 5.

As we can see from Figure 5, the amplitude of the

variables decrease when we decrease the sample time

in both discrete-time and continuous-time cases. But
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Figure 5. Bounds of values of x(1) and x(2) (dashed line

corresponds to discrete-time simulation, solid line corresponds to

continuous-time simulation, Ts is the sampling rate in seconds).

for some sample times (for example Ts=0.5s), the re-

sult in discrete-time case occurs to be a little worse,

but acceptable to predict the system behavior when a

discrete-time version of the controller is realized.

6 Conclusion

In this paper we have presented a method to es-

timate stability of a closed-loop system designed in

continuous-time domain (the plant and the controller),

when the controller is going to be realized in discrete-

time domain. The method is based on guaranteed dy-

namical system state estimation approach using poly-

hedral approximation. According to numerical exper-

iments, the proposed method gives an acceptable esti-

mation to predict the behavior of a continuous-time do-

main controller to the discrete-time field one. With this

method, we can avoid to analyze stability (and robust-

ness) of the closed-loop system in discrete-time land.

Stability of nonlinear systems in discrete-time domain

can be a heavily work compared to its continuous-time

version, i.e. the mathematics may become more in-

volved and complicated [Spooner et al., 2002].

Acknowledgements

This work is partially supported by the Spanish Min-

istry of Economy and Competitiveness through grants

DPI2012-32375/FEDER and DPI2011-25822, Eranet-

Mundus – Euro-Russian Academic Network through

Grant Agreement 2011-2573/001-001-EMA2.

References

Alamo, T., Bravo, J.M., Camacho, E.F. (2005) Guaran-

teed state estimation by zonotopes. Automatica, vol.

41, pp. 1035–1043.

Chernousko, F.L. (2002) Optimal ellipsoidal estima-

tion of dynamic systems subject to uncurtain distur-

bances. Cybernetics and System Analysis, vol. 38, no.

2, pp. 221–229.

Edwards, C., and Spurgeon, S.K. (1998) Sliding mode

control: Theory and applications. Taylor and Francis.

UK.

Fradkov, A.L., and Furuta, K. (1996) Discrete-Time

VSS Control under Disturbances. In: 35th IEEE

Conf. on Decision and Control, Kobe, 11-13 Dec.,

pp. 4599–4600.

Gao, W., Wang, Y., and Homaifa, A. (1995) Discrete-

time variable structure control systems. IEEE Trans.

on Industrial Electronics, vol. 42, no.2, pp. 117–122.

Hung, J.Y., Gao, W., and Hung, J.C. (1993) Variable

structure control: A survey. IEEE Trans. on Industrial

Electronics, vol. 40, no. 1, pp. 2–22.

Kurzhanski, A., and Varaiya, P. (2005) Ellipsoidal tech-

niques for reachibility analysis of discrete-time linear

systems. IEEE Trans. on Aut. Control, vol. 52, no.1,

pp. 26–38.

Matasov, A.I. (1998) Estimators for uncertain dynamic

systems. Dordrecht: Kluwer Academic Publishers.

The Netherlands.

Ogata, K. (1995) Discrete-time control systems, Second

edition. Prentice Hall. USA.

Perruquetti, W., and Barbot, J.P. (2002) Sliding mode

control in engineering. Marcel Dekker, Inc. New

York.

Podivilova, E.O. (2012) Comparison of minimax and

Kalman algorithms for estimation of dynamic sys-

tems state vectors. Bulletin of the South Ural State

University. Computer Technologies, Automatic Con-

trol, Radio Electronics, issue 17, no. 35(294),

pp. 135–138.

Polyak, B.T., Nazin, S.A., Durieu, C., and Walter, E.

(2004) Ellipsoidal parameter or state estimation un-

der model uncertainty. Automatica, vol. 40, pp. 1171–

1179.

Schweppe, F.C. (1968) Recursive State Estimation: un-

known but bounded errors and system inputs. IEEE

Trans. on Aut. Control, vol. AC-13, no.1, pp. 22–28.

Shiriaev, A.S., Egeland, O., Ludvigsen, H., and Frad-

kov, A.L. (2001) VSS-version of energy-based con-

trol for swinging up a pendulum. Systems & Control

Letters, vol. 44(1), pp. 45–56.

Shiryaev, V.I., and Podivilova, E.O. (2013) On approx-



CYBERNETICS AND PHYSICS, VOL. 3, NO. 4, 2014 179

imation of feasible sets in minimax filter. In Robotics

for risky environment - Extreme Robotics. Procc. of

the 7th International Workshop IARP RISE-ER’2013.

Saint-Petersburg: “Politechnika-service”, pp. 459–

464.

Shiryaev, V.I., and Podivilova, E.O. (2014) Feasible set

approximation in dynamic system state guaranteed

estimation problem under condition of uncertainty.

Mechatronika, Avtomatizatsiya, Upravlenie, no. 7,

pp. 10–16.

Spooner, J.T., Maggiore, M., Ordòñez, R., and
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